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Abstract. Recent progress in automated formal verification is to a large
degree due to the development of constraint languages that are suffi-
ciently light-weight for reasoning but still expressive enough to prove
properties of programs. Satisfiability modulo theories (SMT) solvers im-
plement efficient decision procedures, but offer little direct support for
adapting the constraint language to the task at hand. Theory refine-
ment is a new approach that modularly adjusts the modeling precision
based on the properties being verified through the use of combination
of theories. We implement the approach using an augmented version of
the theory of bit-vectors and uninterpreted functions capable of directly
injecting non-clausal refinements to the inherent Boolean structure of
SMT. In our comparison to a state-of-the-art model checker, our pro-
totype implementation is in general competitive, being several orders of
magnitudes faster on some instances that are challenging for flattening,
while computing models that are significantly more succinct.

1 Introduction

The satisfiability modulo theories (SMT) [14] reasoning framework is currently
one of the most successful approaches to verifying software in a scalable way. The
approach is based on modeling the software and its specifications in propositional
logic, while expressing domain-specific knowledge with first-order theories con-
nected to the logic through equalities. Once a satisfying assignment is found for
the propositional model, its consistency is queried as equalities from the theory
solvers, which, in case of inconsistency, provide an explanation as a proposi-
tional clause. Successful verification of software relies on finding a model that is
expressive enough to capture software behavior relevant to correctness, while suf-
ficiently high-level to prevent reasoning from becoming prohibitively expensive.
Since in general more precise theories are both more expensive computationally
and potentially distracting for the automatic reasoning, finding such a balance
is a non-trivial task.

We introduce theory refinement, a counter-example-guided abstraction refine-
ment (CEGAR) [11,12] approach for modeling software modularly using theories
that are partially ordered with respect to their precision. Our main contribution
is the process of gradually encoding a program using the most precise theory only



for a critical subset of all program statements, while keeping lower precision for
the rest of the statements. The critical subset of theories is identified based on
counter-examples, and theories of different precision are bound to each other
through special identities. We study several automatic heuristics for guiding the
encoding and provide also a manual encoding option. We apply theory refinement
on verification of safety properties of software through bounded model checking.
However, we believe that the technique is applicable in most verification tech-
niques where higher level information is available on the problem structure. This
includes model checking [5] and upgrade checking [15], k-induction [23], the IC3
algorithm [6], and generation of inductive invariants [16]. We show that the mod-
ular composition of the theories preferring lower precision can be used to both
obtain speed-up in solving and identifying statements whose precise semantics do
not affect the program safety, providing the model checker with cleaner proofs.

Many SMT solvers use over-approximation through theories as a means of
speeding up solving. For instance [9,17,8] organizes the theory solvers into layers
that solve problems represented in QF BV. The query is first given to fast and
less precise theory solvers, and only passed on to the exact solver if previous
layers fail to show unsatisfiability. In contrast to low-level SMT solving, this work
studies how to automatically identify statements whose exact semantics can be
ignored in model-checking. This shift of view point has several advantages: (i)
the approach can be used both to obtain speed-up in solving, and as a means for
synthesis and finding fix-points for transition relations; (ii) the guidance from
the source code allows the use of more powerful heuristics for choosing which
statements should remain abstract; and (iii) the refinement takes place on the
level of the program, not at the level of the theory query, an approach potentially
more natural from the point of view of the semantics of the program.

We present theory refinement with two new theories called uninterpreted
functions for programs (UFP) and bit vectors for programs (BVP) that are based
on the theories of quantifier-free uninterpreted functions with equality (QF UF),
and bit vectors (QF BV), respectively. The two theories were chosen since they
represent two natural extremes in precision and are commonly used in the layered
solver approach (see, e.g., [17]). In addition to the functionality of QF UF, UFP
provides interpretations for constants, conversion of abstract values to concrete
values, and commutativity for uninterpreted functions when applicable. The key
difference in BVP compared to QF BV is that BVP is capable of directly inject-
ing non-clausal refinements, modeling the program statements bit-precisely, to
the inherent Boolean structure maintained in the SMT solver.

