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Abstract In a distributed MMOG (massively multiplayer online game) server architecture, the
server nodes may become easily overloaded by the high demand from the players for state up-
dates. Many works propose algorithms to distribute the load on the server nodes, but this load is
usually defined as the number of players on each server, what is not an ideal measure. Also, the
possible heterogeneity of the system is frequently overlooked. We propose a balancing scheme
with two main goals: allocate load on server nodes proportionally to the each one’s power and re-
duce the inter-server communication overhead, considering the load as the occupied bandwidth
of each server. Four algorithms were proposed, from which ProGReGA is the best for overhead
reduction and ProGReGA-KF is the most suited for reducing player migrations between servers.
We also make a review of related works and some comparisons were made, where our approach
performed better.

Keywords MMOGs · load balancing · distributed server · graph partitioning

1 Introduction

The main characteristic of massively multiplayer online games is the large number of players,
having dozens, or even hundreds, of thousands of participants simultaneously. This large number
of players interacting with one another generates a traffic on the support network which may
grow quadratically compared to the number of players [1], in the worst case (Figure 1).

When using a client-server architecture, it is necessary that the server intermediates the
communication between each pair of players – assuming that the game is intended to provide
guarantees of consistency and resistance to cheating. Obviously, this server will have a large
communication load, thus, it must have enough resources (available bandwidth) to meet the de-
mand of the game. We consider here that the main resource to analyse is the available bandwidth,
for this is the current bottleneck for MMOGs [2].
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Fig. 1 Quadratic growth of traffic when avatars are close to each other
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(a) Uniform distribution of avatars
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(b) Distribution of avatars in the presence of hotspots
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Fig. 2 Distribution of avatars with and without hotspots

The problem is that, when using a distributed server, it must be delegated to each server
node a load proportional to its power. Thus, no matter to which server each player is connected,
their game experience will be similar, regarding the response time for their actions and the time
it takes to be notified of actions from other players as well as of state changes in the virtual
environment of the game.

An initial idea might be to distribute the players among servers, so that the number of players
on each server would be proportional to that server’s bandwidth. However, this distribution
would not work, for the burden caused by players also depends on how they are interacting with
one another. For example, if the avatars of two players are too distant from each other, probably
there will be no interaction between them and therefore the server needs only to update each one
of them with the result of their own actions. However, if these avatars are close to each other,
each player should be updated not only of his own actions, but also of the actions of the other
player.

Normally, players can freely move their avatars throughout the game world. This makes
possible the formation of hotspots [3], around which the players are more concentrated than
in other regions of the virtual environment (Figure 2). Moreover, many massively multiplayer
online RPGs not only permit but also stimulate, to some extent, the formation of these points
of interest. In the worlds of these MMORPGs, there are entire cities, where the players meet to
chat, exchange virtual goods or even fight, and there are also desertic areas, with few attractions
for the players, and where the number of avatars is relatively small compared to other places of
the environment.

For this reason, it is not enough just to divide the players between servers, even if this
division is proportional to the resources of each one of them. First, in some cases the usage
of the server’s bandwidth may be square to the number of players, while in others it may be
linear. It is shown in [1] that, in a group of avatars who are neighbors of one another, the rate of
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Fig. 3 Overhead caused by the interaction of players connected to different servers

packets sent to each player is proportional to the number of avatars in that group (as in Fig. 1).
This reason alone is enough to define a new criterion for load balancing.

Moreover, there is another important issue: the overhead of the distribution. As the servers
need to communicate with one another, there must be a way to minimize this traffic, reducing
the waste of resources of the server system. The load balancing scheme for MMOGs must, then,
prevent the presence of hotspots from degrading the quality of the game beyond a tolerable limit.

Differently from other works, we propose here a balancing scheme which considers the
upload bandwidth occupation of the server as the load to distribute, what is done among servers
with different levels of resources, also reducing the inter-server communication overhead by
using a greedy graph partition growing algorithm.

2 Related work

The servers receive the action performed by a player, calculate its outcome and send it to all
interested players, who are usually those whose avatars are close to the avatar of the first player.
If two players are split between different servers, each of these need not only to send the state
update to the player served by it, but it has also to send the update to the server to which the
other player is connected. This server, in turn, forwards that state update to the other player
(Figure 3).

It is perceived, then, that each state will be sent twice for each pair of players who com-
municate through different servers. This overhead not only causes the waste of resources of the
servers, but it also increases the delay to update the status of the replica of the game in the
players’ machines, damaging the interaction between them.

Therefore, players who are interacting with each other should, ideally, be connected to the
same server. However, it is possible that all players are linked through relations of interaction.
For example, two avatars of two different players, may be distant from each other, but both
could be interacting with a third avatar, between them. Anyway, it is still necessary to divide
the players among servers. The question is how many pairs of players and which of them will
be divided into different server nodes. It is therefore necessary to decide a criterion to group
players. Many works have been done in the past – such as [4–7,3] – trying to find a near optimal,
yet fast, load balancing technique.

In [4], for example, a few algorithms are proposed. Their idea is to transfer regions managed
by overloaded servers to lightly loaded ones, in a way such that the maximum overload among
the servers is reduced. Some very interesting principles are used, as the concepts of microcells
and macrocells (which will be described in the next section). However, their model has some
differences to ours. For instance, they consider the number of players as the load to distribute,
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heterogeneous systems are not supported, and the algorithm they use to refine an existing par-
titioning is simulated annealing. This one may be a little too general, considering that there are
algorithms specific to partitioning, such as [8] or [9], which may perform better. Finally, some
of the algorithms proposed in [4] do not consider the communication overhead between servers.

It is proposed in [5] a load balancing of cpu usage among the nodes of a cluster. The load
balancing is done by an “off the shelf” NAT load balancer, which distributes the players’ con-
nections among the cluster nodes in a round-robin manner. Thus, each cluster node will end up
with the same number of players, on the average. This approach, although it does balance the
number of clients per cluster node, communication between the server nodes is not considered,
for they are connected via a high-speed and low latency network. Furthermore, in this work we
are not concerned with cpu usage, but bandwidth occupation.

