
GeoPaxos+: Practical Geographical State Machine

Replication

Paulo Coelho

Federal University of Uberlândia, Brazil

Fernando Pedone

Università della Svizzera italiana (USI), Switzerland

Abstract—In some online services, the geographical location
of a client tends to determine the data accessed by the client’s
requests. Geographical locality holds, for example, in location-
based services, tracking systems, and social networking services.
State machine replication protocols can use geographical locality
to optimize performance by ordering requests efficiently. In order
to be effective, though, two requirements must be fulfilled. First,
protocols must identify the data accessed by a request before
the request is executed. Second, protocols must determine which
parts of the service state are accessed where and with what
probability. The paper presents a geographical state machine
replication protocol that meets both requirements. We illustrate
the use of our protocol by developing a geographically replicated
B+Tree service. We fully implemented the B+Tree service and
show experimentally that it outperforms implementations based
on classic (i.e., Paxos) and recent (i.e., EPaxos) general-purpose
replication protocols by a large margin.

Index Terms—fault tolerance, state machine replication, geo-
replication.

I. INTRODUCTION

Geographical replication consists in distributing replicas of

a service across different geographical locations. It is typically

used to improve performance (e.g., clients can access a nearby

replica) and to tolerate catastrophic failures (e.g., a flooding

that renders a datacenter inoperative may not affect a remote

datacenter) [1], [2]. Ensuring that geographically distributed

replicas behave consistently, however, is challenging. This

is because strong consistency (e.g., linearizability) requires

replicas to coordinate over wide-area links, which introduces

inherent communication delays.

In order to provide strong consistency in the presence

of wide-area delays, system designers have come up with

approaches that exploit specific characteristics of the service.

One class of protocols uses application semantics to reduce

the number of communication steps needed to order client

requests before they can be executed by the replicas (e.g.,

EPaxos [3], M2Paxos [4], MDCC [5]). Another class of

protocols takes advantage of client access patterns present in

some online services (e.g., [6], [7]). In services that exhibit

geographical locality, the geographical location of a client

tends to determine the data accessed by the client’s requests.

Geographical locality holds, for example, in location-based

services, tracking systems, and social networking services [8].

In state machine replication [9], [10], client requests are first

serialized and then executed by the replicas. The serialization

of requests usually relies on one replica, the serializer (i.e.,

leader, coordinator) [11], [12], which proposes the order of

requests to the other replicas. If the serializer fails, a backup

replica takes over. In geographical settings, clients near the

serializer have a performance advantage since their requests

are ordered more quickly. GeoPaxos [6] improves client per-

formance with multiple geographically distributed serializers,

each serializer responsible for ordering requests submitted by

nearby clients. To ensure consistency, requests that access a

common part of the state are ordered by the same serializer (or

its backup, if the serializer fails). More concretely, the service

state, hereafter assumed to be composed of objects, is logically

partitioned so that each partition is under the responsibility of

a serializer. A request is ordered by serializer S if the request

accesses objects in S’s partition. Since an ideal partitioning

of the service state is unlikely, some requests may involve

multiple serializers. In this case, the serializers involved in the

request must coordinate to order the request. For example,

if X and Y are objects in the service state, then replicas

SX and SY would be responsible for ordering requests that

access only X and only Y , respectively. Requests that access

X and Y require SX and SY to coordinate. In the presence

of geographical locality, SX (SY) would be a replica near the

clients likely to access X (Y).

GeoPaxos relies on two important assumptions. First, on a

selection of serializers that optimize for client access patterns.

This is difficult because access patterns may not be known in

advance and they may change during the execution (e.g., since

clients change their location). Besides, some objects may be

accessed by clients in multiple locations, and thus, there is no

optimal serializer. Second, replicas must identify the objects

accessed by a request before the request is ordered. This is

necessary because a replica must know whether it should

serialize the request and, if so, whether it must coordinate

with other serializers. Determining the objects accessed in

a request is easy in simple services (e.g., a key-value store,

where a request either reads or writes a key-value object) but

difficult in arbitrary services (e.g., dynamic data structures,

where a request accesses objects depending on the value of

other accessed objects).

In this paper, we present GeoPaxos+, a geographical state

machine replication protocol that addresses the issues raised

above. GeoPaxos+ extends GeoPaxos [6] as follows. First,

GeoPaxos+ allows objects to have multiple serializers. This

has the advantage that clients in different geographical loca-

tions can efficiently read an object by using a nearby serializer,

at the cost of more expensive update requests, which must

involve all the serializers of the object. Second, we introduce

a model to optimize the performance of geographically dis-

tributed applications. Our model determines which replicas

are best suited to act as serializers. The model accounts for

multiple input parameters including the location of clients,

wide-area delays, and client access patterns. Third, we propose

heuristics to speed up the optimization process. Fourth, we

introduce a B+Tree service to show how one can cope with

the challenges involved in replicating a complex service. A

B+Tree is a dynamic data structure with interesting access

patterns: parts of the tree are mostly read by clients, notably

the root, while updates happen mostly near the leaves of the

tree. Moreover, some variations of a B+Tree have been used

in location-based services [13]. We experimentally evaluate

our techniques and show that they outperform classic state

machine replication (i.e., Paxos) and recent semantic-based

approaches (i.e., EPaxos).

The remainder of the paper is structured as follows. Sec-

tion II describes the system model and the background.

Section III introduces the proposed optimization model. Sec-

tion IV illustrates how to cope with complex services with a

B+Tree. Section V describes our prototype, while Section VI

discusses the experimental evaluation. Section VII surveys

related work and Section VIII concludes the paper.

