
1

Making Architectural Knowledge
Sustainable
Industrial Practice Report and Outlook

Olaf Zimmermann, ABB Corporate Research, Switzerland
With contributions from Heiko Koziolek and Martin Naedele

Abstract

Industrial software solutions such as Supervisory Control and Data
Acquisition (SCADA) systems for power grids are complex systems with
advanced quality requirements. Domain-specific design challenges include
multi-decade life cycles of managed devices, advanced security regulations,
and real-time requirements. Moreover, domain-specific software solutions
have to be integrated with general-purpose ones, e.g., asset management
packages and web portals.

ABB Corporate Research supports product development units in applying
novel software technologies and software engineering methods effectively,
striving for products that are attractive to customers and efficient to operate;
this presentation shares lessons learned from such initiatives. For instance,
we introduce a software-sustainability guide that profiles and packages a set
of proven practices, including requirements elicitation with multi-level use
cases and quality attribute scenarios, lightweight approaches to architecture
documentation and evaluation, and state-of-the-art testing methods. Finally,
we discuss how architectural knowledge management, e.g., sharing design-
decision rationale, can be combined with existing practices to further
improve project collaboration.

© ABB Group
April 27, 2012 | Slide 2

2

Agenda

Context

Software and software research at ABB

Distributed process control systems

Domain-specific design challenges

Sample projects and initiatives

Q-ImPrESS performance modeling

Software development improvement initiatives

Architectural Knowledge Management (AKM) practices

Decision rationale – past and present

Capturing advice – relevant issues, good justifications

Towards an sustainability guide for AKM

Summary and roadmap

© ABB Group
April 27, 2012 | Slide 3

Agenda

Context

Software and software research at ABB

Distributed process control systems

Domain-specific design challenges

Sample projects and initiatives

Q-ImPrESS performance modeling

Software development improvement initiatives

Architectural Knowledge Management (AKM) practices

Decision rationale – past and present

Capturing advice – relevant issues, good justifications

Towards an sustainability guide for AKM

Summary and roadmap

© ABB Group
April 27, 2012 | Slide 4

3

© ABB Group
April 27, 2012 | Slide 5

A Global Leader in Power and Automation
Technologies

133,600 employees in about 100
countries

$37.990 million in revenue (2011)

Formed in 1988 merger of Swiss and
Swedish engineering companies

Predecessors founded in 1883 and
1891

Publicly owned company with head
office in Switzerland

© ABB Group
April 27, 2012 | Slide 6

Power and Productivity for a Better World
ABB’s Vision

As one of the world’s leading engineering companies, we
help our customers to use electrical power efficiently, to
increase industrial productivity and to lower environmental
impact in a sustainable way.

4

© ABB Group
April 27, 2012 | Slide 7

How ABB is Organized
Five Global Divisions

Power
Products

Power
Systems

Discrete
Automation
and Motion

Process
Automation

$11.2 billion $6.5 billion $5.4 billion $7.8 billion

2009 revenues (US$; pro-forma figures for automation divisions)

Low Voltage
Products

$4.1 billion

Electricals, automation,
controls and instrumentation
for power generation and
industrial processes

Power transmission

Distribution solutions

Low-voltage products

Robots and robot systems

ABB’s portfolio covers:

© ABB Group
April 27, 2012 | Slide 8

Software at ABB
Software – Intelligence for ABB Products

Software is part of most ABB products – from the very small to the very big

Pressure sensor

Industrial control system

Power grid control center

… and all have highest requirements for

Real-time performance

Reliability

Long lifetime

Remote connectivity

5

Collaborative Process Automation Systems
Automation Pyramid

© ABB Group
April 27, 2012 | Slide 9

Examples

Power generation, transmission, and
distribution

Production line at car manufacturer

Mine, tunnel, paper mill

Building automation

Source: M. Hollender, Collaborative Process Automation Systems, ISA 2010

Level Hardware/Software Systems Typical Responsibilities

Enterprise Resource
Planning (ERP)