Chen et al. propose, in [6], a load shedding technique, in which an overloaded server at-
tempts do shed its load to its neighbors. After finding a lightly loaded neighbor server – if there
is one – it transfers some of its boundary microcells to that neighbor. To form the group of mi-
crocells to transfer, a microcell from the border is chosen, and others are added in a breadth-first
search (BFS) order. A very similar work, which also uses BFS, is described in [7]. However,
these models present a few points which could be improved. For example, a server is consid-
ered overloaded when a certain number N of players is reached. As we said before, this is not
the best measure, since the load on a server may vary completely, depending on how these N
players are distributed across the region managed by the server. Also, the use of BFS to merge
two partitions or split one of them may not be ideal. Some other algorithm for graph partitioning
applied to distributed systems [8–11] could be used, for most of these algorithms were designed
exactly to balance load and minimize dependence between nodes.

Ahmed and Shirmohammadi propose a microcell oriented load balancing model [3]. To
balance the load, their algorithm, first, finds all clusters of microcells which are managed by
the overloaded server. After that, the smallest cluster (in number of microcells) is selected and
then, from that cluster, it is chosen the microcell with the lowest communication with other
microcells managed by the same server. The chosen microcell is then transferred to the least
loaded server. This process is repeated while the server is still overloaded and there are servers
which can handle the extra load of the microcells being transferred. The authors define the load
on a server, as opposed to other load balancing schemes, as the summing of the message rate of
every player that a server must handle, which is a much more realistic measure than the number
of players on the server. Also, their model for load balancing tries to minimize the inter-server
communication, improving the overall system performance. Their model will be compared to
ours, for it takes into consideration many of the aspects that we consider. The comparison will
be performed through some simulations, which are described in section 4.

Next, some principles, defined in previous works, will be presented. Based on some of these
principles, and on research and implementation carried out, it will be defined the load balancing
scheme proposed here.

2.1 Microcells and macrocells

One way to explore the locality of the players is by grouping them according to the position
occupied by their avatars in the virtual environment. One of the ideas proposed in the literature
[4] follows the principle of dividing the virtual environment in cells of fixed size and position.
These cells are relatively small – or microcells – and they can be grouped, forming an area
called macrocell. Each macrocell is then assigned to a different server, which will manage not
a large cell of fixed size and position, but a variable set of small cells. These microcells can then
be moved dynamically between different macrocells, maintaining the load on each one of the
servers under a tolerable limit.
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Fig. 4 Cells grouped into four regions (R1, R2, R3 and R4)

Obviously, the microcells designated to the same server node do not generate additional
traffic to synchronize with each other, but the synchronization overhead of the macrocell is
unpredictable, because the number of neighbors of each one of them is not foreknown, for its
shape is variable. However, it was demonstrated [4] that this overhead is compensated by a better
distribution of the load between servers in the game.

2.2 Load balancing in local scope

In [12], it is also proposed a scheme for dynamic load balancing for the servers of a multi-server
virtual environment. Following the scheme proposed by the authors, an overloaded server starts
the process by selecting a number of other servers to be part of the load redistribution. The set
of selected servers depends on the load level of the initiating server as well as on the amount of
idle resources of the other servers. After the formation of this set, its elements allocate portions
of the virtual environment using a graph partitioning algorithm, so that the servers involved have
similar final load.

To achieve this goal, the authors also subdivided the virtual environment in rectangular cells
– similar to the microcells –, where the number of servers is much smaller than the number of
cells. The cells are grouped into regions – or macrocells – and each region is managed by one
server (Figure 4). Each server handles all the interactions between avatars located in the region
assigned to it. It receives the inputs of the players controlling these avatars and sends back to
them the up-to-date game state.

Two cells are called adjacent (or neighbors) if they share a border. Similarly, two regions –
and the servers assigned to them – are called adjacent (neighbors) if there is a pair of adjacent
cells, each of which belonging to one of the two regions. The workload of a cell was defined
as the number of avatars present in that cell. The authors assumed that all players receive state
updates of the same length and in the same frequency, so that the burden of processing (com-
puting and communication) that a cell requires from a server is proportional to the number of
users in that cell. The workload of a region and its designated server is defined as the sum of
the individual workloads of the cells which form the region. Each server periodically evalu-
ates its workload and exchange this information with its neighbors. They have assumed, too,
that these servers are connected through a high-speed network. Thus, the overhead to exchange
workload information among neighbors is limited and considered negligible compared to other
costs of the distribution. For the same reason, they also assumed as negligible the overhead of
communication between servers in different regions when players are interacting.

The main aspect of the solution proposed by the authors was the use of local information
(the server that initiated the balancing process and its neighbors), rather than global information
(involving all servers in the balance). When a server is overloaded, it searches for lightly loaded
servers close to it in the overlay network. A breadth-first lookup for lightly loaded neighbor
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servers – as proposed in [7] – causes a small overhead, but it may not solve the problem effi-
ciently in a few steps, as overloaded servers tend to be adjacent. The global approach, in turn, is
able to divide the workload in the most balanced way possible, but its complexity may become
too high.

The solution proposed by the authors is then by involving only a subset of servers, such that
its cardinality varies according to the need (if the neighbors of the server which triggered the
load balancing are also overburdened, more servers are selected). However, this set is formed in
a more clever way than by simply using a breadth-first search. The algorithm used to find the
servers is described in the next section.

2.2.1 Selection of a local server group to balance the load

A server starts the balancing when the load assigned to it is beyond its capacity. This server
selects a number of other servers to get involved with the distribution. First, it chooses the
least loaded server among its neighbors and sends a request that he participates in the load
balancing. The chosen server rejects the request if it is already involved in another balancing
group, otherwise it responds to the server with the load information of its own neighbors. If the
selected neighbor server is unable to absorb all the extra workload of the initiating server, the
selection is performed again among the neighbors not only of the overloaded server, but also
the neighbors of the already selected servers. The selection continues until the workload of the
first server can be absorbed – that is, the workload of all selected servers becomes smaller than
a certain limit.

