
Partition and Propagate: an Error Derivation Algorithm
for the Design of Approximate Circuits

Ilaria Scarabottolo1, Giovanni Ansaloni1, George A. Constantinides2, Laura Pozzi1
1Università della Svizzera italiana, Lugano, Switzerland
2Imperial College London, London, United Kingdom

ilaria.scarabottolo@usi.ch, giovanni.ansaloni@usi.ch, g.constantinides@imperial.ac.uk, laura.pozzi@usi.ch

ABSTRACT
Inexact hardware design techniques have become popular in error-
tolerant systems, where energy efficiency is a primary concern.
Several techniques aim to identify circuit portions that can be dis-
carded under an error constraint, but research on systematic meth-
ods to determine such error is still at an early stage. We herein
illustrate a generic, scalable algorithm that determines the influ-
ence of each circuit gate on the final output. The algorithm first
partitions the graph representing the circuit, then determines the
error propagation model of the resulting subgraphs. When applied
to existing approximate design frameworks, our solution improves
their efficiency and result quality.

1 INTRODUCTION
The pervasive diffusion of resource-constrained embedded and
portable systems is challenging traditional methodologies for the
design of digital systems. In particular, Approximate Computing
applied at circuit level is gaining increasing research interest, as
it can lead to high-performance implementations coupled with
reduced area and energy cost.

A promising approach to designing approximate hardware is
logic simplification, which may tune the Boolean function imple-
mented by a circuit to obtain an inexact equivalent [11], or it may
focus on the pruning of gate-level netlists, identifying circuit por-
tions that, if neglected [6, 7] or substituted [10], entail only small
errors at the outputs.

For all these approximation techniques to be effective, an accu-
rate notion of the error induced at the output by a given transforma-
tion is paramount. Our contribution falls in this field, addressing the
challenge of quantifying the maximum error observed in a generic
combinatorial circuit output, when some of the circuit logic gates
are simplified. We propose a novel algorithm to identify a bound
on such error, which improves on the state of the art by providing
accuracy similar to that obtained through exact error computation,
at a fraction of the runtime.

We achieve this goal by partitioning the original circuit into
subcircuits and deriving an error-propagation model to label each
gate with the maximum error induced by its removal.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC’19, June 2019, Las Vegas, Nevada USA
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

As this partitioning step guarantees that we only rely on simula-
tion for (small) subcircuits, our strategy has a remarkable positive
impact on the quality of result and on the run-time required for
inexact logic simplification.

Summing up, the main contributions of this work are:

• We present a circuit decomposition algorithm to quantify the
error induced by inexact logic simplification, able to bypass
the non-scalable complexity of exact error computation.

• We show that the obtained errors are orders-of-magnitude
less conservative than those derived by maximum error esti-
mation techniques available in the state of the art.

• We showcase the performance enhancement that our error
estimation method can induce in state-of-the-art gate-level
simplification frameworks. Our method enables up to 39%
further reduction of EDAP (energy, delay and area product)
for the inexact circuits derived by the GLP method [7], when
guided by our error model.

2 RELATEDWORK
Approximate Computing as a design paradigm has been attracting
a large number of research efforts. While approximation can be
exploited at various levels of the hardware/software stack, circuit-
level AC methodologies are most related to our contribution. These
techniques aim to derive inexact gate-level netlists starting from
their exact counterparts; inexact circuits can then be combined to
efficiently realise complex functionalities [1]. Some notable efforts
in inexact circuit research focus on manually designing specific
arithmetic units, such as adders [13] or multipliers [5], while others
adopt a more generic approach, enabling the simplification of any
combinatorial circuit [2, 4, 6, 7, 9–11]. In order for these techniques
to be effective, accurate error estimation is needed to understand
the effect that each proposed transformation can induce at the
circuit output (for example, which node to be selected for iterative
node-removal [7, 14], or which net to be substituted and simplified
[10]).

Among the state of the art in error estimation methods to guide
the above approximation techniques, several works [2, 7, 9, 12]
present a framework where errors are derived through Monte Carlo
sampling of possible inputs, and expressed as statistical measures.