Enterprise Resource Planning (ERP),
Enterprise Asset Management (EAM)

Production planning (coarse), order
management logistics, plant production and
scheduling, asset management

Manufacturing &
Execution MES, MIS, LIMS

Production planning (detailed), production
data and gathering, KPIs, materials
management, quality mgmt
Scheduling, reliability assurance

Application servers,
supervision &
control

Distributed Control System (DCS),
Process Control System (PCS)
Human Machine Interface (HMI),
Supervisory Control and Data Acquisition
(SCADA)

Operate and observe, recipe management,
Archiving of measurement data (historian)

Automation
controllers SPS, control loops Batch control, continous control, discrete

control

Sensors, actuators,
field buses
(and managed
process)

Process signals, I/O modules, fieldbuses
Parallel wiring or intelligent systems like:
AS-Interface

Interface to technical production process via
signals
Simple and rapid data collection, moslty
binary signals

Collaborative Process Automation Systems
Automation Levels

© ABB Group
April 27, 2012 | Slide 10

6

Industrial Automation: Process Control Systems (PCS)

© ABB Group
April 27, 2012 | Slide 11

PCS Infrastructure (Operational Model)

© ABB Group
April 27, 2012 | Slide 12

Plant / Office Network

Network
Isolation

Device

Remote
Workplaces

Firewall

Internet
Remote
Workplaces

Redundant Network

Workplaces

Controllers

Servers

Fieldbus

Remote I/O and
Field devices

7

Software at ABB
Integration Platform Architecture

Transformation

Service Registry System Management

Service Orchestration

Security

Routing

Scheduling Services

Legacy
ApplicationSAPOracle Ventyx

Mobility
Ventyx

IMS Ventyx Ellipse Ventyx
Axis

Integration Designer IDE Management Console

Service Interface Service Interface Service Interface Service Interface Service Interface Service Interface Service Interface

B2B

Software at ABB
Solution Approach Using Enterprise Processes

| ©2012 Ventyx, An ABB Company | 14

Work
Management

Create Plan Schedule Execute Complete Work
Analysis

Asset
Management

Asset
Policy

Capital
Work

Register
Asset

Develop
Strategy

Deploy
Strategy

Asset
Analysis

People
Management

Maintain
Organization

Workforce
Planning

Organizational
Development

Time and
Attendance

Pay and
Benefits HSSRE

Materials
Management

Determine
Requirements

Source
Materials

Use
Materials Distribution Performance

AnalysisProcure

Financial
Management

Business
Config and

Financial Model

Accounts
Payable

Fixed
Assets

General
Ledger

Performance
& Compliance

Accounts
Receivable

Mining Ops
Management

Explore Design /
Construct Mine Process Trade Operation

Analysis

8

© ABB Group
April 27, 2012 | Slide 15

Software at ABB
Challenge and Opportunity

Standardized
products

Build on fast
development in

IT and electronics

Well-proven technology and
15-20 years life time

Customized
solutions

Design Challenges in Automation & Power Domains
(for Hardware and Software)

Safety and security

E.g. Security guidelines from North American Electric
Reliability Corporation’s (NERC)

E.g. Stuxnet threat (for entire industry)

Remote locations

Unmanned plants

Extreme environmental conditions

Diversity and lifetime of installed base

1000s of products

Some of them 40+ years old; news ones to last long

Technology evolution (and debt)