We implemented theory refinement on the SMT solver OpenSMT [19] and
the bounded model checker HiFrog [3] supporting a subset of the C language.
We report promising results both with respect to speed and the amount of refined
program statements on both instances from a software verification competition
and our own regression test suite. We demonstrate that the approach has a
potential of several orders of magnitude of improvement over the approach based
solely on flattened bit-vectors, as implemented in the state-of-the-art tool cbmc
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and in our own tool. The implementation and the benchmarks are available
at [1].

Related Work. Solving bit-vector problems with layers of theory solvers is intro-
duced in [9] and further developed in [17]. While we work directly on software
verification instead of bit-vectors, our approach is related, as we also use hierar-
chy of solvers combined with rewriting techniques. However, we work explicitly
on the modeling language by automatically adjusting the precision to be dif-
ferent in different parts of the problem, and adding additional constraints that
seams these parts together. In [8] a CEGAR based approach is used for solv-
ing problems involving arrays by transforming an abstract representation into
clauses. We differ from this approach in that we integrate the system on the the-
ory solver level, employing in the experiments the congruence closure algorithm
together with a propositional solver. To the best of our knowledge, no existing
approach uses this level of granularity in the modeling. Furthermore, we use
counter-examples that are checked against the bit-precise implementation, and
this way can avoid refinement of program parts that would need to be refined in
approaches based on layered theory solvers.

Exploiting simultaneously several theories for one verification goal is not
new. For example, [16] presents a system for synthesizing safe bit-precise induc-
tive invariants for software. Compared to our work, the refinement direction is
inverted: the software is first flattened, and in case of a time-out, converted to a
domain-specific theory. Furthermore, we integrate seamlessly the theories UFP
and BVP into an SMT solver whereas [16] considers real arithmetics.

Uninterpreted functions have been used together with the bit-precise encod-
ing for verifying the equivalence of Verilog designs in [18,7]. The approach uses
machine learning to identify sub-components that can likely be abstracted. In
contrast, our emphasis is on software verification and integration to the SMT
solver. A related approach [22] constructs test cases for scientific software by
computing difference constraints from non-linear mathematical functions. This
approach can be viewed as a special case of the framework we present in this
paper; the formulas we derive can also be used for generating test cases, although
this is not the focus of this paper. Similarly, [10] combines linear real arithmetic
and equality of uninterpreted functions (QF UF) for the SMT encoding of the
program. The algorithm initially uses QF UF to abstract non-linear operators,
and then uses the monotonicity and the multiplication checks to identify spuri-
ous counterexample thus avoiding simulation and code execution. Both checks
might result in a refinement formula, which is added then to the current SMT
encoding. Unlike ours, their approach cannot be applied as such for bit-precise
reasoning. In [3] we report early, very positive results on using the combination
of EUF, LRA, and propositional flattening for encoding model checking prob-
lems. The current work which explores the possibilities in much more depth and
rigor is motivated by this early result.

Another program-based refinement approach was proposed in [20], where
compositional program is approximated with a program-specific theory of tran-
sition systems. Our approach is orthogonal to this, as we are able to handle
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programs in a more general way through the eventual flattening, while the the-
ory of transition systems could likely be integrated as an additional theory.

2 Preliminaries

Let P be a loop-free program represented as a transition system, and t a safety
property, that is, a logical formula over the variables of P . We are interested in
determining whether all reachable states of P satisfy t. Given a program P and
a safety property t, the task of a model checker is to find a counter-example, that
is, an execution of P that does not satisfy t, or prove the absence of counter-
examples on P . In the bounded, symbolic model checking approach followed in
this paper the model checker encodes P into a logical formula, conjoins it with
the negation of t, and checks the satisfiability of the encoding using an SMT
solver. If the encoding is unsatisfiable, the program is safe, and we say that t
holds in P . Otherwise, the satisfying assignment the SMT solver found is used
to build a counter-example.

A sort is a set of constants. For example the Boolean sort B = {>,⊥} consists
of the Boolean constants, true and false. Given a set of sorts {T0, . . . , Tn}, a
function op : T1× . . .× Tn → T0 maps a (possibly empty) sequence of constants
v1, . . . , vn such that vi ∈ Ti to a return value v0 ∈ T0. Functions mapping
empty sequences are variables, and a term is either a constant, a variable, or an
application of a function op(t1, . . . , tn) where ti are, recursively, terms with a
return value in the sort Ti. In most cases in this paper we use the usual infix
notation together with parentheses to express the well-known arithmetic and
logical functions.