The method we propose focuses instead on finding a bound for
the maximum error, which is a stronger requirement that can be
of primary concern in some critical applications. The state of the
art in proposing a bound for maximum error — as opposed to aver-
age error estimation — consists in two categories: one of tractable
complexity but producing conservative quality bounds, and one
delivering exact values but exhibiting intractable complexity.

https://doi.org/10.475/123_4

DAC’19, June 2019, Las Vegas, Nevada USA Ilaria Scarabottolo1, Giovanni Ansaloni1, George A. Constantinides2, Laura Pozzi1

[…] […]

[…]
[…]

[…]

11 12

13

14not yet known

known

Figure 1: The proposed P&P methodology. A graph repre-
senting a gate-level netlist is processed; error weights at
this point are known only at the outputs (bit-significance).
The graph is then partitioned (1), and propagation matri-
ces are derived (2); they express the relation between output
and input weights. External edges weights are then derived
by propagation through subgraphs (3), and finally subgraph
simulation determines weights for internal nodes (4).

Belonging to the first category, a strategy [7] which we refer
to as sum labelling models the influence of a gate as the sum of
the influence of all its direct children gates. In practice, however,
the influence of a gate removal can be considerably less than this
conservative estimation, and our experimental results show that
orders of magnitude can separate it from the actual error. On the
other end of the spectrum, and belonging to the second category, is
exact error computation. This can be performed employing whole-
circuit simulation, as in [6], or using SAT solvers, as in [12]; however,
the complexity of these methods is exponential in the number of
circuit inputs, and therefore necessarily becomes intractable at
some point.

The present work, called Partition and Propagate (P&P), over-
comes the intractability of exact error computation, by partitioning
the circuit and employing simulation only on small subcircuits, and
at the same time strongly improves on the accuracy obtained by
tractable strategies such as sum labelling [7], as demonstrated by
experimental results.

3 METHODOLOGY
In the following sections, we formally state the problem we address;
then, we describe the stages of our workflow (also depicted in
Figure 1), namely graph partitioning, derivation of the propagation
matrices, propagation and subgraph simulation for internal nodes.

3.1 Problem Formulation
A combinatorial circuit can be represented as a Direct Acyclic
Graph𝐺 (𝑁, 𝐸), where each node 𝑛𝑖 ∈ 𝑁 represents a single output
Boolean gate and each edge 𝑒 (𝑛𝑖 , 𝑛 𝑗) ∈ 𝐸 represents a connection
between nodes such that the output of 𝑛𝑖 is used by 𝑛 𝑗 .

The purpose of this work is to label the graph with weights
𝑤 (𝑛𝑖) for each gate 𝑛𝑖 ∈ 𝑁 . The weight of an edge is equal to that
of its destination node:𝑤 (𝑒 (𝑛𝑖 , 𝑛 𝑗)) = 𝑤 (𝑛 𝑗) for all 𝑒 ∈ 𝐸.

Weights represent the influence of a node on the circuit output,
in terms of a bound on the maximum difference from the exact
result that can be observed if 𝑛𝑖 is removed from the circuit and its
output is set to a constant value.

The result of a circuit computation is captured by function

𝑓 : B𝑛 → Z (1)

mapping the Boolean vector of the circuit primary outputs into
an integer, corresponding to bit-significance weighting for arith-
metic circuits.

Given a graph 𝐺 (𝑁, 𝐸) representing the exact circuit, and given
graph 𝐺𝑖 (𝑁 \{𝑛𝑖 }, 𝐸\{𝑒 (𝑢, 𝑣) | 𝑢 = 𝑛𝑖 ∨ 𝑣 = 𝑛𝑖 }) representing
the approximate one, obtained by removing node 𝑛𝑖 , for all 𝑘 =

1..2 |𝐼 | possible input combinations the two circuits will generate
the Boolean vectors 𝒐𝑘 and 𝒐𝑘

𝑖
of their primary outputs. The exact

weight of 𝑛𝑖 is, then, their maximum difference:

𝑤 (𝑛𝑖) = max
𝑘

|𝑓 (𝒐𝑘) − 𝑓 (𝒐𝑘𝑖) | (2)

3.2 Graph partitioning
The strategy we adopt to obtain a scalable framework to derive
such weights is to partition the graph into smaller subgraphs that
can be separately simulated. We define a partition function

𝑝 : 𝐺 (𝑁, 𝐸) ↦→ 𝑆 (3)

where 𝑆 is a set of subgraphs 𝑠 (𝑁𝑠 , 𝐸𝑠), 𝑁𝑠 ⊆ 𝑁, 𝐸𝑠 ⊆ 𝐸. Each
𝑛𝑖 ∈ 𝑁 is assigned to exactly one subgraph 𝑠 (𝑁𝑠 , 𝐸𝑠) ∈ 𝑆 , and⋃

𝑠 𝑁𝑠 = 𝑁 . All edges {𝑒 (𝑛𝑖 , 𝑛 𝑗) ∈ 𝐸 | 𝑛𝑖 ∈ 𝑁𝑠 ∧ 𝑛 𝑗 ∈ 𝑁𝑠 }
belong to 𝐸𝑠 . Figure 1 (step 1) shows an example of a generic
graph 𝐺 partitioned into five subgraphs. We define external edges
{𝑒 (𝑢, 𝑣) | 𝑢 ∈ 𝑁𝑖 ∧ 𝑣 ∈ 𝑁 𝑗 , 𝑖 ≠ 𝑗} those linking two different sub-
graphs. A subgraph 𝑝 (𝑁𝑝 , 𝐸𝑝) is parent of subgraph 𝑞(𝑁𝑞, 𝐸𝑞) if
there exists at least one external edge {𝑒 (𝑢, 𝑣) | 𝑢 ∈ 𝑁𝑝 ∧ 𝑣 ∈ 𝑁𝑞}.

We explain in Section 3.6 the algorithm we propose for partition-
ing. For now, we assume a partition has already been performed.

3.3 Derivation of the propagation matrix
After graph𝐺 (𝑁, 𝐸) has been partitioned, each subgraph is analysed
to determine how the weights of its inputs can be derived as a
function of those of its outputs.

Each subgraph has a set of inputs 𝐼𝑠 = {𝑒 (𝑢, 𝑣) | 𝑢 ∉ 𝑁𝑠 , 𝑣 ∈ 𝑁𝑠 }
and a set of outputs 𝑂𝑠 = {𝑒 (𝑢, 𝑣) | 𝑢 ∈ 𝑁𝑠 , 𝑣 ∉ 𝑁𝑠 }. Weights of the
inputs are obtained as functions of output weights by observing the
subgraph truth table. An example is provided in Figure 2, where a
subgraph of two inputs, edges a1 and b (the two edges coming from
node B are actually indistinguishable, as they correspond to the
same bit value, and hence are referred to as a single one), and two
outputs, C, D is depicted; weights of the two outputs are labelled
𝑤𝐶 and𝑤𝐷 .

In particular, Figure 2b illustrates how𝑤𝑏 is obtained: a pairwise
comparison is performed between input tuples that differ only
for the value of bit b. If the integer value of the output vector

Partition and Propagate: an Error Derivation Algorithm
for the Design of Approximate Circuits DAC’19, June 2019, Las Vegas, Nevada USA

(a)

b2

C D

wC wD

xor not

ornot

A B

a2
a1 b1

(b)

M (2,2) = 1
1

-1
-1

wC wD

wb

w a1

s

a1 b C D
0 0
0 1
1 0
1 1

1 1
0 1
0 1
1 0

f (ob=0) = wC+wD
1

f (ob=1) = wD
1

f (ob=0) = wD
2

f (ob=1) = wC
2

k=
1

k=
2

w = max | f (ob=1) - f (ob=0)| b
k k

k

= max (wC , |wC – wD|)

Figure 2: Propagationmatrix derivation for an example sub-
graph. The figure reports its truth table, and differences are
computed for 𝑤𝑏 . The process is repeated twice (once for
each distinguishable input) to obtain the complete matrix.