Operating systems

WWW, TCP/IP, Ethernet
© ABB Group
April 27, 2012 | Slide 16

9

ABB Corporate Research Centers
Automation Research Programs

© ABB Group
April 27, 2012 | Slide 17

Beijing / Shanghai

Bangalore

Krakow
Raleigh

Västerås

Dättwil

Ladenburg

Industrial Software
Systems

Sensors &
Signal Processing

Industrial
Communication

Mechatronics &
Robotics Automation

Västerås

Ladenburg

Beijing / Shanghai

Control &
Optimization

Ladenburg

Västerås

Bangalore

Raleigh

Bangalore

Dättwil

Ladenburg

VästeråsVästerås

Ladenburg

Bangalore

Dättwil

Ladenburg

Dättwil

Industrial Software Systems (ISS) Program

© ABB Group
April 27, 2012 | Slide 18

http://www.abb.com/softwareresearch

10

Agenda

Context

Software and software research at ABB

Distributed process control systems

Domain-specific design challenges

Sample projects and initiatives

Q-ImPrESS performance modeling

Software development improvement initiatives

Architectural Knowledge Management (AKM) practices

Decision rationale – past and present

Capturing advice – relevant issues, good justifications

Towards an sustainability guide for AKM

Summary and roadmap

© ABB Group
April 27, 2012 | Slide 19

Motivation
Problems of Software Evolution at ABB

Continuous evolution of ABB software systems

New requirements, technologies, failure reports

Software maintenance and evolution
are a large cost factor for ABB software development

Current practice

Experience to rationalize design decisions

Prototyping for new technologies, performance impacts

Unknown change impacts on performance/reliability

Apply model-based prediction methods for systematic
decision support to save costs and achieve higher quality?

© ABB Group
April 27, 2012 | Slide 20

11

Quality Impact Predictions for Evolving
Service-Oriented Systems (Q-ImPreSS)
Manual Model Creation

Modelling static structure
• Analyzed architectural documenation
• Identified four key use cases
• Abstraction level: process = component

Modelling dynamic structure
• Created testbed, installed system
• Recorded component transitions
• Derived transition probabilities

Validating the model
• Created Q-ImPrESS model in workbench
• Applied Q-ImPrESS consistency checker
• Discussed the model with architects

© ABB Group
April 27, 2012 | Slide 21

Q-ImPrESS Model of an ABB Process Control System
Manual Model Creation

© ABB Group
April 27, 2012 | Slide 22

12

Q-ImPrESS Workbench

Performance Prediction
Sample Predictions for Different Design Alternatives

© ABB Group
April 27, 2012 | Slide 24

13

• Achieved prediction error below 30 percent
• Easy to analyze different evolution scenarios

Pro

• Data collection consumed more time than expected
• Many bottlenecks below the architectural level

Con

Performance Prediction
Results: Measurements vs. Simulation Results

© ABB Group
April 27, 2012 | Slide 25

Workload PerfMon
Measured

SimuCom
Prediction

Error (%) LQNS
Prediction

Error (%)

30 17.146 12.467 27.288 12.464 27.305

60 26.681 22.366 16.174 22.343 16.260

90 31.902 32.347 1.395 32.322 1.317

120 39.016 42.432 8.754 42.329 8.490

150 51.929 51.943 0.027 51.760 0.326

Q-Impress – Many Lessons Learned
Results Presented at ICSE 2011 (URI)

Q-ImPrESS:

Provides a structured method and useful tool support

Is best used for evolutionary changes, not full redesigns

Still needs to demonstrate costs/benefits

Future work:

More robust reverse engineering tools

Model transformations from UML to Q-ImPrESS

Tools and best practices for data collection

© ABB Group
April 27, 2012 | Slide 26

More research and tool development needed
http://www.infoq.com/news/2011/04/palladio_tool

14

Agenda

Context

Software and software research at ABB

Distributed process control systems

Domain-specific design challenges

Sample projects and initiatives

Q-ImPrESS performance modeling

Software development improvement initiatives

Architectural Knowledge Management (AKM) practices

Decision rationale – past and present

Capturing advice – relevant issues, good justifications

Towards an sustainability guide for AKM

Summary and roadmap

© ABB Group
April 27, 2012 | Slide 27

Architectural Knowledge Management (AKM) (1/2)

D. Perry/A. Wolf (1992): Software Architecture = {Elements, Form, Rationale}

P. Kruchten (2004): presentation and workshop paper (QoSA 2006 update)

A. Jansen, J. Bosch: Software Architecture as a Set of Architectural Design
Decisions (2005)

An architectural (design) decision is “a description of the set of architectural
additions, subtractions and modifications to the software architecture, the rationale,
and the design rules, design constraints and additional requirements that (partially)
realize one or more requirements on a given architecture.“

