
Topology of the Documentation Landscape
Marco Raglianti

marco.raglianti@usi.ch
REVEAL @ Software Institute – USI, Lugano, Switzerland

ABSTRACT
Every software system (ideally) comes with one or more forms of
documentation. Beside source code comments, other structured and
unstructured sources (e.g., design documents, API references, wikis,
usage examples, tutorials) constitute critical assets. Cloud-based
repositories for collaborative development (e.g., GitHub, Bitbucket,
GitLab) provide many functionalities to create, persist, and ver-
sion documentation artifacts. On the other hand, the last decade
has seen the rise of rich instant messaging clients used as global
software community platforms (e.g., Slack, Discord). Although com-
pletely detached from a specific versioning system or development
workflow, they allow developers to discuss implementation issues,
report bugs, and, in general, interact with one another.

We refer to this evolving heterogeneous collection of information
sources and documentation artifacts as the documentation landscape.
It is important to have tools to extract information from these
sources and integrate them in a topological visualization, to ease
comprehension of a software system. How can we automatically
generate this topology? How can we link elements in the topology
back to the source code they refer to?

The goal of this PhD research is to automatically mine the docu-
mentation landscape of a system by disclosing pieces of information
to aid, for example, in program maintenance tasks. We present our
classification of possible documentation sources. The long term
vision is to provide a domain model of the documentation land-
scape to build, visualize, and explore its instances for real software
systems and evaluate the usefulness of the metaphor we propose.

CCS CONCEPTS
• Software and its engineering→ Collaboration in software
development; • Information systems→ Internet communications
tools; Data mining.

KEYWORDS
software documentation, communication platforms, visualization

ACM Reference Format:
Marco Raglianti. 2022. Topology of the Documentation Landscape. In 44th
International Conference on Software Engineering Companion (ICSE ’22 Com-
panion), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3510454.3517068

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3517068

1 INTRODUCTION
Software documentation is critical in several development activi-
ties [2]. Development tasks can be extracted and linked to docu-
mentation sections to provide on-demand support for those tasks
and ease documentation navigation for developers [38]. Software
documentation from heterogeneous sources (mailing lists, Stack-
Overflow, issues, and pull requests) has been investigated to produce
a taxonomy of possible issues [3]. Some of these sources are non-
authoritative. More or less knowledgable users on StackOverflow
can contribute in a Q&A format where other users can vote on the
quality of answers. Popular frameworks and languages can gener-
ate a lot of non-authoritative documentation that can be exploited,
for example, by recommender systems [28]. Also in Agile contexts,
where documentation efforts are traditionally kept to a minimum,
there is a perceived need for specific forms of activity support-
ing documents [27]. We refer to this faceted and heterogeneous
multitude of possible sources as the documentation landscape
of a software system. Although a complete list of contributions
related to software documentation is out of scope, see the survey
by Zhi et al. for 69 papers summarizing costs, benefits, and quality
of software development documentation [43].

Correct and up to date documentation is useful [7, 9, 13, 14, 31,
34] but these attributes are often lacking [30, 31]. The problem
of coevolution with code [3, 39, 40] has been increasing with the
expansion of the documentation landscape. New sources emerged in
the last two decades. A few examples are developers’ blog posts [24],
software engineers’ microblogging on Twitter [37], rich media
instant messaging applications [11, 21, 26, 33], news aggregators [4],
and feature-rich forums [16]. By mining these sources it is possible
to complement and fix traditional documentation [6, 28].

Crowd-curated documentation [25] shifted the ratio between
documentation producers and consumers, but the coevolution prob-
lem remains relevant [40]. Cloud-based repositories support collab-
oration via tools tightly coupled with the repository itself [8, 36].
In the context of GitHub projects, although Issues have been inves-
tigated [5, 12, 15, 17, 18], the amount and nature of links to other
communication platforms is still unclear and fairly unexplored.

A new perspective on software documentation comes in the form
of on-demand developer documentation [32]. The idea is to produce,
on-demand, just enough documentation to fulfill the necessary task.
Such documentation can be custom-tailored for the task at hand
and more closely align producers’ efforts with consumers’ needs.
Automatic generation techniques try to reduce the gap between
documentation and code [1, 22, 23]. Some of the shortcomings
identified by Aghajani et al. in software documentation [3] (e.g., in-
consistency, outdatedness) can be partially mitigated or completely
overcome by automatic derivation of documentation via program
analysis [41], source code summarization [19, 42], method level
documentation [22], and automatic comment updating [20]. This
is also part of the documentation landscape.

https://orcid.org/0000-0002-6878-5604
https://doi.org/10.1145/3510454.3517068
https://doi.org/10.1145/3510454.3517068

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Raglianti, M.