3 Combination of Theories in Theory Refinement

This section fixes a notation for describing instances of the safety problem using
SMT, and provides two communicating theories for solving the safety problem.
The goal of the presentation is to clarify how the modeling works in the SMT
framework, placing particular emphasis to the use of symbols and their semantic.

In modeling programs we consider sets of quantifier-free symbolic statements
of the form x = t, where x is a variable, and t is a term. This form essentially
corresponds to the Single static assignment (SSA) form [13] for loop-free pro-
grams. The symbolic statements are defined over a sort of bounded integers Sz
and a Boolean sort Sb = {>l,⊥l}; we distinguish between these sorts and, for
instance, the sorts of integers Z and Booleans B to clarify the difference between
this symbolic encoding (hence the S) and the representation used by an SMT
solver. Table 1 lists the non-variable functions we consider in our encoding. Note
that unlike some programming languages, including C and C++, we do not al-
low the encodings to interpret terms from Sz as terms from Sb or vice versa.
We distinguish between the functions defined over the sort Sb and those defined
over Sz , calling the former logical functions and the latter non-logical functions.
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Table 1: The functions used in the encoding we consider. Note that unsigned and signed
sum coincide.

Functions Descriptions

Logical functions

&& , || Sb × Sb → Sb Logical and, or
! Sb → Sb Logical not

Non-logical functions

+ , *u , *s , /u , /s Sz × Sz → Sz Sum, unsigned and signed product and
division

% u , % s Sz × Sz → Sz Unsigned and signed remainder
� ,�a ,�l Sz × Sz → Sz left shift, arithmetic and logical right

shift
& , | , ˆ Sz × Sz → Sz Bitwise and, or, exclusive or
∼ : Sz → Sz bitwise complement
≤s , ≤u , <s , <u ,
≥s , ≥u , >s , >u

Sz × Sz → Sb Signed and unsigned less than or equal
to and greater than or equal to

c =
(
(a % u 2) + (b % u 2)

)
% u 2

c′ = (a + b) % u 2

d = f *u e *u c

d′ = e *u f *u c
′

(
cb =BVz

(
(ab % u 2b) + (bb % u 2b)

)
% u 2b

)
1
∧(

(c′)b =BVz (ab + bb) % u 2b
)
1
∧(

du = fu
*u e

u
*u c

u
)
∧(

(d′)u = eu *u f
u
*u (c′)u

)
∧(

cu = (c′)u
)
↔

((
cb1 ↔ (c′)b1

)
∧ . . . ∧

(
cbbw ↔ (c′)bbw

))
Fig. 1: (Left) a sequence of statements and (right) the corresponding encoding in com-
bined UFP and BVP (to be described in Sect. 3.3). On the left all the variables are of
sort Sz , and e and f are unbound.

The control-flow structures, such as if-then-elses, are encoded using the func-
tions ! , || , and && . For the purpose of this presentation we assume that the
encodings do not contain arrays and pointers.4 Fig. 1 (left) shows an example
sequence of statements that we will use as a running example in the discussion
of this section.

4 We do support these in our implementation, but their results are treated nondeter-
ministically, that is, as unbound variables from Sz .
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3.1 Bit Vectors for Programs

Our theory of bit vectors for programs (BVP) has a single sort BVz bw containing
the integers representable in bw ∈ N bits. When the bit-width of the sort is clear
from the context we simply write BVz for the sort. Each BVP term t of sort
BVz bw is associated with the bits t1, . . . , tbw which are variables from the sort
B. The bits t1 and tbw are called, respectively, the least significant bit and the
most significant bit of t.

The BVP theory has two special constants 1b and 0b. For the constant 0b,
0bi = ⊥, 1 ≤ i ≤ bw . For the constant 1b, 1b1 = > and 1bi = ⊥ for 2 ≤ i ≤ bw .
The equality of BVP is =BVz : BVz × BVz → BVz . The interpretation of the
equality is that if x =BVz y holds, then the value of the equality term is 1b and
otherwise 0b. Finally, BVP has the functions defined in Table 1 with all sorts
replaced by the sort BVz . For a term t, the Boolean functions determining the
bits ti are computed through propositional flattening (see, e.g., [21]).