Figure 5 illustrates the operation of the algorithm. All servers have the same capacity, each
one being able to handle 100 users. First, the initiator server, S6 is inserted into SELECTED
and its neighbors (S2, S5, S7 and S10) are added to CANDIDATES (Figure 5(a)). So S7, which
has the lowest workload among the servers in CANDIDATES, is selected and invited to partic-
ipate in the load distribution. When S7 sends to S6 the workload information of its neighbors
(S3, S6, S8 and S11), it is inserted into SELECTED and its neighbors, except S6, are added to
CANDIDATES (Figure 5(b)). Now, S11, which has the lowest workload among servers in CAN-
DIDATES, is selected and invited to participate in the load distribution. However, S11 rejects
the invitation, because it is involved in another distribution, initiated by S12. Thus, S11 is re-
moved from CANDIDATES and S10 is selected because it now has the lowest workload among
all servers in CANDIDATES (Figure 5(c)). This process continues until the average workload
is under a pre-defined threshold (Figure 5(d) and Figure 5(e)).

After forming the local server set, the initiating server performs a load rebalancing in such
group, using some graph partitioning algorithm. To map the virtual environment to a graph, each
cell is represented by a vertex, whose weight equals to the number of avatars in that cell; and
every two vertices which represent adjacent cells are connected by an edge.

3 Proposed load balancing scheme

In the previous section it was presented some existing works regarding load balancing in MMOGs
when using multiple servers to provide the support network. The load balancing scheme pro-
posed in this work is based on some of the principles in the literature. One of them is the division
of the virtual environment in microcells, for later grouping in macrocells. This is a relatively
simple way of addressing the issue of the avatars’ movement dynamics through the game world,
by transferring the microcells dynamically according to need.

It will also be used the idea of balancing based only on local information – each server, when
needing to reduce its workload, selects only a few other servers to join a local load rebalancing.
Thus, we can greatly reduce the complexity of balancing because it will not be necessary that
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Fig. 5 Selecting the group of servers for local rebalance
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all servers in the game exchange messages among themselves every time that any one of them
is overloaded.

To define our load balancing approach, we cannot ignore that, usually, the traffic generated
by the players is not simply linear, but square for each cluster of players. Such misunderstand-
ing can generate considerable differences between the actual load of each server and the load
estimated by the balancing algorithm. Another point to consider is the overhead, both in the
delay of sending messages, as in the use of bandwidth of the servers, when players connected to
different servers are interacting with each other. Some works assume that the servers are all in
the same high-speed and low latency local-area network, and therefore overhead is negligible.
However, when considering a geographically distributed server system, this assumption cannot
be made. This overhead must be taken into account, no matter which load balancing algorithm
is being used.

Another important point is that the main criterion we use when balancing the load of MMOG
servers is the bandwidth, and not processing power. Several games, such as Age of Empires [13],
include simulations of virtual environments with hundreds or thousands of entities, which are
performed smoothly on current personal computers. However, if this game was multiplayer and
each of these entities was controlled by a different player on the Internet, it would most likely
generate a traffic amount which would hardly be supported by a domestic connection [2].

Moreover, the upload bandwidth must be taken into account, much more than download.
This happens for two reasons: first, the usage of the download bandwidth of each server node
grows linearly with the number of players connected to it, while the usage of the upload band-
width may have a quadratic growth, getting quickly overwhelmed; second, domestic connec-
tions – which are majority in volunteer peer-to-peer systems – usually have an upload bandwidth
much lower than the download one.

There are also other issues which must not be overlooked. One of them is that the server
system is probably not homogenous – considering that it is geographically distributed with,
likely, different connections to the Internet. Therefore, one cannot assume that the servers have
the same amount of cpu power or network bandwidth. In the next section, we make some defi-
nitions that will be necessary to specify our load balancing scheme.

3.1 Definitions

We also use the idea of mapping the virtual environment on a graph. The graph will then be
partitioned to distribute the workload of the game between the different servers. It is necessary
first to define some terms which will be used on the proposed algorithms.

– Server: here, server is defined as a node belonging to the distributed system to serve the
game. Each server can be assigned a single region;

– Server power: the server power, p(S) is a numerical value proportional to the server’s
upload bandwidth;

– Server power fraction: given a set of servers Servers = {S1, S2, ..., Sn}, the power fraction
of a server S, fracp(S), is equal to its power divided by the summed power of all servers in
Servers:

fracp(S) =
p(S)

n∑
i=1

p(Si)

– System power: the total power of the system, Ptotal, equals the sum of the powers of the n
servers which form it:
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Ptotal =

n∑
i=1

p(Si)

– Cell: similar to the microcells, it is considered here the environment being divided into small
cells, each one with fixed size and position. If two cells share a border, they are said to be
adjacent or neighbors;

– Region: the cells are grouped, forming what is called regions. Usually these areas are con-
tiguous, although in some cases the subgraph that represents them may be disconnected, re-
sulting in the presence of cells isolated from each other. Each region is assigned to a server,
and only one, and s(R) is the server associated to the region R. It may be referred through-
out the text to region’s “power”, which in fact refers to the power of the server associated
with that region, i.e. p(s(R));

– Relevance: the relevance of an avatar Aj to another one, Ai, determines the frequency of
updates of the state of Aj the server should send to the player controlling Ai [14]. It may be
represented by the function R(Ai, Aj);

– Avatar’s weight: to each avatar there are various other entities (here, we only consider
avatars) of the game, each with a frequency of state updates that need to be sent to the
player who controls that avatar. Thus, for each avatarA , its individual weight – or of upload
bandwidth that the server uses to send state updates to its player – wa(A) depends on which
other entities are relevant to it, and how much. Let {A1, A2, ..., At} be the set of all avatars
in the virtual environment, we have:

wa(A) =

t∑
i=1

R(A,Ai)

– Cell’s weight: here, the total weight of a cell (or the use of upload bandwidth of its server)
will be equal to the sum of the individual weights of the avatars in it. Consider cell C, where
the avatars {A1, A2, ..., An} are present. Also, consider that the avatars {A1, A2, ..., At} are
all the avatars in the virtual environment. The weight of this cell, wc(C), is:

wc(C) =

n∑
i=1

w(Ai) =

n∑
i=1

t∑
j=1

R(Ai, Aj)