2 RESEARCH FOCUS
The main goal of our research is to automatically extract heteroge-
neous documentation from different sources in the documentation
landscape of a software system (Fig. 1). We envision the application
of visualization techniques, in particular to large systems, to obtain
a topological representation supporting program comprehension
and maintenance tasks.

Our research tries to address the following questions:
• How many different documentation sources are there and
how are they characterized?

• How can we automatically mine a software project to gener-
ate a topology of those sources?

• Which characterizing metrics can be mapped to visual at-
tributes for different program comprehension and mainte-
nance tasks?

Finally, we also aim at linking the topology back to source code ar-
tifacts. An interactive visualization of the documentation landscape
will allow switching between bottom-up (from source code to archi-
tecture and high-level concepts) and top-down (from domain-based
hypotheses to code) approaches to program comprehension [35]
thus better supporting an opportunistic strategy. Our hypothesis is
that a topological representation of documentation sources and arti-
facts can contribute to an efficient navigation of the documentation
landscape in specific tasks. Controlled experiments in the so far
outlined framework, with the support of the proposed tools, should
bring empirical evidence of how it can benefit multiple stakeholders
(e.g., developers to support everyday activities, team leaders and
project managers for planning and progress status assessment).

3 DOCUMENTATION LANDSCAPE
In the literature there is lack of a systematic approach to classifica-
tion and integration of multiple documentation sources. We identi-
fied thirteen possible sources that might be relevant and classified
them according to their nature – the archetype – and to different
metrics for each archetype. There are four archetypes: Documents,
Code, Multimedia, and Community. These surround the central
point of source code in a version control system (see Fig. 1). For
sources in each archetype, metrics are spanning the horizontal
or vertical axis. For example in the Community archetype there
are slower (e.g., mailing lists) and faster (e.g., instant messaging)
sources as well as more volatile or more persistent ones. Finally,
for each source, there are multiple possible instances. For example,
there are many different instant messaging applications that are
possible documentation sources (e.g., Gitter, Discord, Slack). In a
similar fashion, different types of documents can be related to a spe-
cific source depending on their origin or format (i.e., requirements
documents shared via Wiki, printed user manuals).

4 RESEARCH AGENDA
We initially explored Discord1, an instance of the instant messaging
source, for unstructured forms of documentation shared between
Pharo2 developers [29]. We are currently expanding our investi-
gation to other sources in the Community archetype. Our main

1See https://discord.com [accessed February 9, 2022]
2See https://pharo.org [accessed February 9, 2022]

Documentation Sources

Slow

Raw Chunked

Collaborative

Fast

Formatted Streamed

Authoritative

PersistentVolatile

External

Internal

Self-
contained

Incomplete

Slides
Presentation

API

Version
Control
System

Code
Comment

Scientific
Publication (E-)Book

ForumMailing ListSocial
Network

Instant
Messaging

Website Wiki

Podcast

Video

Community

Multimedia

Documents

Code

Figure 1: Documentation landscape of a software system

goal is to have a prototype to start validating the documentation
landscape metaphor with developers. A possible scenario to analyze
is the onboarding of new team members on projects in an already
advanced state of development. We have four points in our agenda.

Visualizing the documentation landscape –Given a software
system (i.e., its GitHub repository), we will automatically generate
an explorable visual representation of its documentation landscape.
A topological map of the elements composing the landscape will
enable us to evaluate the impact of this metaphor on software
comprehension, maintenance, and re-engineering tasks.

From instant messaging to community – We need to refine
our domain model of a Discord server and generalize it to other
instant messaging instances. We will then consider covering other
sources in the Community archetype as well.

Integrating multiple sources – We will include other arche-
types to complete the picture of the landscape. For each source we
plan to give a characterization in terms of metrics that might be
relevant for comprehension tasks. We will also extend the domain
model with the specific content of each source (e.g., developers’
Twitter accounts, video tutorial playlists).

Unstructured forms of documentation – We have tools to
identify the source code that developers share via instant mes-
saging [29]. We plan to aggregate the context of the surrounding
discussions to understand why developers share this code [10]. Re-
constructing these conversation streams poses both a theoretical
and a technical challenge that we would like to address.

5 CONCLUSION
We introduced the context of our research by referring to software
documentation, its importance, and its evolution in the recent years.
Then, we motivated our work and specified its scope, focus, and
intended goals. We presented our initial classification of archetypes
and sources in the documentation landscape. Finally, we outlined
possible directions and challenges for future research on this topic.

https://discord.com
https://pharo.org

Topology of the Documentation Landscape ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Nahla Abid, Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. 2017.