𝑓 (𝒐) is strictly monotonically increasing with subgraph output
bits C and D, then 𝑤𝑏 is set to the maximum recorded difference
max𝑘 |𝑓 (𝒐𝑘

𝑏=1) − 𝑓 (𝒐𝑘
𝑏=0) | over the 𝑘 = 1..2𝐼𝑠−1 comparisons (2, in

this basic example), and it is expressed as a linear combination of
the output weights (in the example, we assume |𝑤𝐶 −𝑤𝐷 | is greater
than𝑤𝐷).

We can safely set 𝑤𝑏 to the difference of output bits weights
because the strict monotonicity of 𝑓 (𝒐) guarantees that errors at the
subgraph output will propagate in the same way (i.e. with the same
polarity) to the graph primary outputs. If, on the contrary, 𝑓 (𝒐) is
not monotonically increasing with bits C or D, the direction of each
of these bit variations could be reverted in lower computations and,
hence, we are forced to set the input weight to the sum of all flipped
output bit weights. In the example, this would result in weight𝑤𝑏

being set to𝑤𝐶 +𝑤𝐷 . Note that a single non-monotonic subgraph
in the path to the primary outputs is sufficient for potential error
underestimation; therefore, information on non-monotonicity must
be retained for upper subgraphs.

The same process is repeated for input a1, and the results are
stored in a propagation matrix 𝑀𝑠 (|𝐼𝑠 |, |𝑂𝑠 |), where the 𝑖-th row
contains the coefficients (0, 1 or -1) of the linear combination of
the output weights for input 𝑖 . Weights of the subgraph inputs can
then be calculated as: [

𝑤𝑎1
𝑤𝑏

]
= 𝑀

[
𝑤𝐶

𝑤𝐷

]
(4)

Propagation matrices are derived for each subgraph, then used
to propagate subgraph output weights to their inputs.

3.4 Propagation
The missing step at this point is to propagate weights from the in-
puts of generic subgraphs to the outputs of their parent subgraph(s).
For example, looking again at Figure 2, weights of nodes A and B
must now be derived from weights of edges a1, a2 and b.

(b)(a)

C
or

re
sp

on
ds

 to
 s

um
 la

be
lli

ng

C
or

re
sp

on
ds

 to

w
ho

le
-c

ir
cu

it
 s

im
ul

at
io

n

Figure 3: Two end-of-the-spectrum partitions: a) each gate
corresponds to one subgraph, b) the whole circuit corre-
sponds to a single subgraph.

For a generic subgraph output, either all its children belong to
the same subgraph (as for node B of Figure 2), or children nodes are
distributed in different subgraphs (as for node A). Derivation for the
first case is trivial:𝑤𝐵 is equal to𝑤𝑏 . However, if a node has children
belonging to different subgraphs, its weight must conservatively be
computed as the sum of the corresponding external edges weights
(𝑤𝑎1 +𝑤𝑎2 for𝑤𝐴 in the example), since we cannot resort to a single
truth table to compute a less conservative weight.

3.5 Subgraph simulation for internal nodes
Once external edges and subgraph outputs are labelled, we populate
each subgraph with internal node weights. In this phase, we do
employ exhaustive simulation, as in [6], but applied to each sub-
graph separately, where the crucial difference is that their number
of inputs |𝐼𝑠 | is much smaller than that of the whole circuit |𝐼 |. A
SAT-solver based exact weight derivation could also be used in
this step, leading to the same conclusion: the number of inputs of
subgraphs is now limited, and hence the problem becomes tractable.

3.6 Partitioning criteria
Different partition choices for a given graph 𝐺 will impact two
aspects: the accuracy of the obtained weights on one side, and the
feasibility of subgraph simulation on the other.