Rationale defined as: “The reasons behind an architectural design decision are the
rationale of an architectural design decision. It describes why a change is made to
the software architecture.“

© ABB Group
April 27, 2012 | Slide 28

15

Architectural Knowledge Management (AKM) (2/2)

SHARK workshops and WICSA/QoSA conference tracks since 2006

Architectural Knowledge = Architecture Design + Architectural Decisions
(P. Kruchten, P. Lago, H. van Vliet, QoSA 2006)

Special Issue: Architectural Decisions and Rationale, Journal of Systems and
Software 82(8), 2009 (editorial and four papers, e.g., one from presenter)

Book: Software Architecture Knowledge Management –
Theory and Practice, Springer (2009)

Management strategies – explicit vs. implicit

Use cases, ontologies (e.g. Griffin core model),
links to other design artifacts

Tool survey (research prototypes)

Case studies (e.g. SOA reference architecture with
recurring architectural decisions from IBM)

IEEE 42010 now makes decision capturing mandatory (2011)

© ABB Group
April 27, 2012 | Slide 29

An Example of an Architectural Decision
(Modeled in Sparx Systems Enterprise Architect)

© ABB Group
April 27, 2012 | Slide 30

16

Many Metamodels – Few Models

Many metamodels and templates have been published

IBM Unified Method Framework (since 1998), see SATURN 2010 session

Key decision template suggested by Bredemeyer Consulting

Table by J. Tyree/A. Akerman in IEEE Software 22(2), 2005

arc42 also suggests a template, e.g. wiki-style (Germany/Austria)

TOGAF 9 has the notion of an architectural contract (with rationale)

But only very few models are publicly available (confidentiality/maintenance?)

The seminal book by M. Shaw and D. Garlan (1996) features a partial
design space for user interface architectures (Chapter 5, page 97)

Perspectives on Web Services (2003) has 26 recurring decisions

Informal coverage in integration patterns book and SWEBOK (2004)

Guidance model for SOA partially published in PhD thesis and tutorials

© ABB Group
April 27, 2012 | Slide 31

SOAD (2006-2011): Generic Metamodel

© ABB Group
April 27, 2012 | Slide 32

http://soadecisions.org/soad.htm

Existing metamodels and templates refatcored and extended for reuse

Before: documentation – after the fact

Now: design guidance – forward looking

Source: O. Zimmermann, Architectural Decisions as Reusable Design Assets.
IEEE Software, vol. 28, no. 1, pp. 64-69, Jan./Feb. 2011.

17

Sample Model Content for SCADA/DCS Historian
Sources: Domain Patterns and Recurring Issues

Conceptual issues:

Data point selection (granularity, sampling rate)?

Data retention policy (duration, protection)?

Database style (flat file/relational/document-oriented)?

Technology issues:

Query language?

Remoting protocol?

Encryption protocol?

Vendor asset issues:

OS, MW, HW choices (make or buy)?

Implementation providers for selected technologies?

Backup and restore system?
© ABB Group
April 27, 2012 | Slide 33

SOAD (2006-2011): Recurring Issues

© ABB Group
April 27, 2012 | Slide 34

Patterns + meta issues yield guidance models for a domain

Successfully applied to Service-Oriented Architecture (SOA) Design, cloud
computing, strategic outsourcing

Meta issue catalog organized by layer/node type, by component/connector

Source: O. Zimmermann, Architectural Decisions as Reusable Design Assets. IEEE Software, vol. 28, no. 1, pp. 64-69, Jan./Feb. 2011.