We encode a sequence of statements P = {x1 = t1, . . . , xn = tn} in BVP
as follows. Each statement xi = ti is converted to |xi|b =BVz |ti|b, where the
operator | · |b is defined for a symbolic term t recursively:

|t|b def
=

xb if t
.
= x is a variable or a constant

|x|b ./ |y|b if t
.
= x ./ y where ./ is a binary function,

◦|x|b if t
.
= ◦x where ◦ is a unary function

(1)

where a
.
= b denotes that the term a matches the form of b. Conjunction of the

least significant bits of encoded statements in P defines its BVP-encoding [P ]b:

[P ]b
def
= (|x1|b =BVz |t1|b)1 ∧ . . . ∧ (|xn|b =BVz |tn|b)1 (2)

We say that a safety property t holds in program P if and only if [P ]b ∧¬[t]b1
is unsatisfiable. Based on the definition we can see that the symbolic encoding
in Fig. 1 satisfies the safety property (d = d′) due to properties of modular
arithmetics. The BVP encoding is often inefficient due to the quadratic growth of
the formula with respect to bw . However, in many cases, the bit-precise encoding
of statements (e.g., *u in Fig. 1) are irrelevant to the safety property, and can
therefore be over-approximated. This motivates the use of less precise but more
efficiently solvable encodings such as those based on uninterpreted functions.

3.2 Uninterpreted Functions for Programs

The logic UFP (Uninterpreted Functions for Programs) is the standard logic of
quantifier-free uninterpreted functions having the Boolean sort B, the standard
Boolean functions op : B× . . .×B→ B where op is an operator such as ∨,∧, and
¬, and an unbounded number of variables. In addition the logic is augmented
with

– a sort UFPn of real or integer numbers;
– the functions listed in Table 1 treated as uninterpreted functions with the

sorts UFPn and B instead of Sz and Sb respectively;
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– commutativity of the functions + , *u , *s , & , and | ; and
– the concept of constants beyond the Boolean > and ⊥.

As usual, UFP also contains the equality function =S : T × T → B for all sorts
T . As in the symbolic encoding, also in UFP we differentiate between two types
of functions: those with a return sort B, and those with a return sort UFPn.

Given a sequence of statements P = {x1 = t1, . . . , xn = tn}, we denote its

encoding in UFP by [P ]u
def
= ([x1]u =T1

[t1]u) ∧ . . . ∧ ([xn]u =Tn
[tn]u), where Ti

is either UFPn or B depending on the related sort. The encoding operator [·]u
is defined as follows for a term t:

[t]u
def
=


xu if t

.
= x is a variable or a constant

[x]u ∧ [y]u if t
.
= x && y

[x]u ∨ [y]u if t
.
= x || y

¬[x]u if t
.
= ! x

[x]u ./ [y]u if t
.
= x ./ y where ./ is a non-logical function.

(3)

We distinguish between the notions of program safety in UFP and in BVP.
In particular, we say that a safety property t holds in program P in UFP if and
only if [P ]u ∧ ¬[t]u is unsatisfiable.

The program in Fig. 1 is safe with respect to the safety property ! (c =
c′) || (d = d′) in UFP and therefore also in BVP. However, it is not safe in UFP
with respect to the safety property d = d′ that is safe in BVP. For checking
safety of programs in UFP we use a theory solver implementing a congruence
closure algorithm [14] that is modified to support constants and commutativity.
The modifications are described in more detail in Sec. 5.1.

In our recent experiments [3] we showed that safety of many programs can be
established by interpreting the arithmetic functions as uninterpreted functions.
In the next subsection we describe how the UFP logic and the BVP logic can be
combined.

3.3 Combination of UFP and BVP

We present the theory refinement approach using a seamless integration of
the UFP and BVP encoding, and therefore require a form of theory combi-
nation. However, unlike in conventional theory combination on bit vectors (see,
e.g., [17]), we do not need to consider bit-vectors as theories, but instead they
are embedded directly to the Boolean structure of the SMT solver. The two
theories UFP and BVP are combined using a binding formula defined as follows.

