Towards Pro-active Adaptation with High Confidence
Augmenting Monitoring with Online Testing

Andreas Metzger, Osama Sammodi, Klaus Pohl, Mark Rzepka

Paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen
Essen, Germany
www.paluno.de

Funded by the European Community’s 7th Framework Programme FP7/2007-2013 / Objective 1.2
www.s-cube-network.eu
Agenda

• Motivation and Problem Statement
• State of the Art
• Solution Idea & Technical Challenges
• Conclusion & Future Work
Need for Adaptation

- **Highly dynamic SBA contexts**: changes of
 - requirements
 - user types
 - 3rd party services
 - service providers
 - ...

- Need to respond to **deviations during run-time**
 - no guarantees that 3rd party service fulfils its contract (SLA)
 - hard to assess behavior of infrastructure (e.g., the Internet) during design time
 - ...

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Reactive vs. Pro-active Adaptation

- **Reactive adaptation**
 - observe running SBA instances ("monitoring")
 - trigger adaptation in case of failures, deviations, changes, ...
 - drawbacks: execution of faulty services, reduction of performance, inconsistent end-states, ...

- **Pro-active adaptation**
 - adapt SBA instances to prevent them from failing

Our focus:
- Adaptation of SBA instances
- Adaptation by replacing services

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Pro-active Adaptation

• Illustration

SBA instance 1

adapt pro-actively?

SBA instance 2

adapt pro-actively?

SBA instance n
Avoiding Unnecessary Adaptations

- Unnecessary adaptations can be
 - **costly** (e.g., SLA negotiation; expensive alternative services)
 - **faulty** (e.g., binding of a “buggy” service)

Pro-active adaptation should be based on **confidence** that failure will occur in SBA instances.

- **But:** difference from traditional SW systems:
 - lack of control on 3rd party services
 - functionality and QoS can vary between service invocations (even if input is identical)
 - Service implementation can change without notice

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Agenda

• Motivation and Problem Statement
• State of the Art
• Solution Idea & Technical Challenges
• Conclusion & Future Work
State of the Art (1)

- **Statistical evaluation / data mining of monitoring data** [Liang et al. 2006, Fu et al. 2007, Sahoo et al. 2003]
 - requires large volume of monitoring data
 - adaptation may invalidate past monitoring data and thus prediction

- **Statistical testing** [Poore et al. 1998, Trammell et al. 1995]
 - prediction of overall system’s reliability (and not individual failures)
 - based on usage profile of the system
 - requires large number of test cases (significant effort/costs due to invocation of external services)

 - prediction of overall system’s reliability (and not individual failures)
 - static analysis technique (can complement monitoring & online testing)
State of the Art (2)

Joint monitoring & testing efforts [www.secse-project.eu]

– Proposed applications:

1. Use monitoring data to mimic service behaviour
2. Generate test cases to violate the SLAs (search-based technique using monitoring data)
3. Analyse the monitoring data to infer invariants

Online testing [Wang et al. 2004, Deussen et al. 2003, Bai et al. 2007]

– “Definition”: SBA is fed with dedicated test input in parallel to its normal use and operation (“production system”)

– Current techniques not used for building confidence
Agenda

• Motivation and Problem Statement
• State of the Art
• Solution Idea & Technical Challenges
• Conclusion & Future Work
Solution Idea

response
time

confidence

Threshold (800 ms)

95%

computed confidence

monitored data

online testing data

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Assumptions

1. **Failure** in constituent service
 \[\rightarrow\text{requirements deviation}\] (end-to-end quality violation)

 – not necessarily the case in all situations

 • *e.g.*, slower response of service B compensated by faster response of service A

2. Test of services has **no side effects**

 – *e.g.*, no books are delivered if testing online book service

3. Services **notify about changes** that could invalidate monitoring/testing data
Steps of the Approach

Two possible kinds of triggers:

A) Failure observed by monitoring

B) Change of service

1. Determine Representative Data

2. Determine Current Confidence
 - [not sufficient]
 - [sufficient]

3. Execute Online Tests

4. Predict Failure Occurrence

5. Decide on Pro-active Adaptation

Important for Trigger B!

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Technical Challenges

1. Determine Representative Data
2. Determine Current Confidence
 [not sufficient]
3. Execute Online Tests
 [sufficient]
4. Predict Failure Occurrence
5. Decide on Pro-active Adaptation

How can we exploit
- prediction models,
- non-parametric statistics,
- data mining techniques?
Technical Challenges

1. Determine Representative Data

2. Determine Current Confidence

[not sufficient]

3. Execute Online Tests

[not sufficient]

4. Predict Failure Occurrence

5. Decide on Pro-active Adaptation

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Technical Challenges

1. Determine Representative Data
2. Determine Current Confidence
3. Execute Online Tests
4. Predict Failure Occurrence
5. Decide on Pro-active Adaptation

What’s the right cost model?
Probability and cost of failure vs. Risk and cost of adaptation

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Relaxing the Assumptions

1. **Failure → requirements deviation**
 - S-Cube approach: **Run-time verification** [Bianculli et al. 2008, Gehlert et al. 2010]
 - Reduces effort for online testing:
 - Initiate steps only if deviation (Strategy A)

2. **Tests have no side effects**
 - *Service invocation = query only*
 - *Dedicated test mode / interface*

3. **Notification about changes**
 - *Novel service registries*
 - *New SLA constituents*

A. Metzger - SEAMS@ICSE, Cape Town, May 2010
Agenda

• Motivation and Problem Statement
• State of the Art
• Solution Idea & Technical Challenges
• Conclusion & Future Work
Conclusion and Future Work

• Avoid unnecessary pro-active adaptations
• Many data points needed for confident prediction
 – Thus: augment monitoring with online testing
• Interesting challenges remain to be addressed

Participate to the shaping of the Future Internet of Services
Apply as S-Cube Associate Member

Application Deadline: May, 17
www.s-cube-network.eu
References (1)

References (2)

End of Slides