– Region’s weight: the weight of a region is the sum of the weights of the cells that compose
it. Let R be the region formed by {C1, C2, ..., Cp}. The weight of R is:

wr(R) =

p∑
i=1

wc(Ci)

– Region’s weight fraction: given a set of regions Regions = {R1, R2, ..., Rn}, the weight
fraction of R, relative to Regions, is:

fracr(R) =
wr(R)

n∑
i=1

wr(Ri)

– Region’s resource usage: fraction that indicates how much of the power of the server of
that region is being used. It is defined by:

u(s(R)) =
wr(R)
p(s(R))
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– World weight: the total weight of the game, Wtotal, will be used as a parameter for the
partitioning of the virtual environment. It is defined as the sum of the weights of all cells.
Let {C1, C2, ..., Cw} be the set of all cells in which the game world is divided, we have:

Wtotal =

w∑
i=1

wc(Ci)

– System usage: fraction that indicates how much resources of the system as a whole is being
used. It is defined by:

Utotal =
Wtotal

Ptotal

– Cell interaction: the interaction between two cells is equal to the sum of all interactions be-
tween pairs of avatars where each one of them is located in one of these cells. The interaction
between cells Ci and Cj is given by:

Intc(Ci, Cj) =

m∑
i=1

n∑
j=1

R(Ai, Aj),

where Ai is in Ci and Aj is in Cj .

– Overhead between two regions: if there is only one server and one region, comprising
the entire virtual environment of the game, the use of the upload bandwidth of the server
will be proportional to Wtotal. However, due to its distribution among various servers, there
is the problem of having players from different regions interacting with each other very
close to the border between the regions (Figure 6). Because of that, each state update of
these players’ avatars will be sent twice. For example, let Ai be the avatar of the player Pi,
connected to the server Si, and Aj the avatar of the player Pj , connected to the server Sj . In
order for Pi to interact with Pj , it is necessary that Si sends the state ofAi to Sj , which then
forwards to Pj . The same happens on the other way around. The overhead between regions
Ri and Rj is equal, therefore, to the sum of interactions between pairs of cells where each
one of them is in one of these regions. If Ri and Rj have respectively m and n cells, we
have that the interaction – or overhead – between them is given by:

Intr(Ri, Rj) =

m∑
i=1

n∑
j=1

Intc(Ci, Cj),

where Ci ∈ Ri e Cj ∈ Rj .

– Total Overhead: the total overhead on the server system is calculated as the sum of over-
heads between each pair of regions. So we have:

OverHead =
∑
i

∑
j,j 6=i

Intr(Ri,Rj)

As the concepts needed to understand the proposed load balancing scheme have been de-
fined, now it will be described how the virtual environment is mapped on a weighted graph,
which will then be partitioned. Let GW = (V,E) be a graph that represents the game world,
where V is the set of vertices and E is the set of edges connecting vertices. Each component of
this graph, and what it represents, is described below:

– Vertex: each vertex in the graph represents a cell in the virtual environment;
– Edge: each edge in the graph connects two vertices that represent adjacent cells;
– Partition: each partition of the graph GW – a subset of the vertices of GW , plus the edges

that connect them – represents a region;
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Fig. 6 Players interacting across a border between regions

Fig. 7 Mapping of the virtual environment on a graph

– Vertex weight: the weight of each vertex is equal to the weight of the cell that it represents;
– Edge weight: the weight of the edge connecting two vertices is equal to the interaction

between the cells represented by them;
– Partition weight: the weight of a partition is equal to the sum of the weights of its vertices,

i.e. the weight of the region that it represents;
– Edge-cut: the edge-cut in a partitioning is equal to the sum of the weights of all the edges

which connect vertices from different partitions. This value is equal to the sum of the over-
heads between each pair of regions. Thus, the edge-cut of the graph GW is equal to the total
overhead on the server system.

Figure 7(a) illustrates how the mapping is done with square cells, while figure 7(b) shows
how it would be with hexagonal cells. The objective of the balancing scheme proposed here
is to assign to each server a weight proportional to its capacity, reducing as much as possible
the edge-cut of the graph that represents the virtual environment and, consequently, reduce the
overhead inherent to the distribution of the game on multiple servers. Although this is an NP-
complete problem [15], efficient heuristics will be used to reduce this overhead. In the following
sections the algorithms proposed in this work will be presented.
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3.2 Proposed algorithms

It is considered that an initial division of the virtual environment has already been made. Each
server should then check regularly if there is an imbalance and trigger the algorithm. Although
the overhead resulting from the distribution of the virtual environment is part of the workload
on servers, there is no way to know it beforehand without executing the repartitioning first. For
this reason, the “weight” to be distributed does not include this extra overhead.

When there is an unbalanced region, it is selected a local group of regions, similar to what
was shown in section 2.2, but with some changes (section 3.2.1). After this selection, it will be
used an algorithm whose parameters are only the loads of the cells and their interactions, for
such data is available prior to distribute. Finally, with the regions already balanced, the algorithm
of Kernighan and Lin [8] will be used to refine the partitioning, reducing the edge-cut and, thus,
the overhead, while keeping the balance.

The proposed scheme is then divided into three phases:

1. Select the group of local regions;
2. Balance these regions, assigning to each one a weight which is proportional to the power of

its server;
3. Refine the partitioning, reducing the overhead.

A decision to this balancing scheme is that a region R is considered overloaded only when
the use of its resources is greater than the total use of the system, also considering a certain tol-
erance, tol, to avoid constant rebalancing. Thus, the server starts the balancing of R when, and
only when, u(s(R)) > Utotal× tol. Thus, even if the system as a whole is overburdened, a sim-
ilar quality of game will be observed among the different regions, dividing the excessive weight
between all servers fairly. What can be done when Utotal > 1 is gradually reduce the amount
of information sent in each state update, leaving for the application the task of extrapolating the
missing information based on previous updates.

Another important aspect is that each server always has an associated region. What might
happen would be a region being empty – without any cells – and its server not participating in
the game. This is useful when the total capacity of the server system is much greater than the
total load of the game, or Ptotal �Wtotal. In this case, the introduction of more servers would
only increase the communication overhead of the system, without improving its quality – except
when introduced to provide fault tolerance.