The Evaluation of an Approach for Automatic Generated Documentation. In
Proceedings of ICSME 2017 (International Conference on Software Maintenance and
Evolution). IEEE, 307–317.

[2] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C. Shepherd. 2020. Software Documenta-
tion: The Practitioners’ Perspective. In Proceedings of ICSE 2020 (International
Conference on Software Engineering). ACM, 590–601.

[3] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software Documen-
tation Issues Unveiled. In Proceedings of ICSE 2019 (International Conference on
Software Engineering). IEEE/ACM, 1199–1210.

[4] Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,
Margaret-Anne Storey, and Marco Aurélio Gerosa. 2018. How Modern News
Aggregators Help Development Communities Shape and Share Knowledge. In
Proceedings of ICSE 2018 (International Conference on Software Engineering). ACM,
499–510.

[5] Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère, Jacques
Klein, and Yves Le Traon. 2013. Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub. In Proceedings of ISSRE 2013 (Inter-
national Symposium on Software Reliability Engineering). IEEE, 188–197.

[6] Joshua Charles Campbell, Chenlei Zhang, Zhen Xu, Abram Hindle, and James
Miller. 2013. Deficient Documentation Detection a Methodology to Locate Defi-
cient Project Documentation Using Topic Analysis. In Proceedings of MSR 2013
(Working Conference on Mining Software Repositories). IEEE, 57–60.

[7] Jie-Cherng Chen and Sun-Jen Huang. 2009. An Empirical Analysis of the Impact
of Software Development Problem Factors on Software Maintainability. Journal
of Systems and Software 82, 6 (2009), 981–992.

[8] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository. In
Proceedings of CSCW 2012 (Conference on Computer Supported Cooperative Work).
ACM, 1277–1286.

[9] Barthélémy Dagenais and Martin P Robillard. 2010. Creating and Evolving Devel-
oper Documentation: Understanding the Decisions of Open Source Contributors.
In Proceedings of FSE 2010 (International Symposium on Foundations of Software
Engineering). ACM, 127–136.

[10] Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano Di
Penta, Gerardo Canfora, and Harald C. Gall. 2021. Exploiting Natural Language
Structures in Software Informal Documentation. IEEE Transactions on Software
Engineering 47, 8 (2021), 1587–1604.

[11] Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. 2020. An
Empirical Study of Developer Discussions in the Gitter Platform. Transactions on
Software Engineering and Methodology 30, 1 (2020), 1–39.

[12] Aron Fiechter, Roberto Minelli, Csaba Nagy, and Michele Lanza. 2021. Visualizing
GitHub Issues. In Proceedings of VISSOFT 2021 (Working Conference on Software
Visualization). IEEE, 155–159.

[13] Andrew Forward and Timothy C Lethbridge. 2002. The Relevance of Software
Documentation, Tools and Technologies: A Survey. In Proceedings of DocEng 2002
(Symposium on Document Engineering). ACM, 26–33.

[14] Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud
Moussavi, and Brian Smith. 2015. Usage and Usefulness of Technical Software
Documentation: An Industrial Case Study. Information and Software Technology
57 (2015), 664–682.

[15] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. 2021. A
Ground-Truth Dataset and Classification Model for Detecting Bots in GitHub
Issue and PR Comments. Journal of Systems and Software 175 (2021), 110911.

[16] Hideaki Hata, Nicole Novielli, Sebastian Baltes, Raula Gaikovina Kula, and
Christoph Treude. 2021. GitHub Discussions: An Exploratory Study of Early
Adoption. arXiv:2102.05230

[17] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2021.
Predicting Issue types on GitHub. Science of Computer Programming 205 (2021),
102598.

[18] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2016. Using Dynamic and
Contextual Features to Predict Issue Lifetime in GitHub Projects. In Proceedings
of MSR 2016 (Working Conference on Mining Software Repositories). IEEE/ACM,
291–302.

[19] Alexander LeClair, SakibHaque, LingfeiWu, and CollinMcMillan. 2020. Improved
Code Summarization via a Graph Neural Network. In Proceedings of ICPC 2020
(International Conference on Program Comprehension). ACM, 184–195.

[20] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F. Bissyandé.
2021. Automated Comment Update: How Far are We?. In Proceedings of ICPC
2021 (International Conference on Program Comprehension). IEEE/ACM, 36–46.

[21] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik.
2016. Why Developers Are Slacking Off: Understanding How Software Teams
Use Slack. In Proceedings of CSCW/SCC 2016 (Conference on Computer Supported
Cooperative Work and Social Computing Companion). ACM, 333–336.