Definition 1. Given a symbolic statement t, let [t]u and [t]b be its UFP and
BVP-encodings respectively. If both [t]u and [t]b appear together in a formula,
we say that t is bound. Let B be the set of all bound statements. The binding
formula for B (denoted FB) is defined as

FB
def
=

∧
t,t′∈B

([t]u = [t′]u)↔
(
([t]b1 ↔ [t′]b1) ∧ . . . ∧ ([t]bbw ↔ [t′]bbw )

)
(4)
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SMT solver

Model checker

UFP
BVP

BVPBVP

FB

FB

Symbolically encoded program

Fig. 2: A symbolic encoding of a program and the corresponding SMT formula. In the
schematic example most of the program is encoded using UFP, while certain critical
parts are encoded in BVP and made to communicate with the UFP encoding using
the binding formula FB .

Intuitively, the combination of the theories UFP and BVP with FB allow us
to express an over-approximation of the symbolic encoding of a program. This
is stated more formally in the following theorem.

Theorem 1. Let P be a program. Then [P ]b ∧ FB |= [P ]u.

Proof. (sketch) By simulation of executions in BVP: if there exist values vb1, . . . , v
b
n

for the variables xb1, . . . , x
b
n in a term [a = t]b then the same values vu1 , . . . , v

u
n

satisfy the corresponding equality [a]u = [t]u. ut

Fig. 2 shows the combined UFP and BVP encoding schematically. The sym-
bolic encoding of a program is partitioned by the model checker into three parts:
the UFP encoding, the BVP encoding, and the binding formula FB . The conjunc-
tion of these is solved by the SMT solver. Fig. 1 (right) describes a combination
encoding of UFP and BVP together with the necessary binding formula for the
running example.

4 Counterexample-Guided Theory Refinement

This section provides an algorithm for verifying safety of programs by grad-
ually refining the precision ρ of the symbolic encoding from UFP to BVP in
parts where satisfying truth assignments show that it is necessary for sound-
ness. Algorithm 1 describes the high-level idea. The algorithm takes as input
a symbolically encoded problem P and a safety property t, and returns either
Safe, if t holds in P , or Unsafe with a bit-precise counter-example if t does
not hold in P . During the execution the algorithm picks statements s ∈ P ∪ {t}
and refines their approximations in ρ until ρ[s] is equivalent to [s]b. Based on ρ,
the algorithm constructs the binding formula FB sufficient to connect the UFP
and BVP terms.
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Algorithm 1: The Counterexample-Guided Theory Refinement Algorithm

input : P = {(x1 = t1), . . . , (xn = tn)}: a program, and t: a safety property
output: 〈Safe,⊥〉 or 〈Unsafe,CE b〉

1 For all 1 ≤ i ≤ n initialize ρ[xi = ti]← [xi = ti]
u

2 ρ[t]← [t]u

3 FB ← >
4 while true do
5 Query ← ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] ∧ ¬ρ[t] ∧ FB

6 〈result ,CE〉 ← checkSAT(Query)
7 if result is UnSAT then
8 return 〈Safe,⊥〉
9 end

10 CE b ← getValues(CE)

11 foreach s ∈ P ∪ {t} s.t. ρ[s] 6|= [s]b do

12 〈result , 〉 ← checkSAT([s]b ∧ CE b)
13 if result is UnSAT then
14 ρ[s]← refines(ρ[s])
15 FB ← computeBinding(ρ)
16 break

17 end

18 end
19 if No s was refined at line 14 then

20 return 〈Unsafe,CE b〉
21 end

22 end

The safety of the program is tested at lines 5–9 using the current precision
ρ and the binding formula. If the check succeeds, the algorithm terminates at
line 9. Otherwise, a satisfying truth assignment is extracted at line 10 and then
used to refine ρ at lines 11–18.

The need for refinement is checked for every statement s with a precision ρ[s]
not equivalent to [s]b. If the truth assignment CE b is inconsistent with [s]b then
ρ[s] is refined to block the truth assignment. If at least one such replacement
happens in the current iteration, the execution proceeds to line 5. In practice it
is a good idea to refine several statements based on a single counter-example, as
discussed in Sec. 6. If no refinement is done, the truth assignment corresponds
to a counter-example and the algorithm terminates at line 20.

The algorithm uses four sub-procedures checkSAT, getValues, refines, and
computeBinding. checkSAT(F ) determines the satisfiability of a formula F ,
getValues(CE ) computes a BVP encoding of CE through substituting the
abstract values from UFP with concrete BVP values. refines(F ) refines the
statement s with respect to the previous precision F , and computeBinding(ρ)
computes the binding formula using Def. 1. Below we give a definition for the
refine procedure, while the other procedures will be discussed in more detail
in Sec. 5.3.
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Definition 2. The procedure refines(F ) returns an iterative refinement of the
statement s of the symbolic encoding with respect to F , such that (i) refines(F ) |=
F , and (ii) refines has a fix-point that is equivalent to [s]b and reachable in a
finite number of applications of refines.