The algorithms were developed oriented to regions, instead of servers, in order to be more
legible, because of the constant transfers of cells. Moreover, it becomes easier to extend, in
the future, the balancing model used here to allow more than one server managing the same
region. The proposed algorithms are described as follows. The one in section 3.2.1 is for phase
1, the sections 3.2.2 to 3.2.5 are alternatives for phase 2 and the algorithm in section 3.2.6 is the
refinement of phase 3.

3.2.1 Local regions selection

The algorithm for selection of regions (Algorithm 1) aims to form a set of regions such that the
average usage of resources of the servers of these regions is below a certain limit. Starting from
the server that has started the balancing, its neighboring regions with the least usage of resources
are added. When the average usage is less than 1, or less than Utotal (line 5), the selection ends
and phase 2 begins, with the region set as input. These two conditions are justified because there
are two possibilities: Utotal ≤ 1 and Utotal > 1.

In the case when Utotal ≤ 1, there is sufficient power in the system so that all servers have a
usage smaller than 100%. Thus, regions are added to the group until all the servers involved are
using fewer resources than they have. However, when Utotal > 1, there is no way to all servers
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be using less than 100% of its resources at the same time. Thus, it is sufficient that all servers
are similarly overburdened, and that some kind of adjustment is made, which will probably be a
reduction in the information sent to players in each state update. Although this approach seems
to lead the system to an inconsistent state, due to the lack of available bandwidth, the Utotal is
calculated based on the theoretical value of a region’s weight. In practice, the system as a whole
will take two measures: first, the frequency at which state updates are sent to players is dimin-
ished and, second, it will deny access to new players who try to join the game. Denying access
when the game is overpopulated with players is the usual policy adopted by some MMOGs.

If even after all the neighbors, and the neighbors of the neighbors and so on, are selected,
the criterion is not met, empty regions – belonging to idle servers – will be inserted in the group
(line 8) because the overhead of interaction between regions introduced by them is justified by
the need for more resources.

Algorithm 1 Local regions selection
1: local group← {R}
2: local weight← wr(R)
3: local capacity ← p(s(R))

4: average usage← local weight
local capacity

5: while average usage > max(1, Utotal) do
6: if there is any not selected region neighbor to one of local group then
7: R← not selected region neighbor to one of local group, with smallest u(s(R))
8: else if there is any empty region then
9: R← empty region with highest p(s(R))

10: else
11: stop. no more regions to select.
12: end if
13: local weight← local weight+ wr(R)
14: local capacity ← local capacity + p(s(R))

15: average usage← local weight
local capacity

16: local group← local group ∪ {R}
17: end while
18: run phase 2 passing local group as input.

3.2.2 ProGReGA

ProGReGA, or proportional greedy region growing algorithm, seeks to allocate the heaviest
cells to the regions managed by the most powerful servers. As input, the algorithm receives a
list of the regions to balance. Details are shown in Algorithm 2.

Like we said, it is passed as input a list of the regions whose load will be rebalanced. This
makes possible the use of this algorithm both in local and global scope, just by choosing between
passing some regions or all regions of the environment. The distribution is based on information
from that set of regions, whose total weight and total power are calculated in lines 1 to 7. To be
redistributed later, all cells associated with these regions are released (line 6).

To provide a partitioning which is balanced, proportional and with low edge-cut since the
second phase of the balancing, the regions are sorted in decreasing order of server power (line
10). The ProGReGA then runs through this list, seeking to assign heavier cells to more powerful
servers.

In line 10, it is calculated the weight share for each region, considering the total weight that
is being divided and the total power of the servers of those regions. The server power fraction of
a region, p(s(R))

free capacity should be the same fraction of weight that must be attributed to it. Even
if this weight is greater than the power of that server, resulting in an overload, all the servers are
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Algorithm 2 ProGReGA
1: weight to divide← 0
2: free capacity ← 0
3: for each region R in region list do
4: weight to divide← weight to divide+ wr(R)
5: free capacity ← free capacity + p(s(R))
6: temporarily free all cells from R
7: end for
8: sort region list in decreasing p(s(R)) order
9: for each region R in region list do

10: weight share← weight to divide× p(s(R))
free capacity

11: while wr(R) < weight share do
12: if there is any cell from R neighboring a free cell then
13: R← R ∪ {neighbor free cell with the highest Intc(C)}
14: else if there is any free cell then
15: R← R ∪ {heaviest free cell}
16: else
17: stop. no more free cells.
18: end if
19: end while
20: end for

similarly overloaded, satisfying the criterion of balance that has been defined. The condition for
the end of the allocation of new cells in a region is that its weight is greater than or equal to its
weight share.

It is important to notice that the while condition (line 11) may lead to the assignment of a
cell whose weight is higher than the weight share left on the region. However, it is very unlikely
to assign to a region its exact weight share, so it is preferable to surpass this value, guaranteeing
that every cell will be assigned to some region. Also, assigning to a region a weight which is
higher than its calculated share does not imply that it will become overloaded. First, the weight
share of a region is not equal to the power of its server. When there are enough resources, the
region’s weight share will be smaller than its capacity. Furthermore, as ProGReGA is a greedy
algorithm, the heaviest cells will be assigned first, to the most powerful servers.

The criterion to choose a cell to include in the region is to make the heaviest edges on the
graph GW connect vertices in the same partition, reducing the edge-cut and, thus, the overhead.
In each step, it is selected the cell which not only is adjacent to a cell already present in the
region, but whose edge connecting them is the heaviest possible. This algorithm is based on a
principle similar to the one used in GGGP [10], a greedy algorithm for graph partitioning. The
objective of GGGP is to split a graph in two partitions of the same weight, while reducing the
edge-cut with the heaviest edge heuristics. Figure 8 illustrates the steps of growth of a region
until it reaches its load share.