[22] Christian D. Newman, Natalia Dragan, Michael L. Collard, Jonathan I. Maletic,
Michael J. Decker, Drew T. Guarnera, and Nahla Abid. 2018. Automatically
Generating Natural Language Documentation for Methods. In Proceedings of
DysDoc 2018 (International Workshop on Dynamic Software Documentation). IEEE,
1–2.

[23] Jalves Nicacio and Fabio Petrillo. 2021. Towards Improving Architectural Diagram
Consistency Using System Descriptors. In Proceedings of ICPC 2021 (International
Conference on Program Comprehension). IEEE/ACM, 401–405.

[24] Dennis Pagano and Walid Maalej. 2011. How Do Developers Blog? An Ex-
ploratory Study. In Proceedings of MSR 2011 (Working Conference on Mining
Software Repositories). ACM, 123–132.

[25] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd Documentation: Exploring the Coverage and the Dynamics of API Discussions
on Stack Overflow. Technical Report. Georgia Institute of Technology.

[26] Esteban Parra, Ashley Ellis, and Sonia Haiduc. 2020. GitterCom: A Dataset of
Open Source Developer Communications in Gitter. In Proceedings of MSR 2020
(International Conference on Mining Software Repositories). ACM, 563–567.

[27] Jirat Pasuksmit, Patanamon Thongtanunam, and Shanika Karunasekera. 2021.
Towards Just-Enough Documentation for Agile Effort Estimation: What Infor-
mation Should Be Documented?. In Proceedings of ICSME 2021 (International
Conference on Software Maintenance and Evolution). IEEE.

[28] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-Confident
Programming Prompter. In Proceedings of MSR 2014 (Working Conference on
Mining Software Repositories). IEEE/ACM, 102–111.

[29] Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. 2021. Visu-
alizing Discord Servers. In Proceedings of VISSOFT 2021 (Working Conference on
Software Visualization). IEEE, 150–154.

[30] Martin P Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26, 6 (2009), 27–34.

[31] Martin P Robillard and Robert DeLine. 2011. A Field Study of API Learning
Obstacles. Empirical Software Engineering 16, 6 (2011), 703–732.

[32] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and
Edmund Wong. 2017. On-demand Developer Documentation. In Proceedings of
ICSME 2017 (International Conference on Software Maintenance and Evolution).
IEEE, 479–483.

[33] Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing
Wang. 2021. A First Look at Developers’ Live Chat on Gitter. In Proceedings of
ESEC/FSE 2021 (European Software Engineering Conference and Symposium on the
Foundations of Software Engineering). ACM, 391–403.

[34] Ian Sommerville. 2015. Software Engineering (10th ed.). Pearson.
[35] Margaret-Anne Storey, David F. Fracchia, and Hausi A. Müller. 1999. Cognitive

Design Elements to Support the Construction of a Mental Model During Software
Exploration. Journal of Systems and Software 44, 3 (1999), 171–185.

[36] Jirateep Tantisuwankul, Yusuf Sulistyo Nugroho, Raula Gaikovina Kula, Hideaki
Hata, Arnon Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. 2019.
A topological analysis of communication channels for knowledge sharing in
contemporary GitHub projects. Journal of Systems and Software 158 (2019),
110416.

[37] Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-
Peng Lim. 2012. What does software engineering community microblog about?.
In Proceedings of MSR 2012 (Working Conference on Mining Software Repositories).
IEEE, 247–250.

[38] Christoph Treude, Martin P. Robillard, and BarthélémyDagenais. 2015. Extracting
Development Tasks to Navigate Software Documentation. IEEE Transactions on
Software Engineering 41, 6 (2015), 565–581.

[39] Gias Uddin and Martin P Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (2015), 68–75.

[40] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A Large-
Scale Empirical Study on Code-Comment Inconsistencies. In Proceedings of ICPC
2019 (International Conference on Program Comprehension). IEEE/ACM, 53–64.

[41] Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan, Shiqing Ma, Lei
Xu, Weifeng Zhang, Lin Tan, and Xiangyu Zhang. 2020. CPC: Automatically
Classifying and Propagating Natural Language Comments via Program Analysis.
In Proceedings of ICSE 2020 (International Conference on Software Engineering).
ACM, 1359–1371.

[42] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-Based Neural Source Code Summarization. In Proceedings of ICSE 2020
(International Conference on Software Engineering). ACM, 1385–1397.

[43] Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz,
and Guenther Ruhe. 2015. Cost, Benefits and Quality of Software Development
Documentation: A Systematic Mapping. Journal of Systems and Software 99
(2015), 175–198.

https://arxiv.org/abs/2102.05230

	Abstract
	1 Introduction
	2 Research Focus
	3 Documentation Landscape
	4 Research Agenda
	5 Conclusion
	References

