Autonomic Control of Composed Web Services

Dan Ionescu, Bogdan Solomon- Univ. Of Ottawa
Marin Litoiu- York University, Toronto
Gabriel Iszlai- IBM Toronto

May 4, SEAMS 2010
Content

- Motivation
- Performance Models for WS
- Estimators
- Composite Models of WS
- Implementation
- Conclusions
Motivation(1)

- In system theory, a system is described by a transfer function.
- We can easily compose transfer functions, e.g.
 \[H = H_1 \times H_2 \]
- I can reduce any complex system to one transfer function \(H \)....
Motivation(2)

- If I have a system with a transfer function H, I know how to automate it....therefore I know to automate any system

- Example

 H

 Estimator accounts for:
 - Modeling errors
 - Measurement error
 - Time variant param.

 K: controller transfer function

- Example

 [Link](http://www.hrat.btinternet.co.uk/Homeostat.html)
Two mechanisms of automatically scaling up and down in cloud is by:

- Multi-tier distribution of the load (series processing)

- Clustering (parallel processing)

If I need to compose those patterns online, I need to know their combined effects.
Motivation(4)

- Can we have the equivalent of transfer functions in software performance adaptation?
 - Estimate/predict quantitative dependencies inputs/outputs
 - A systematic way of building controllers (autonomic managers)

- Can we compose those “transfer functions?”
 - Static and dynamic configuration of web services

- Can we have “Estimators” for software adaptation?
 - To deal with uncertainty
Performance Models for WS (non-linear)

Web Service (ES): states, inputs outputs

\[x_k = \begin{bmatrix} \text{cpuLoad} \\ \text{responseTime} \\ \text{bufferSize} \end{bmatrix} \]

\[u_k = [\text{arrivalRate}] \]

\[x_{k+1} = f(x_k, u_k) \]

\[z_k = h(x_k) \]

- \(k \) is the discrete time: \(k=0,1,... \)
- \(x_k \) is the state, \(u_k \) is the input
- \(z_k \) is the measurement output at moment \(k \), can be one of the \(x_k \) elements
- \(f \) and \(h \) are non-linear functions....
Linear Performance Models (linear)

\[x_{k+1} = A_k x_k + B u_k \]
\[z_{k+1} = H_{k+1} x_{k+1} \]

A, B, H are the Jacobians of f and h respectively, or..
• Partial derivatives around a functional point \((x_k, u_k)\)

Linearized models are very important for “Estimators”, see next slides
Estimators for WS

“All models are wrong, some models are useful.”

- How do we deal with
 - Modeling errors
 - Measurement errors
 - Incomplete knowledge about the system
 - Time variant parameters

- Estimators make the best out of the above

- Initially applied to control systems (60’s)

- now used in navigation
 - radar tracking of aircraft and ships
 - state = position, evolution is governed by dynamics

- and in control, e.g. adaptive robotics, signal processing, and other fields
The Kalman Filter for Linear Dynamic Systems

- The original filter was derived to give optimal estimates of time-varying states x_k:
 - Process model: $x_{k+1} = A_k x_k + B u_k + w_k$
 - Measurement model: $z_{k+1} = H_{k+1} x_{k+1} + v_{k+1}$
 - w_k process noise, with the covariance matrix Q
 - v_k measurement noise, with the covariance matrix R
 - w_k and v_k - white, independent and with a normal distribution

- Minimize (in min mean square sense) both the prediction error ($z_{k+1} - H_{k+1} x_k$) and the parameter estimation error conditional on:
 - the initial estimates of x_0
 - and P_0...
 - We define $P_k = \text{estimated covariance of estimates}$
 - and the observations z_i over 0 to k
The Extended Kalman Filter

System

Model

\[\tilde{x}_{k+1} = A\tilde{x}_k + \ldots \]
\[\tilde{y}_{k+1} = H\tilde{x}_{k+1} \ldots \]

Updating

\[\hat{x}_{k+1} = \hat{x}_k + ?\hat{e}_{k+1} \]

\[e_{k+1} = z_{k+1} - \hat{y}_{k+1} \]

\[z_{k+1} \]

\[\hat{y}_{k+1} \]

Centre of Excellence for Research in Adaptive Systems
Filter Equations for Linear Systems

- Predict x_{k+1} and observation y_{k+1}:
 \[
 \hat{x}^-_{k+1} = A_k \hat{x}_k + B_k u_k + w_k
 \]
 \[
 y_{k+1} = H_{k+1} \hat{x}^-_{k+1}
 \]

- Predict the error covariance of \hat{x}^-_{k+1}:
 \[
 P^-_{k+1} = AP_k A^T + Q
 \]

- Kalman gain K:
 \[
 K_k = P^-_k H_k^T (H_k P^-_k H_k^T + R)^{-1}
 \]

- Observe z_{k+1} and correct the estimate of x:
 \[
 \hat{x}_{k+1} = \hat{x}_k + K_k (z_{k+1} - y_{k+1})
 \]

- Update the error covariance $P_k = (I - K_k H) P^-_k$
Adaptive optimization

Controllers can be classic (synthesized from the model), or optimization algorithms based when what if scenarios...
Composing: Series of WS

- Arrival rate define the input for the first service
- The output of each service (the throughput) is the input for the next service

\[
x_N(k+1) = \begin{cases}
 f_N(x_N(k), u_N(k)), & \text{for } N=1 \\
 f_N(x_N(k), z_{N-1}(k)), & \text{for } N>1
\end{cases}
\]

\[z_N(k) = x_N(k)\]

\[x_{k+1} = A_k x_k + B u_k\]

\[z_{k+1} = H_{k+1} x_{k+1}\]

...now I can compute the Kalman estimator and the controller
Implementation
Implementation
Serial Composition of WS

- Centralized control

- Decentralized control
Conclusions

- A performance model of WS can be expressed as an explicit non-linear function
- Linearization of the models allows the definition and implementation of estimators
 - Have two steps, prediction and correction
 - Kalman filter is an optimal estimator for linear systems
- With estimators and models with we can build adaptive performance control
 - The estimators compensate for modeling and measurement errors
- Composition of Web Services a needed approach for the automation of Web Services deployed On-the-Cloud