In the example of Figure 8, there are two servers, S1 and S2, where p(S1) = 30 and p(S2) =
18. The total weight of the environment being repartitioned is Wtotal = 32. For the division to
be proportional to the capacity of each server, the weights assigned to S1 and S2 are 20 and 12,
respectively. The selection starts with the vertex of weight 6 (free cell with the highest weight)
and, after that, at each step the vertex connected by the heaviest edge is added to the partition.
The selected edges and the vertices belonging to the new partition are highlighted.

In the first step of the cycle starting in line 11, if the region does not have any cell yet,
ProGReGA gets the heaviest free cell (line 15). The same occurs when a region is compressed
between the borders of other regions and has no free neighbor, getting cells from somewhere
else (Figure 9). This may generate fragmented regions and possibly increase the overhead of
the game. However, this happens more often in the last steps of the distribution, when most
of the cells would be already allocated to some region. Because the algorithm is greedy, when
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Fig. 8 Growth of a partition (region) with ProGReGA

it reaches that stage of its execution, the free cells would probably the lightest cells of the
environment, causing little overhead.

3.2.3 ProGReGA-KH

A possible undesirable effect of the ProGReGA algorithm is that by releasing all the cells
and redistributing them, it might happen that one or more regions completely change their
place, causing several players to disconnect from their servers and reconnect to a new one.
To try to reduce the likelihood of such event, we propose a variation of the algorithm, called
ProGReGA-KH (proportional greedy region growing algorithm keeping heaviest cell). This
new algorithm (shown in Algorithm 3) is similar to the original version, except that each region
maintains its heaviest cell (lines 6 and 8), from which a region similar to the previous one can
be formed, so that several players will not need to migrate to other server. However, to keep one
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Fig. 9 Formation of disconnected partition (fragmented region)

of the cells of each region, it might be preventing a better balancing to occur. Also, the fixation
of that cell might cause fragmented regions, increasing the overhead.

Algorithm 3 ProGReGA-KH
1: weight to divide← 0
2: free capacity ← 0
3: for each R in region list do
4: weight to divide← weight to divide+ wr(R)
5: free capacity ← free capacity + p(s(R))
6: c← heaviest cell from R
7: temporarily free all cells from R
8: R← R ∪ {c}
9: end for

10: sort region list in decreasing p(s(R)) order
11: for each region R in region list do
12: weight share← weight to divide× p(s(R))

free capacity

13: while wr(R) < weight share do
14: if there is any cell from R neighboring a free cell then
15: R← R ∪ {neighbor free cell with the highest Intc(C)}
16: else if there is any free cell then
17: R← R ∪ {heaviest free cell}
18: else
19: stop. no more free cells.
20: end if
21: end while
22: end for
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3.2.4 ProGReGA-KF

Another way of trying to minimize the migration of players between servers because of the
rebalancing is the ProGReGA-KF, or proportional greedy region growing algorithm keeping
usage fraction (Algorithm 4). In this algorithm, each region will gradatively release its cells in
increasing order of weight, until its weight fraction is less than or equal to the power fraction
of its server. Thus, the heaviest cells remain on the same server and, therefore, most players
do not need to migrate. After that, the cells that were released are redistributed among the
regions with lowest server resource usage (line 13). The disadvantage of this algorithm is, as in
ProGReGA-KH, the possibility of fragmenting the regions, with many isolated cells, increasing
the overhead.

Algorithm 4 ProGReGA-KF
1: weight to divide← 0
2: free capacity ← 0
3: for each region R in region list do
4: weight to divide← weight to divide+ wr(R)
5: free capacity ← free capacity + p(s(R))
6: cell list← list of cells from R in increasing order of weight
7: while fracr(R) > fracp(s(R)) do
8: C ← first element from cell list
9: remove C from R

10: remove C from cell list
11: end while
12: end for
13: sort region list in increasing order of u(s(R))
14: for each region R in region list do
15: weight share← weight to divide× p(s(R))

free capacity

16: while wr(R) < weight share do
17: if there is any cell from R neighboring a free cell then
18: R← R ∪ {neighbor free cell with the highest Intc(C)}
19: else if there is any free cell then
20: R← R ∪ {heaviest free cell}
21: else
22: stop. no more free cells.
23: end if
24: end while
25: end for

3.2.5 BFBCT

The BFBCT (best-fit based cell transference) is proposed here as an alternative to ProGReGA
and its variants. The objective of the algorithm is to check what is the weight excess in each
region and transfer it to free regions whose capacity is the closest to that value. This is done by
transferring cells whose weight is the closest to free capacity of the receiving region, observed
two restrictions: first, the total weight transferred can not be larger than the free capacity of
the destination region and, second, we should not transfer a load greater than the necessary to
eliminate the overload. The second restriction is justified because a weight transfer larger than
necessary would probably result in a larger amount of migrating players. The exception to this
rule is when a cell is heavier than the other, not for having more avatars, but because they are
closer, with quadratic traffic growth between them. Algorithm 5 describes in detail the operation
of BFBCT.
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Algorithm 5 BFBCT
1: for each region Ri in region list do
2: weight to lose← wr(Ri)−Wtotal × fracp(s(Ri))
3: destination regions← region list− {Ri}
4: sort destination regions in decreasing order of u(s(R))
5: for each region Rj in destination regions do
6: free capacity ← fracp(s(Rj))×Wtotal − wr(Rj)
7: weight to this region← min(weight to lose, free capacity)
8: while weight to this region > 0 do
9: if Ri has a cell C such that wc(C) ≤ weight to this region then

10: C ← cell from Ri with weight closest to, but not larger than, weight to this region
11: Ri ← Ri − {C}
12: Rj ← Rj ∪ {C}
13: weight to this region← weight to this region− wc(C)
14: weight to lose← weight to lose− wc(C)
15: else
16: continue with next Rj .
17: end if
18: end while
19: end for
20: end for

3.2.6 Refining with the Kernighan-Lin algorithm

After balancing the load between servers in phase 2, all the servers will have a similar resource
usage ratio. However, the algorithm in phase 2 cannot measure the final interaction between
regions before repartitioning. This may lead to a partitioning that, although every server uses
a similar percentage of its upload bandwidth to its clients, there may be a high inter-server
communication overhead, causing a waste of resources of the server system.

