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ABSTRACT
Every software system (ideally) comes with one or more forms of
documentation. Beside source code comments, other structured and
unstructured sources (e.g., design documents, API references, wikis,
usage examples, tutorials) constitute critical assets. Cloud-based
repositories for collaborative development (e.g., GitHub, Bitbucket,
GitLab) provide many functionalities to create, persist, and ver-
sion documentation artifacts. On the other hand, the last decade
has seen the rise of rich instant messaging clients used as global
software community platforms (e.g., Slack, Discord). Although com-
pletely detached from a specific versioning system or development
workflow, they allow developers to discuss implementation issues,
report bugs, and, in general, interact with one another.

We refer to this evolving heterogeneous collection of information
sources and documentation artifacts as the documentation landscape.
It is important to have tools to extract information from these
sources and integrate them in a topological visualization, to ease
comprehension of a software system. How can we automatically
generate this topology? How can we link elements in the topology
back to the source code they refer to?

The goal of this PhD research is to automatically mine the docu-
mentation landscape of a system by disclosing pieces of information
to aid, for example, in program maintenance tasks. We present our
classification of possible documentation sources. The long term
vision is to provide a domain model of the documentation land-
scape to build, visualize, and explore its instances for real software
systems and evaluate the usefulness of the metaphor we propose.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development; • Information systems→ Internet communications
tools; Data mining.
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1 INTRODUCTION
Software documentation is critical in several development activi-
ties [2]. Development tasks can be extracted and linked to docu-
mentation sections to provide on-demand support for those tasks
and ease documentation navigation for developers [38]. Software
documentation from heterogeneous sources (mailing lists, Stack-
Overflow, issues, and pull requests) has been investigated to produce
a taxonomy of possible issues [3]. Some of these sources are non-
authoritative. More or less knowledgable users on StackOverflow
can contribute in a Q&A format where other users can vote on the
quality of answers. Popular frameworks and languages can gener-
ate a lot of non-authoritative documentation that can be exploited,
for example, by recommender systems [28]. Also in Agile contexts,
where documentation efforts are traditionally kept to a minimum,
there is a perceived need for specific forms of activity support-
ing documents [27]. We refer to this faceted and heterogeneous
multitude of possible sources as the documentation landscape
of a software system. Although a complete list of contributions
related to software documentation is out of scope, see the survey
by Zhi et al. for 69 papers summarizing costs, benefits, and quality
of software development documentation [43].

Correct and up to date documentation is useful [7, 9, 13, 14, 31,
34] but these attributes are often lacking [30, 31]. The problem
of coevolution with code [3, 39, 40] has been increasing with the
expansion of the documentation landscape. New sources emerged in
the last two decades. A few examples are developers’ blog posts [24],
software engineers’ microblogging on Twitter [37], rich media
instant messaging applications [11, 21, 26, 33], news aggregators [4],
and feature-rich forums [16]. By mining these sources it is possible
to complement and fix traditional documentation [6, 28].

Crowd-curated documentation [25] shifted the ratio between
documentation producers and consumers, but the coevolution prob-
lem remains relevant [40]. Cloud-based repositories support collab-
oration via tools tightly coupled with the repository itself [8, 36].
In the context of GitHub projects, although Issues have been inves-
tigated [5, 12, 15, 17, 18], the amount and nature of links to other
communication platforms is still unclear and fairly unexplored.

A new perspective on software documentation comes in the form
of on-demand developer documentation [32]. The idea is to produce,
on-demand, just enough documentation to fulfill the necessary task.
Such documentation can be custom-tailored for the task at hand
and more closely align producers’ efforts with consumers’ needs.
Automatic generation techniques try to reduce the gap between
documentation and code [1, 22, 23]. Some of the shortcomings
identified by Aghajani et al. in software documentation [3] (e.g., in-
consistency, outdatedness) can be partially mitigated or completely
overcome by automatic derivation of documentation via program
analysis [41], source code summarization [19, 42], method level
documentation [22], and automatic comment updating [20]. This
is also part of the documentation landscape.
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2 RESEARCH FOCUS
The main goal of our research is to automatically extract heteroge-
neous documentation from different sources in the documentation
landscape of a software system (Fig. 1). We envision the application
of visualization techniques, in particular to large systems, to obtain
a topological representation supporting program comprehension
and maintenance tasks.