While in the implementation discussed in Sect. 5 we use refines(F ) = [s]b∧[s]u,
we want to point out the possibility of using interpolation-based methods (see,
e.g., [4]) for the refinement.

Theorem 2. Alg. 1 terminates in a finite number of steps.

Proof. Assume that Alg. 1 does not terminate. Then there is a term in P ∪ {t}
that can be refined an unbounded number of times before the fix-point equivalent
to [s]b is reached, which contradicts Def. 2. ut

Theorem 3. Alg. 1 returns Unsafe if and only if the symbolic encoding P has
an execution violating the safety property t.

Proof. The algorithm maintains the invariants

Inv1 [x1 = t1]b ∧ . . . ∧ [xn = tn]b |= ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn]
Inv2 [t]b |= ρ[t]

(5)

at line 14 by Def. 2 and Th. 1. Assume that the algorithm returns Unsafe
but there is no execution violating the safety property t. Then there is a truth
assignment σ such that ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] ∧ FB is true and ρ[t] is
false. The truth assignment σ must also satisfy [x1 = t1]b ∧ . . . ∧ [xn = tn]b. By
Inv2, if ρ[t] is false also [t]b is false, hence contradicting the unsafety of (P, t).
Now assume the algorithm returns Safe but there is an execution of P violating
t. Then there is a truth assignment satisfying [P ]b ∧ ¬[t]b. Since by Th. 1 both
[P ]b ∧ FB |= ρ[x1 = t1] ∧ . . . ∧ ρ[xn = tn] and ¬[t]b ∧ FB |= ¬ρ[t], also the query
on line 5 is satisfiable, contradicting the assumption. ut

5 Implementation of Theory Refinement Algorithm

This section describes the prototype implementation of the theory refinement
algorithm. The algorithm is implemented on the SMT solver OpenSMT [19]
and the bounded model checker HiFrog [3]. The overview of implementation
including the three main components and interactions between them is depicted
in Fig. 3.

5.1 The Solver for UFP

The UFP theory solver is based on the co-operation between a congruence closure
algorithm, which maintains sets of equivalence classes and inequalities between
the classes, and a SAT solver, which enforces a propositional structure describing
the relations between the equalities. We refer the reader to [14] for the full
description of the egraph algorithm that the UFP solver bases on.
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Fig. 3: The SMT-based model checking framework implementing a theory refinement
approach used in the experiments.

Constants. The original egraph algorithm does not support constants other
than the Boolean > and ⊥, but constants play often an important role in our
benchmarks. The egraph algorithm can represent an inequality between two
terms t1, t2 by asserting explicitly the inequality t1 6= t2 over these terms. This
representation grows quadratically in the number of constants and therefore
is not scalable. We adopt a different strategy for representing the inequalities
between constants. An equivalence class in the egraph algorithm is represented
by a linked list binding together the terms in the same class. Each class is
represented by a canonical term from the linked list. In the original algorithm
of [14], when two equivalence classes a and b are joined, the canonical term of the
new class a∪b is the representative of whichever class a or b contains more terms.
This is done to allow efficient joining and splitting in the backtracking search
driven by the SMT solver. In our implementation the representative of a class
a is always a constant if a contains a constant. The implicit inequality between
constants is then implemented by a check that the respective equivalence classes
are not both represented by a constant term. This approach fits naturally into the
egraph algorithm and explanation generation. In the experiments we observed
no noticeable slowdown compared to the original approach.

Values. Alg. 1 requires concrete values from the UFP theory to construct a
counter-example candidate. In general the values for UFP are obtained by as-
signing a running number for each equivalence class that the egraph algorithm
maintains. However, there are two special cases for the values. First, if the equiv-
alence class contains a constant, the value is that of the constant. Second, a pre-
processing step in the SMT solver removes terms that only appear on clauses
that are true by construction. Since these terms can have any value, we indicate
this with a special flag.