To attenuate this problem, it is proposed here to use the algorithm of Kernighan and Lin [8].
This algorithm receives as input the graph that represents the virtual environment. Given a pair
of regions (partitions), Kernighan-Lin searches for pairs of cells (vertices) that, when exchanged
between their regions, the overhead (edge-cut) is reduced.

In the case of a virtual environment distributed among various regions, generally more than
two, Kernighan-Lin is run for each pair of regions. Moreover, after each swap performed by the
algorithm, the balance must be kept – otherwise, a completely unbalanced partitioning, with the
lowest possible overhead, could be reached. The Kernighan-Lin algorithm is widely known in
the area of distributed systems, so details will not be provided here. Consider only that it returns
a value of true if any change was made and false otherwise. It runs for all pairs of regions. until
it returns a value of false, indicating that no exchange will provide additional gain. Algorithm 6
shows how the Kernighan-Lin algorithm is called.

Algorithm 6 Kernighan-Lin
1: swapped← true
2: while swapped = true do
3: swapped← false
4: for each region Ri in region list do
5: for each region Rj in region list do
6: if Kernighan-Lin(Ri, Rj) = true then
7: swapped← true
8: end if
9: end for

10: end for
11: end while
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4 Simulations and results

To perform the simulation of the load balancing, a virtual environment was simulated with
various avatars. At first, the avatars are distributed uniformly throughout the virtual environment.
As the simulation begins, they start to move according to the random waypoint model [16].
However, the choice of which waypoint to go was not completely random. Three hotspots were
defined, and there was a probability for the avatar to choose one of these hotspots as its next
waypoint. Although this may be not very realistic, its purpose was to force an uneven distribution
of avatars in the virtual environment, putting to test the load balancing algorithms. Those who
take account of the existence of hotspots form the regions on this basis, reducing the distribution
overhead.

As we said in section 2, we also compare our algorithms to the one proposed by Ahmed
and Shirmohammadi [3]. However, it is very important to observe that some changes have been
made before simulating. First, the authors divide the virtual environment in hexagonal cells,
and we simulate their algorithm on a grid-like division, with square cells. Moreover, as we
consider an heterogeneous system, each server Si presents its own message rate threshold, Tm

i .
Nonetheless, we keep what we consider the core of their approach, which is the selection of the
smallest cell cluster managed by the overloaded server, followed by the selection of the cell of
that cluster which has the lowest interaction with other cells of the same cluster and, finally, the
transference of the selected cell to the least loaded server.

The environment consisted of a two-dimensional space, divided into 225 cells, forming a
matrix of order 15. There were 750 avatars. Each cell always belonged to some region, although
it could be transferred to another region. There were eight servers (S1, S2, ..., S8), each one
of them associated to a region, each of which could have 0 to all 225 cells. The capacity of
all servers was different, with P (Si) = i × 20000. Thus, it was possible to test whether the
distribution obeyed the criterion of proportional load balancing. Each session of simulated game
was 20 minutes long. The total weight of the game was purposely set in a way that it was greater
than the total capacity of the system, forcing the triggering of the load balancing.

The evaluation of the load balancing algorithms was done in a more abstract level, taking
into consideration the formulae defined in section 3.1. The results presented here are calculated
using those definitions – the inter-server communication, for example, is theOverHead defined
in that section –, while the simulator software puts the avatars in movement, executing the load
balancing algorithms as necessary, i.e. when the weight of a region violates the balance criteria
defined in section 3.2.

In Figure 10, we can see that all the algorithms simulated met the proportionality criterion in
load balancing. However, some of them introduced more overhead than the others. The reason
for this is the fragmented regions. The lower the number of fragments the regions have, the
lower is this overhead because there are fewer boundaries between regions.

Observe that the algorithm ProGReGA is the one with the lowest overhead of all, as it was
designed precisely to create the most possible contiguous regions, searching cells connected by
the highest interactions, to minimize the algorithm overhead. The BFBCT algorithm, however,
was developed in order to distribute the load based on a best-fit allocation, seeking to balance it
as much as possible, ignoring, in phase 2, the existence of interactions between cells and regions.
For this reason, the BFBCT was the one which created most fragmentation in the regions and
thus most overhead between the servers.

Figure 11 shows the change in the total overhead on the server system, depending on playing
time. It was observed that the overhead generated by each balancing algorithm varies relatively
little with time, and the ProGReGA is the one which gives the lowest overhead in any moment
of the game, and BFBCT has the largest overhead of all, for almost the entire simulation. The
algorithms ProGReGA-KH and ProGReGA-KF alternate with intermediate values of overhead.
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Fig. 10 Overall comparison of proposed load balancing algorithms
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Fig. 11 Overhead introduced by each balancing algorithm during the game session

Ahmed’s algorithm, in turn, presented the second highest average overhead. The most prob-
able reason for this is the choice of the least loaded server to receive a microcell being transferred
from an overloaded server. Though this is an obvious choice in terms of load balance, it does
not consider that the least loaded server may have no microcell adjacent to the microcell being
transferred, creating a fragmented region and, thus, increasing the overhead on the system.

However, the introduction of overhead is not the only criterion considered. Fig. 12 shows
how was the migration of users between servers throughout the simulated game session, for each
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algorithm. The value of migration has been divided in two: walking migration, which occurs
when a player migrates to a new server because he moved his avatar from one region to another,
and still migration, which occur when a player exchanges servers without having moved. This
kind of migration occurs because the cell where his avatar was has been transferred to another
region as a result of a rebalancing of the load of the game. Walking migrations are more likely
to happen when the regions are not contiguous.

We can see that ProGReGA is the one which has fewer walk migrations, precisely because
their regions are contiguous. However, the fact of not trying to minimize the transfer of cells –
the ProGReGA main objective is to minimize the overhead – the number of migrations is still the
largest of all its variations, lower only than BFBCT, which was also the worst algorithm on the
user migration criterion. The strategy of ProGReGA-KH, and more strongly in the ProGReGA-
KF, to maintain the maximum possible number of cells when rebalancing, has as a result the
lowest numbers of migration of players of all the proposed algorithms.