Our research tries to address the following questions:
• How many different documentation sources are there and
how are they characterized?

• How can we automatically mine a software project to gener-
ate a topology of those sources?

• Which characterizing metrics can be mapped to visual at-
tributes for different program comprehension and mainte-
nance tasks?

Finally, we also aim at linking the topology back to source code ar-
tifacts. An interactive visualization of the documentation landscape
will allow switching between bottom-up (from source code to archi-
tecture and high-level concepts) and top-down (from domain-based
hypotheses to code) approaches to program comprehension [35]
thus better supporting an opportunistic strategy. Our hypothesis is
that a topological representation of documentation sources and arti-
facts can contribute to an efficient navigation of the documentation
landscape in specific tasks. Controlled experiments in the so far
outlined framework, with the support of the proposed tools, should
bring empirical evidence of how it can benefit multiple stakeholders
(e.g., developers to support everyday activities, team leaders and
project managers for planning and progress status assessment).

3 DOCUMENTATION LANDSCAPE
In the literature there is lack of a systematic approach to classifica-
tion and integration of multiple documentation sources. We identi-
fied thirteen possible sources that might be relevant and classified
them according to their nature – the archetype – and to different
metrics for each archetype. There are four archetypes: Documents,
Code, Multimedia, and Community. These surround the central
point of source code in a version control system (see Fig. 1). For
sources in each archetype, metrics are spanning the horizontal
or vertical axis. For example in the Community archetype there
are slower (e.g., mailing lists) and faster (e.g., instant messaging)
sources as well as more volatile or more persistent ones. Finally,
for each source, there are multiple possible instances. For example,
there are many different instant messaging applications that are
possible documentation sources (e.g., Gitter, Discord, Slack). In a
similar fashion, different types of documents can be related to a spe-
cific source depending on their origin or format (i.e., requirements
documents shared via Wiki, printed user manuals).

4 RESEARCH AGENDA
We initially explored Discord1, an instance of the instant messaging
source, for unstructured forms of documentation shared between
Pharo2 developers [29]. We are currently expanding our investi-
gation to other sources in the Community archetype. Our main

1See https://discord.com [accessed February 9, 2022]
2See https://pharo.org [accessed February 9, 2022]

Documentation Sources

Slow

Raw Chunked

Collaborative

Fast

Formatted Streamed

Authoritative

PersistentVolatile

External

Internal

Self-
contained

Incomplete

Slides 
Presentation

API

Version
Control
System

Code 
Comment

Scientific
Publication (E-)Book

ForumMailing ListSocial 
Network

Instant 
Messaging

Website Wiki

Podcast

Video

Community

Multimedia

Documents

Code

Figure 1: Documentation landscape of a software system

goal is to have a prototype to start validating the documentation
landscape metaphor with developers. A possible scenario to analyze
is the onboarding of new team members on projects in an already
advanced state of development. We have four points in our agenda.

Visualizing the documentation landscape –Given a software
system (i.e., its GitHub repository), we will automatically generate
an explorable visual representation of its documentation landscape.
A topological map of the elements composing the landscape will
enable us to evaluate the impact of this metaphor on software
comprehension, maintenance, and re-engineering tasks.

From instant messaging to community – We need to refine
our domain model of a Discord server and generalize it to other
instant messaging instances. We will then consider covering other
sources in the Community archetype as well.

Integrating multiple sources – We will include other arche-
types to complete the picture of the landscape. For each source we
plan to give a characterization in terms of metrics that might be
relevant for comprehension tasks. We will also extend the domain
model with the specific content of each source (e.g., developers’
Twitter accounts, video tutorial playlists).

Unstructured forms of documentation – We have tools to
identify the source code that developers share via instant mes-
saging [29]. We plan to aggregate the context of the surrounding
discussions to understand why developers share this code [10]. Re-
constructing these conversation streams poses both a theoretical
and a technical challenge that we would like to address.

5 CONCLUSION
We introduced the context of our research by referring to software
documentation, its importance, and its evolution in the recent years.
Then, we motivated our work and specified its scope, focus, and
intended goals. We presented our initial classification of archetypes
and sources in the documentation landscape. Finally, we outlined
possible directions and challenges for future research on this topic.
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