18

Recurring Issues (1/2)

© ABB Group
April 27, 2012 | Slide 35

Artifact Decision Topic Recurring Issues (Decisions Required)

Enterprise architecture
documentation [SZ92,
ZTP03]

IT strategy Buy vs. build strategy, open source policy

Governance Methods (processes, notations), tools, reference architectures, coding guidelines,
naming standards, asset ownership

System context [CCS07] Project scope External interfaces, incoming and outgoing calls (protocols, formats, identifiers),
service level agreements, billing

Other viewpoints [Kru95] Development process Configuration management, test cases, build/test/production environment
staging

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram [Fow03, CCS07]

Logical layers Coupling and cohesion principles, functional decomposition (partitioning)

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram [Eva03, Fow03]

Presentation layer Rich vs. thin client, multi-channel design, client conversations, session
management

Domain layer (process control flow) How to ensure process and resource integrity, business and system
transactionality

Domain layer (remote interfaces) Remote contract design (interfaces, protocols, formats, timeout management)

Domain layer (component-based
development)

Interface contract language, parameter validation, Application Programming
Interface (API) design, domain model

Resource (data) access layer Connection pooling, concurrency (auto commit?), information integration,
caching

Integration Hub-and-spoke vs. direct, synchrony, message queuing, data formats,
registration

Source: O. Zimmermann, An architectural decision modeling framework for service oriented architecture design. PhD thesis, Stuttgart University, 2009.

Recurring Issues (2/2)

© ABB Group
April 27, 2012 | Slide 36

Artifact Decision Topic Recurring Issues (Decisions Required)

Logical component
[ZTP03]

Security Authentication, authorization, confidentiality, integrity, non-repudiation, tenancy

Systems management Fault, configuration, accounting, performance, and security management

Logical component
[ZZG+08]

Lifecycle management Lookup, creation, static vs. dynamic activation, instance pooling, housekeeping

Logging Log source and sink, protocol, format, level of detail (verbosity levels)

Error handling Error logging, reporting, propagation, display, analysis, recovery

Components and
connectors [ZTP03,
CCS07]

Implementation technology Technology standard version and profile to use, deployment descriptor settings
(QoS)

Deployment Collocation, standalone vs. clustered

Physical node [YRS+99] Capacity planning Hardware and software sizing, topologies

Systems management Monitoring concept, backup procedures, update management, disaster recovery

Source: O. Zimmermann, An architectural decision modeling framework for service oriented architecture design. PhD thesis, Stuttgart University, 2009.

19

How Much Design Rationale is Enough?

Little information what/how much to capture:

Most metamodels and templates ask for a lot of detail (cost/benefit?)

G. Fairbanks suggests a lean/minimalistic approach to rationale capturing
in his architectural haikus (presented at WICSA 2011):

Requirement <driver-x> is a priority, so we chose design <alt-y>,
accepting downside <consequence-z>

My version (the Y-approach):

In the context of <use case/user story u>, facing <concern c>,
we decided for <option o> to achieve <quality q>

These Y statements yield a bullet list of open/closed (design) issues
(link to project management!)

Can go to appendix of software architecture document, Wiki,
spreadsheet, notes attached to UML model elements

© ABB Group
April 27, 2012 | Slide 37

(WH)Y?

Valid and Invalid Justifications
Food for Architectural Evaluations/Reviews!

Convincing rationale:

Direct link to requirements (the “Y”)
Quality attributes in particular, but also
functional requirements and constraints

Positive experience on previous project
Or prototype, experiment, simulation

Existing skills, license agreements
Other project management concerns

Poor justifications:

Market momentum
Technology or vendor push

Only one alternative known/considered
Other killer phrases

Keep CVs of team members current

© ABB Group
April 27, 2012 | Slide 38

Source: O. Zimmermann, An architectural decision modeling framework for
service oriented architecture design. PhD thesis, Stuttgart University, 2009.

20

Good and Bad Justifications, Part 1

Decision driver
type Valid justification Counter example

Wants and
needs of
external

stakeholders

Alternative A best meets user expectations and
functional requirements as documented in user
stories, use cases, and business process model.

End users want it, but no evidence for a pressing business
need. Technical project team never challenged the need for
this feature. Technical design is prescribed in the
requirements documents.

Architecturally
significant

requirements

Nonfunctional requirement XYZ has higher weight
than any other requirement and must be
addressed; only alternative A meets it.