Commutativity. The commutativity of the functions Co = { + , *u , *s , & , | }
is implemented by conjoining the set {◦(a, b) ↔ ◦(b, a) | ◦ ∈ Co, ◦(a, b) in P}
to the instance [P ]u being solved. A similar approach is followed, for instance,
in [10].
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5.2 The Solver for BVP

The BVP theory is solved through propositional flattening [21]. The solver sup-
ports the operations listed in Table 1, and allows the use of arbitrary bit-widths.5

Based on an extensive testing the implementation is robust, but still prototyp-
ical in the sense that we implement no sophisticated pre-processing techniques
that are available in many other bit-vector solvers (see, e.g., [9]).

Unlike many other SMT solvers (see, e.g., [17]), we do not implement the bit-
vector solver as a separate SAT solver working on the flattening and driven by
the main SAT solver. Instead, we flatten the problem directly to the main SAT
solver. This has several advantages: we avoid the overhead of duplicate solver
instantiation, and we enable the solver to potentially learn much more intricate
relationships between the flattened formula and the formula in UFP. However,
an in-depth analysis of the implications of this design is beyond the scope of this
paper.

5.3 Theory Refinement in Model Checking

We integrated Alg. 1 into the bounded model checker HiFrog for C programs.
HiFrog obtains first the symbolic encoding of the program P and a safety prop-
erty t through a sequence of pre-processing steps, builds then the UFP formula,
and finally gradually transforms parts of the UFP formula into BVP based on
truth assignments until the safety is determined. We follow the approach where
safety properties are expressed as assertions in the C code. The architecture is
depicted in Fig. 3. HiFrog maintains two SMT solvers during the execution
and which are represented by the checkSAT calls in Alg. 1: the main solver for
checking the satisfiability query constructed at line 5 (shown on the bottom of
Fig. 3) and the refinement solver for checking the spuriousness of each counter-
example at line 10 (shown on the right of Fig. 3). This choice was taken so that
the expensive calls on the main solver would not be slowed down by unnecessary
clauses at the refinement solver.

The counter-examples are flattened to propositional logic through the call to
getValues by mapping the values in UFP to a unique bit-vector constant of the
given bit width bw . At this stage of the development we ignore the case where
the UFP solver gives more equivalence classes than what is representable in bw
bits, since this limitation did not affect our results.

The binding formula (see Def. 1) is updated whenever a statement x = t is
refined. This is done by first constructing the BVP formulas [x]b and [t]b, and
then adding the missing equalities to FB with the call to computeBinding.

6 Experimental Results

We evaluated the theory-refinement mode of HiFrog on C programs mostly
coming from the software model checking competition (SV-COMP). The bench-
marks were split into the safe (128 instances) and unsafe (30 instances) sets,

5 The shift operations � , �a , �l assume a bit-width that is a power of two.
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Fig. 4: Timings of cbmc (left) and HiFrog’s flattening (right) against HiFrog’s theory
refinement for the safe instances.
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Fig. 5: Timings of cbmc (left) and HiFrog’s flattening (right) against HiFrog’s theory
refinement for the unsafe instances.

indicating whether the bad behavior is reachable or not. Among safe instances,
17 require refinements.

For benchmarking we used Ubuntu 14.04 Linux system with two Intel Xeon
E5620 CPUs clocked at 2.40GHz and 12 Gigabyte memory limit per process using
a timeout of 300 seconds CPU time. The model checker was compiled with the
GNU C++ compiler and the O3 optimization level. The complete experimental
results, the source code, and a virtual machine are all available at [1].

Fig. 4 shows the verification results on safe properties. We compared (Fig. 4,
left) the HiFrog’s theory-refinement mode against cbmc version 5.7, the winner
of the software model checking competition falsification track in 2017.6 7 In 101
cases, HiFrog was either as fast or faster than cbmc, sometimes by orders of
magnitude. Furthermore, HiFrog’s theory refinement mode is compared against
HiFrog’s propositional flattening (Fig. 4, right), hence ensuring that the only
difference in the solvers is in how the symbolic encoding is presented to the
SMT solver. In 115 cases, the theory refinement was either as fast or faster than
flattening in determining safety, providing a more convincing evidence that the
theory refinement approach works well in practice.

6 OpenSMT2: git ID: 99c960e4c; HiFrog (including cbmc that shares the CProver
framework [2] with HiFrog): git ID b35956f2c.