Figure 3 depicts two extreme partitions: at one end, each gate
corresponds to one subgraph. This leads to a feasible partition
(each subgraph has a limited number of inputs – namely two, at
most, for up to two-inputs gates – and hence can be simulated) but
will be the worst in terms of resulting weight accuracy, because
it corresponds to resorting to the sum labelling algorithm. In fact,
with this partition, all gate fanouts are external edges and the
propagation step (Section 3.4) is conservatively forced to adopt
sum labelling for all of them, when deriving weights of subgraph
outputs.

At the other extreme, the whole circuit corresponds to a single
subgraph. This will lead to the best partition in terms of resulting
weight accuracy (all children of the same gate belong to the same
sugraph, and hence get subsumed in a single propagation matrix),
but will be generally infeasible, because it corresponds to whole-
circuit simulation.

DAC’19, June 2019, Las Vegas, Nevada USA Ilaria Scarabottolo1, Giovanni Ansaloni1, George A. Constantinides2, Laura Pozzi1

To find a suitable partition trading off these concerns, we con-
sider two main aspects. First, feasibility: the number of inputs |𝐼𝑠 |
for each subgraph 𝑠 has to be small, in order to allow simulation of
all the 2 |𝐼𝑠 | possible input combinations.

Secondly, as illustrated in Section 3.4, it is advantageous that
all children of any given node belong to the same subgraph, so that
gate fanouts are included into the same subcircuit simulation and
sum labelling employment is unnecessary. Hence, for each 𝑛′, 𝑛′′

children of the same node:

∀𝑁 ′, 𝑁 ′′ ∈ 𝑁 . 𝑛′ ∈ 𝑁 ′ ∧ 𝑛′′ ∈ 𝑁 ′′ ⇒ 𝑁 ′ = 𝑁 ′′. (5)

Note that state-of-the-art graph partitioning approaches for logic
synthesis (such as, for example, KL-cuts [3]), do not consider the
condition expressed in Equation 5 above, and hence are not suitable
for this problem; therefore, we propose and implement a differ-
ent algorithm. The partitioning algorithm we propose labels graph
nodes with subgraph IDs, by first assigning the same subgraph ID
to all children of the same node, iteratively merging subsets with
same ID to 1) honour the condition for all nodes, and 2) guaran-
tee an acyclic partition. In a second traverse, we merge together
subgraphs for which |𝐼𝑠+𝑡 | ≤ max{|𝐼𝑠 |, |𝐼𝑡 |}, i.e., the number of in-
puts of the resulting subgraph does not increase with respect to
the largest one among its components. This is done to reduce the
number of propagation matrices to be derived, without increasing
the computational cost for any of them.

This algorithm creates a first phase partition, which is exempli-
fied in Figure 4a. However, a partition thus created does not guar-
antee feasibility, because not all subgraphs necessarily will have a
limited number of inputs (the feasible number of inputs is set to
3 for the simple example in the figure, and an infeasible subgraph
exists at the top-left). Hence, to recover the feasibility property,
we adopt the simple strategy of further partitioning exactly those
subgraphs that are infeasible using the one-node-one-subgraph
extreme partition scheme, as exemplified in Figure 4b (the percent-
age of nodes ending up in infeasible subgraphs after first phase is
presented in our experimental section).

Thus, this two-stage partitioning strategy generates 1) a feasible
partition, where 2) a high number of node fanouts are included in
the same subgraph, and hence are subsumed in a single propagation
matrix.

3.7 Time complexity analysis
For the sake of readability, in this section we will refer to the cardi-
nality of a set with the name of the set itself.

For a graph with 𝑁 nodes, partition 𝑝 is obtained through a first
graph traverse, of cost 𝑁 , for children subgraph ID assignment.
The resulting partition is then explored to guarantee that, if there
exist subgraphs leading to cycles, these are merged in a single
one. This step has worst case complexity O(𝑆 + 𝑛𝐸𝐸), where 𝑆 is
the number of resulting subgraphs before further partitioning due
to infeasibility, and 𝑛𝐸𝐸 the number of external edges. After the
second subgraph-merging traverse of cost 𝑆 , infeasible subgraphs
are split into single-gate subgraphs in another linear step. Therefore,
partitioning has complexity O(𝑁 + 𝑆 + 𝑛𝐸𝐸).