Do not have any strong requirements that would favor one
of the design options, but alternative B is the market trend.
Using it will reflect well on the team.

Conflicting
decision drivers
and alternatives

Performed a trade-off analysis, and alternative A
scored best. Prototype showed that it's good
enough to solve the given design problem and has
acceptable negative consequences.

Only had time to review two design options and did not
conduct any hands-on experiments. Alternative B does not
seem to perform well, according to information online. Let's
try alternative A.

© ABB Group
April 27, 2012 | Slide 39

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

Good and Bad Justifications, Part 2
Decision

driver type Valid justification Counter example

Reuse of an
earlier design

Facing the same or very similar NFRs as successfully
completed project XYZ. Alternative A worked well there. A
reusable asset of high quality is available to the team.

We've always done it like that.

Everybody seems to go this way these days;
there's a lot of momentum for this technology.

Prefer do-it-yourself
over commercial off-
the-shelf (build over

buy)

Two cornerstones of our IT strategy are to differentiate
ourselves in selected application areas, and remain master
of our destiny by avoiding vendor lock-in. None of the
evaluated software both meets our functional requirements
and fits into our application landscape. We analyzed
customization and maintenance efforts and concluded that
related cost will be in the same range as custom
development.

Price of software package seems high, though
we did not investigate total cost of ownership
(TCO) in detail.

Prefer to build our own middleware so we can
use our existing application development
resources.

Anticipation of
future needs

Change case XYZ describes a feature we don't need in the
first release but is in plan for next release.

Predict that concurrent requests will be x per second shortly
after global rollout of the solution, planned for Q1/2009.

Have to be ready for any future change in
technology standards and in data models.

All quality attributes matter, and quality attribute
XYZ is always the most important for any
software-intensive system.

© ABB Group
April 27, 2012 | Slide 40

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

21

Sustainable Architectural Decision Knowledge
Wanted: Integrated Decision/Design Tool Chain

© ABB Group
April 27, 2012 | Slide 41

Tool builders should justify capture their design decisions
(like any architect)… and share them with their collaborators!

Agenda

Context

Software and software research at ABB

Distributed process control systems

Domain-specific design challenges

Sample projects and initiatives

Q-ImPrESS performance modeling

Software development improvement initiatives

Architectural Knowledge Management (AKM) practices

Decision rationale – past and present

Capturing advice – relevant issues, good justifications

Towards an sustainability guide for AKM

Summary and roadmap

© ABB Group
April 27, 2012 | Slide 42

22

Summary and Conclusions

Software and software architecture play a key role at ABB

Projects, programs, initiatives in place

Some key themes: modeling, reuse, rationale, sustainability

Architecture design is driven both by functional and by non-fucntional
requirements – and constraints of both kinds

Design techniques and modeling tools should combine these

Hard to see the forest for the trees – guidance required

Answers to why questions matter – and tend to be more sustainable
than most component-and-connector diagrams (reuse of know how!)

Explicit knowledge management does not imply big design
upfront, evolutionary architectures and/designs should be justified

See recently released IEEE 42010 standard

Try a rationale haiku and/or the “Y“ (FR+NFR->Justified Outcome)
to document the essence of a decision

© ABB Group
April 27, 2012 | Slide 43

Recommended Reading

Jansen/Bosch, Software Architecture as a Set of Architectural
Design Decisions, WICSA 2005. 5th Working IEEE/IFIP
Conference on Software Architecture

Motivation for decision capturing, basic definitions

ISO/IEC/IEEE 42010:2011, Systems and software
engineering—Architecture description.

Rationale – what to capture, how to capture

Zimmermann O., Architectural Decisions as Reusable Design
Assets. IEEE Software, vol. 28, no. 1, pp. 64-69, Jan./Feb. 2011

From documentation to design guidance, SOA examples

Hollender, Collaborative Process Automation Systems, ISA
2010

Domain-specific quality attributes and decisions

© ABB Group
April 27, 2012 | Slide 44

23

© ABB Group
April 27, 2012 | Slide 45