7 OpenSMT2: https://scm.ti-edu.ch/repogit/opensmt2.git; HiFrog: https://
scm.ti-edu.ch/repogit/hifrog.
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Table 2: Comparison of the heuristics against Min on instances requiring refinement.

H0 H1 H2 H3 H4 H5 H6 H7 Min

#solved 17 16 17 17 17 17 17 17 17
#ref 660 2218 1250 1250 533 2266 1442 1831 162
time (s) 538 223 257 317 123 166 147 158 46.2

The verification results of unsafe benchmarks are shown in Fig. 5. In five
cases, bug detection by HiFrog was slower than the one by cbmc since HiFrog
required iterative refining of all the expressions to confirm the validity of the
counter-example. However, in the remaining cases, HiFrog was comparable to
cbmc.

6.1 Experiments on Refinement Heuristic

Alg. 1 does not address which exact statement should be refined based on a
counter-example on Line 11 in case there are several possibilities. However this
selection affects the run time of the model checking and is therefore of practical
interest. We consider the following three features while building a refinement
heuristic:

– Traversal order: the algorithm can proceed either by choosing from P the first
statement (forward order) or the last statement (backward order) satisfying
the condition on Line 11.

– All statements falsified by the counter-example are refined simultaneously
(simultaneous refinement).

– All statements that depend on refined statements are refined simultaneously
(dependency refinement).

The heuristics are as follows: H0 – Forward order; H1 – Backward order; H2
– Forward order with simultaneous refinement; H3 – Backward order with si-
multaneous refinement; H4 – Forward order with dependency refinement; H5 –
Backward order with dependency refinement; H6 – Forward order with simulta-
neous and dependency refinement; and H7 – Backward order with simultaneous
and dependency refinement. Based on the experimentation, the fastest solver on
average results from using Forward order with dependency refinement. This is
the heuristic we use in the results on Figs. 4-5. We briefly report on the results
of the heuristics in Table 2 over the 17 instances of our total benchmark set
where statements were refined. This benchmark set contains three crafted in-
stances and the rest from the bitvector category of SV-COMP. The row labeled
#solved reports how many instances the heuristic could solve before the timeout,
#ref reports how many statements in total had to be refined over the set, and
time reports the total run time. As a reference the table also reports results on
the heuristic Min that requires no run time and computes a minimum set of
refinements required to prove the property.
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Finally, in Fig. 6 we show the re-
duction in the number of refined state-
ments when using the Min heuristic
on the 17 instances. As expected, the
performance of the heuristic depends
on the instance, but when effective,
dramatically reduces the amount of
flattened statements.

While the results are still prelimi-
nary mostly due to the prototype na-
ture of the tools we are developing, we
believe that they make a very strong
point for the potential of the the-
ory refinement approach in software
model checking.

7 Conclusions and Future Work

We presented a new approach for abstraction refinement in software verifica-
tion with SMT solvers. Our approach introduces iterative theory refinement and
supports solving of formulas of combined theories in the SMT solver, where
the binding to the theory is maintained by a series of identities in the original
formula. Our main contribution is the gradual encoding process that uses the
most precise theory only for a subset of all program statements, while handling
the rest of the statements by using the less precise theories. This subset of the
statements could either be identified by checking spurious counter-examples or
simply specified by the user. Our framework can be extended by sets of theo-
ries with a partial order of refinement defined among them. In this paper, we
demonstrated the framework on the UFP theory with the partial refinement to
the BVP theory. We implemented this framework in the OpenSMT [19] solver
and the model checker HiFrog [3].

We study different refinement strategies and compare them against a strategy
computed off-line, as well as with the encoding into propositional logic, known
as flattening or bit-blasting. Improvement is seen both in the running time and
in the size of the resulting formula, demonstrating that the spurious counter-
examples are usually eliminated by refining a small number of statements in the
formula.

In future we plan to progress in several directions. We will study theory
refinement with arithmetic theories and arrays, defining a partial order among
theories based on the level of abstraction/refinement that they provide. We will
further improve the automatic refinement based on an analysis of the counter-
examples using approaches such as interpolation. We also plan to develop more
sophisticated heuristics and strategies for refinement.

Acknowledgements. This work was supported by the SNF grants 163001 and
166288 and the SNF fellowship P2T1P2 161971.
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