Propagation, then, implies subgraph simulation for all subgraph
inputs, and for all internal gates. Time complexity of this phase

(b)(a)

in
fe
as
ib
le

fe
as
ib
le

i0i1i2i3i4i5i6

o0o1o2o3o4o5o6

i7i8i9 i0i1i2i3i4i5i6

o0o1o2o3o4o5o6

i7i8i9

Figure 4: a) A first phase partition with one infeasible sub-
graph (top-left), b) A second phase feasible partition, with
the infeasible subgraph further partitioned into single-gate
subgraphs.

strongly depends on the partition: for the extreme partition of
Figure 3b, it would be O(𝑁2𝐼), while for that of Figure 3a only
O(4𝑁) = O(𝑁), since all gates have 2 inputs and, hence, 4 pos-
sible input patterns. For generic partitions, the time complexity
is O(∑𝑆

𝑠=1 𝑁𝑠2𝐼𝑠). Since we bound 𝐼𝑠 to a threshold 𝑇𝐼 , the expo-
nential term can be expressed as a constant 𝐶 = 2𝑇𝐼 , leading to
O(𝐶∑𝑆

𝑠=1 𝑁𝑠) = O(𝐶𝑁) = O(𝑁).
In conclusion, the overall time complexity of the proposed algo-

rithm is O(𝑁 + 𝑆 + 𝑛𝐸𝐸), which depends on the chosen partition
parameters but is still remarkably lower than approaches that re-
sort to simulation of all inputs or SAT-solver based exact weight
derivation. In our experiments, 𝐶 is set to 210, while the number of
input combination for processed circuits ranges between 216 and
264. A widespread alternative to exhaustive simulation is Monte
Carlo selection of a subset of possible input patterns; the resulting
simulation has then a complexity of O(𝑀𝑁), given𝑀 the cardinal-
ity of such subset. However, to obtain accurate estimations,𝑀 must
be considerably larger than 𝐶 (for example, 217 in [9], 220 in [2]
and more than 222 in [7]). Moreover, our method provides a bound
for maximum error, while MC only provides an approximation of
maximum error.

4 EXPERIMENTAL EVALUATION
4.1 Partition and Propagate performance
We assessed the performance of our methodology on a diverse
set of benchmark circuits, specified in the VHDL language. Their
characteristics are described in Table 1, along with the critical path
constraints employed in their synthesis. We used Synopsys Design

Table 1: Benchmark netlists.

Benchmark
of
gates

I/O
bitwidth

critical
path (ns)

8-bit adder 115 16/9 0.5
8-bit absolute difference 245 16/9 0.1
32-bit adder 475 64/33 2.0
16-bit butterfly 485 32/33 2.0
8-bit multiplier 685 16/16 2.0
8-bit binomial squared 946 16/18 5.0

Partition and Propagate: an Error Derivation Algorithm
for the Design of Approximate Circuits DAC’19, June 2019, Las Vegas, Nevada USA

Table 2: Influence of threshold 𝑻𝑰 on resulting partitions, in terms of number of resulting subgraphs, infeasible subgraph ratio,
and average distance from exact weights (when available).

𝑻𝑰

8-bit adder 8-bit abs. diff. 32-bit adder 16-bit butterfly 8-bit multiplier 8-bit bin. sq.
n.
sg.

inf.
%

avg
dist.

n.
sg.

inf.
%

avg
dist.

n.
sg.

inf.
%

avg
dist.

n.
sg.

inf.
%

avg
dist.

n.
sg.

inf.
%

avg
dist.

n.
sg.

inf.
%

avg
dist.

10 7 0.0 0.00e0 17 0.0 1.43e2 31 0.0 - 15 0.0 - 190 9.6 2.34e5 8 0.0 4.36e3
5 7 0.0 0.00e0 135 44.1 2.26e3 31 0.0 - 15 0.0 - 190 9.6 2.34e5 272 16.1 1.27e7
2 63 44.3 3.47e2 163 55.6 2.69e3 231 36.3 - 430 78.9 - 340 30.4 6.58e5 648 57.0 3.79e9

Figure 5: Comparison of the gate weights computed using sum labelling [7], Partition and Propagate and, for circuits with
lower input number, whole-circuit simulation [6].