The algorithm proposed by Ahmed had even less migrations than ProGReGA-KF. Though
the number of walk migrations is the second highest – as expected from a more fragmented
partitioning –, the number of still migrations is almost negligible. We believe that a clever choice
of cells to transfer led to this result. Cells which interact less with other cells will, probably,
contain less avatars and, then, transferring them will not cause many player migrations.

Another detail to be considered is the uniformity of distribution: all servers must have an
usage rate as similar as possible so that the distribution is considered fair. To measure this
uniformity, the standard deviation, σ, was calculated for u(S) of all servers for each simulated
algorithm. Figure 13 shows the variation of σ(u(S)) over time.

To summarize the evaluated algorithms, we have: ProGReGA, which introduced an over-
head that increased the system load by 13% on the average, but it presents the second highest
number of migrations of players, and the least fair load distribution; ProGReGA-KH, whose
overhead increases the system load by 28%, but it presents the third best number of migrations
and its distribution is one the most fair; ProGReGA-KF, whose load increase is of 22%, with
the second lowest number of migrations and is also one of the most fair algorithms; and we also
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Fig. 13 Deviation of the ideal usage value

have BFBCT, which increased the load by 34%, with the highest number of migrations and not
as fair as ProGReGA-KH or ProGReGA-KF. Finally, Ahmed’s algorithm increased the system
load by 29%, on the average, with the least number of migrations and a fairness level varying a
lot over time.

Although the servers presented the largest variation in the resources usage rate, the Pro-
GReGA was the one with the least overall real weight (which includes overhead: Wtotal +

OverHead) of all simulated algorithms. Its variant ProGReGA-KF had the second lowest num-
ber of user migrations, along with the second lowest overhead and a fair load distribution, on
the average, when compared to the other algorithms. Which of these two is better depends on
the specific game. In a real-time game, users constantly migrating between servers can introduce
delay and hinder the interaction between players. ProGReGA-KF, or Ahmed’s algorithm, would
be more suited for this situation. However, when it is not possible to use some kind of “graceful
degradation” to reduce the quality of the game and save up the servers’ resources, ProGReGA
would be the best option.

5 Conclusions and future work

It was proposed here a load balancing scheme for distributed MMOG servers, taking into ac-
count the use of upload bandwidth of the server nodes. We considered important aspects such
as the quadratic growth of the traffic when the avatars are close to one another, and the distribu-
tion overhead when players connected to different servers are interacting. The scheme, which is
divided into three phases, proposed different algorithms for phase 2 (the balancing phase), and
ProGReGA presented the lowest overhead of all, while ProGReGA-KF presented the second
fewest migrations of players between servers, along with the second lower overhead introduced
and a fair load distribution. For this reason, we recommend the use of ProGReGA-KF for most
cases. However, in some situations where the system load must be reduced as much as possible,
ProGReGA would perform better.

As a future work, one could create a load balancing scheme where there will be not only one
server node, but a group of server nodes managing each region. In this case, ways to balance the
load on the system, considering this two-level distribution, may be investigated.



23

Acknowledgements This work was supported by the National Research Council (CNPq) and by the Coordina-
tion of Improvement of Higher Education (CAPES), both Brazilian research funding agencies.

References

1. Chen, K., Huang, P., Lei, C.: Game traffic analysis: An MMORPG perspective. Computer Networks 50(16),
3002–3023 (2006)

2. Feng, W.: What’s Next for Networked Games? (2007). Available at:
http://www.thefengs.com/wuchang/work/. (NetGames 2007 keynote talk, nov. 2007)

3. Ahmed, D., Shirmohammadi, S.: A Microcell Oriented Load Balancing Model for Collaborative Virtual En-
vironments. In: Proceedings of the IEEE Conference on Virtual Environments, Human-Computer Interfaces
and Measurement Systems, VECIMS, pp. 86–91. Piscataway, NJ: IEEE, Istanbul, Turkey (2008)

4. De Vleeschauwer, B., et al.: Dynamic microcell assignment for massively multiplayer online gaming. In:
Proceedings of the ACM SIGCOMM workshop on Network and system support for games, NetGames, 4.,
pp. 1–7. New York: ACM, Hawthorne, NY (2005)

5. Lu, F., Parkin, S., Morgan, G.: Load balancing for massively multiplayer online games. In: Proceedings of
the 5th ACM SIGCOMM workshop on Network and system support for games. ACM New York, NY, USA
(2006)

6. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., Amza, C.: Locality aware dynamic load management for
massively multiplayer games. In: Proceedings of the 10th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pp. 289–300. ACM New York, NY, USA (2005)

7. Duong, T., Zhou, S.: A dynamic load sharing algorithm for massively multiplayer online games. In: Proceed-
ings of the 11th IEEE International Conference on Networks, pp. 131–136

8. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal
49(2), 291–307 (1970)

9. Fiduccia, C., Mattheyses, R.: A Linear-Time Heuristic for Improving Network Partitions. In: Proceedings of
the Conference on Design Automation, 19., pp. 175–181. New York: ACM, Las Vegas, NV (1982)

10. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM
Journal on Scientific Computing 20(1), 359–392 (1998)

11. Hendrickson, B., Leland, R.: An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Com-
putations. SIAM Journal on Scientific Computing 16(2), 452–452 (1995)

12. Lee, K., Lee, D.: A scalable dynamic load distribution scheme for multi-server distributed virtual environment
systems with highly-skewed user distribution. In: Proceedings of the ACM symposium on Virtual reality
software and technology, pp. 160–168. New York: ACM, Osaka, Japan (2003)

13. Microsoft: Age of empires (1997). Available at: http://www.microsoft.com/games/empires/
14. Bezerra, C.E.B., Cecin, F.R., Geyer, C.F.R.: A3: a novel interest management algorithm for distributed sim-

ulations of mmogs. In: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation
and Real-Time Applications, DS-RT, 12., pp. 35–42. Washington, DC: IEEE, Vancouver, Canada (2008)

15. Feder, T., et al.: Complexity of graph partition problems. In: Proceedings of the ACM Symposium on Theory
of Computing, STOC, 31., pp. 464–472. New York: ACM, Atlanta, GA (1999)
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