Compiler as a synthesis tool, targeting a 40nm technology library,
while SIS [8] was used to carry out the simulation of subcircuits,
as well as exact error computation for circuits with up to 16 in-
puts. Benchmarks were first synthesised to netlists only comprising
inverters and 2-inputs NAND and NOR gates; then, these netlists
were fed to our tool P&P to compute gate weights. Our framework
can process netlists composed by any set of logic gates; nonetheless,
the use of larger, compound, gates may adversely impact flexibility,
because, as weights are assigned on a per-gate bases, it would force
simplification frameworks to monolithically discard or retain large
circuit portions.

Our strategy allows one to trade-off the accuracy of weights
and computational effort by tuning, during the partitioning phase,
threshold𝑇𝐼 , the maximum number of inputs allowed in a subgraph.
Showcasing the impact of this parameter, Table 2 reports the num-
ber of obtained subgraphs, the infeasible subgraph ratio (i.e., the
number of gates assigned to infeasible subgraphs over the total

number of gates), and the average distance from exact weight, for
𝑇𝐼 = 10, 𝑇𝐼 = 5 and 𝑇𝐼 = 2. As can be expected, lower thresholds
result in more and smaller subgraphs, and consequently in more
conservative weights, as more subgraphs are split into one-node-
one-subgraph partitions. A value of 𝑇𝐼 = 10 obtains high quality
weights, while the resulting computation time remains within sec-
onds to minutes, and it is the value that we choose for all further
experiments reported in this section.

In Figure 5 we compare the performance of P&P, in terms of
maximum error estimation accuracy, with state of the art methods:
sum labelling [7], a conservative and low-complexity strategy, and
exact error computation, which has exponential complexity and can
be obtained by whole-circuit simulation [6] or by a SAT formulation
[12]. It can be seen that P&P retrieves much less conservative gate
weights with respect to sum labelling (for example, seven orders of
magnitude less for gate with ID 200 in the 8-bit binomial squared).

DAC’19, June 2019, Las Vegas, Nevada USA Ilaria Scarabottolo1, Giovanni Ansaloni1, George A. Constantinides2, Laura Pozzi1

Figure 6: EDAP (Energy-Delay-Area Product) gains for all
benchmarks.

Table 3: Average EDAP ratio of GLP-pruned circuits guided
by either sum [7] or P&P labelling.

Benchmark average EDAP ratio
GLP + sum [7] GLP + P&P

8-bit adder 0.503 0.394
8-bit absolute difference 0.574 0.443
32-bit adder 0.510 0.333
16-bit butterfly 0.507 0.507
8-bit multiplier 0.885 0.877
8-bit binomial squared 0.939 0.553

P&P weights in fact approach – or even coincide with – those
obtained with exact error computation.

Because of its low computational complexity, P&P runtime is
very short. For example, to label all gates of the 32-bit adder it took
only 18 seconds, while SAT-solver exact error computation of [12]
takes 8 minutes for a circuit with similar gate count (≈ 400), and
a Monte Carlo simulation with 1 million inputs as in [2] takes 11
seconds for each design point, which would result in more than an
hour to label all circuit gates.

In conclusion, P&P combines graceful scaling with accurate error
estimation.

4.2 Performance of approximate circuits
The improved accuracy in gate weights achieved by P&P has a
significantly positive impact on the subsequent simplification of
inexact circuits. To explore this effect, we reimplemented the ap-
proximation strategy proposed in [7], called Gate Level Pruning
(GLP), which iteratively selects gates to be removed until the error
constraint is violated, starting from gates of lower weight. These
pruned netlists were then re-synthesised, using the entire set of
library gates, to retrieve their Energy Delay Area Product (EDAP)
that we use in Figure 6 as a figure of merit.

Figure 6 illustrates that P&P algorithm leads to high-performance
approximate circuits, resulting in large EDAP gains for small error
thresholds. As an example, for the case of the 8-bit binomial squared
benchmark, an EDAP improvement of 50% was achieved for an

error magnitude of slightly less than 1%, where error magnitude
is a measure of absolute error, expressed as a percentage of the
maximum circuit output.

Further showing the benefit of our error derivation methodology,
Table 3 reports the average EDAP ratio obtained for each benchmark
when GLP is guided by sum labelling, as actually done in [7], and
when it is guided by P&P labelling instead. P&P generally induces
large further reductions in obtained EDAP values, of up to 39% for
the 8-bit binomial squared case, and of 14% on average.

5 CONCLUSIONS
This work presents a novel algorithm for gate-level error determi-
nation, which identifies the maximum error observed on the output
when a gate is removed from a combinatorial circuit. Our approach
overcomes the main limitations of previous methods for quanti-
fying such errors, by adopting a divide-and-conquer strategy that
results in a generic and scalable algorithm. When applied to AC
design methods, the proposed algorithm upgrades their awareness
of error-propagation, resulting in higher result quality.

Future work will focus on investigating a larger spectrum of
partitioning criteria, as well as on the adaptation of our method to
probabilistic error measures.

REFERENCES
[1] J. Castro-Godínez, S. Esser, M. Shafique, S. Pagani, and J. Henkel. 2018. Compiler-

Driven Error Analysis for Designing Approximate Accelerators. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition. 1–6.

[2] S. Hashemi, H. Tann, and S. Reda. 2018. BLASYS: Approximate Logic Synthesis
Using Boolean Matrix Factorization. In Proceedings of the 55th Design Automation
Conference. 55:1–55:6.

[3] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis. 2010. KL-Cuts: A new
approach for logic synthesis targeting multiple output blocks. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition. 777–782.

[4] J. Miao, A. Gerstlauer, and M. Orshansky. 2013. Approximate logic synthesis
under general error magnitude and frequency constraints. In Proceedings of the
International Conference on Computer Aided Design. 779–786.

[5] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel. 2016.
Architectural-space exploration of approximate multipliers. In Proceedings of the
International Conference on Computer Aided Design. 1–8.

[6] I. Scarabottolo, G. Ansaloni, and L. Pozzi. 2018. Circuit Carving: A Methodology
for the Design of Approximate Hardware. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition. 545–550.

[7] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. 2017. Design and Applications
of Approximate Circuits by Gate-Level Pruning. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25, 5 (Feb. 2017), 1694–1702.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H.
Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. 1992. SIS: A
system for sequential circuit synthesis. (1992).

[9] S. Su, Y. Wu, and W. Qian. 2018. Efficient Batch Statistical Error Estimation
for Iterative Multi-level Approximate Logic Synthesis. In Proceedings of the 55th
Design Automation Conference. 54:1–54:6.

[10] S. Venkataramani, K. Roy, and A. Raghunathan. 2013. Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits. In
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition.
1367–1372.

[11] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. 2012.
SALSA: systematic logic synthesis of approximate circuits. In Proceedings of the
49th Design Automation Conference. 796–801.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. 2011. MACACO: Mod-
eling and analysis of circuits for approximate computing. In Proceedings of the
International Conference on Computer Aided Design. 667–673.

[13] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. 2013. On reconfiguration-oriented
approximate adder design and its application. In Proceedings of the International
Conference on Computer Aided Design. 48–54.

[14] Z. Zhang, Y. He, J. He, X. Yi, Q. Li, and B. Zhang. 2018. Optimal Slope Ranking:
An Approximate Computing Approach for Circuit Pruning. In Proceedings of the
2018 IEEE International Symposium on Circuits and Systems. 1–4.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Graph partitioning
	3.3 Derivation of the propagation matrix
	3.4 Propagation
	3.5 Subgraph simulation for internal nodes
	3.6 Partitioning criteria
	3.7 Time complexity analysis

	4 Experimental Evaluation
	4.1 Partition and Propagate performance
	4.2 Performance of approximate circuits

	5 Conclusions
	References