II. BACKGROUND

In this section, we define our system model (§II-A) and

recall the basics of GeoPaxos (§II-B), the underlying geo-

graphical replication protocol we build upon.

A. System model and consistency criterion

We consider a message-passing distributed system: client

and server processes (i.e., replicas) are geographically dis-

tributed and communicate using FIFO channels. Each replica

stores the complete application state (i.e., full replication).

Processes are subject to crash failures and do not behave

maliciously (e.g., no Byzantine failures). The system is asyn-

chronous (i.e., no bound on message delays and on relative

process speeds), augmented with additional assumptions to

implement Paxos [14], [12] (i.e., leader election).

The consistency criterion is linearizability [15]. An execu-

tion is linearizable if there is a permutation of the client re-

quests in the execution that respects (i) the service’s sequential

specification and (ii) the real-time precedence of requests as

seen by the clients. Request opi precedes request opj if the

response of opi occurs before the invocation of opj .

B. Geographical replication with GeoPaxos

We now briefly describe GeoPaxos (for more details, includ-

ing a discussion about GeoPaxos’s correctness, see [16]). A

client submits a request to a nearby replica, which propagates

the request to the other replicas to be ordered before the

request is executed by each replica. The main insight of

GeoPaxos is to allow different replicas (serializers) to order

requests, depending on the objects accessed in the request. The

system assumes a mapping of objects to serializers, known

by all the replicas. If object X is mapped to replica A, we

say that A is a serializer for X , and any requests that access

X must be serialized by A. When a replica first receives a

request, it determines all the objects accessed in the request.

If the replica is the serializer for an object accessed in the

request, it computes a unique timestamp for the request and

propagates the timestamp to all replicas. If the request has a

single serializer (i.e., all the objects accessed by the request

have the same serializer), then the proposed timestamp is

the request’s final timestamp, used to order the request. If

the request has multiple serializers, then timestamps from

all serializers involved are needed to determine the final

timestamp of the request, computed as the maximum among

the proposed timestamps.

Fig. 1 illustrates the execution of single- and multi-serializer

requests. The contacted replica determines the objects accessed

in the request and propagates the request to the other replicas.

Upon receiving a request, a replica waits for the request

timestamp. If the replica is a serializer of the request, it

computes a final timestamp (if the request is single-serializer)

or a tentative timestamp (if the request is multi-serializer) and

sends it to all replicas. Once the final timestamp of the request

is known by a replica, the request is enqueued for execution.

Request op is executed once it has a final timestamp and there

is no ongoing request op′ with a final or tentative timestamp

smaller than op’s timestamp. This is needed to ensure that

requests are executed in timestamp order.

Client Replica 1
X’s serializer

Replica 2
Y’s serializer

Replica 3

Execution

Request Req(X)

Req(X),timestamp

Reply

Request Req(X,Y)

Req(X,Y),timestamp

timestamp
timestamp

Reply

Single-serializer

request

Multi-serializer

request

Fig. 1: GeoPaxos execution modes.

Serialization assigns unique timestamps to requests using

Lamport timestamps. To tolerate failures, a serializer replicates

this state using Paxos (for clarity, we omitted serializer replicas

in Fig. 1). A serializer replica only responds to the serializer, as

part of Paxos, after it has received the corresponding request.

Thus, when a replica executes a request, the request has been

replicated in enough replicas.

III. OPTIMIZING OBJECT ACCESS

In this section, we extend GeoPaxos to allow objects with

multiple serializers (§III-A), introduce our optimization model

(§III-B), illustrate its use (§III-C), and present heuristics to

speed up optimization in geographical settings (§III-D).

A. From single to multiple serializers per object

The choice of a serializer is key to performance. Consider,

for example, the deployment shown in Fig. 2(a), where A,

B and C are the serializers for objects X , Y , and Z,

respectively. Graph edges show the latency between replicas

in milliseconds. Now assume a client sends a request on object

Z to B. Even though every replica has a copy of all objects, B
should wait for C to order the request before the execution.

In this situation, the client would wait for a full round-trip

between replicas C and B (plus the communication needed

by the replication of C’s serialization state) before receiving

a reply. If object Z is mostly accessed through replica B,

then it would be more efficient to assign B as Z’s serializer.

However, since Z is also frequently accessed by clients near

C (see Fig. 2(b)), neither B nor C are ideal to act as serializer

of requests on Z.

A B

C

90

150

70

(a) Topology graph: edges repre-
sent latency in milliseconds.

X

Replica A B C

Reads 10 100 50

Writes 10 1 5

Workload for

(b) Workload for object X .

Fig. 2: Topology and workload for three replicas in a WAN

(A is X’s serializer, B is Y’s serializer, and C is Z’s serializer).

We now revisit GeoPaxos and introduce multiple serializers

per object. In order to allow an object to have multiple

serializers, we distinguish between operations that only read

the object from operations that read and update the object. A

request that only issues read operations on an object can be

ordered by any serializer of the object, while a request that

issues a write operation on the object must be ordered by all

the serializers of the object. This is inspired by the read-one

write-all (ROWA) replication approach, a particular case of

general quorum-based systems [17].

In the example of Fig. 2, we could assign object Z seri-

alizers B and C. Thus, clients that connect to B or C can

have requests that read Z ordered quickly, while requests that

modify Z must be ordered by both B and C. Finally, a request

that reads X and writes Z will be ordered by serializers A
(because of the read operation on X), and B and C (because

of the write operation on Z).

B. Optimization model

In order to determine the serializers of an object, we need

to monitor the frequency of read and write accesses to the

object, that is, the workload of the object. Moreover, we need

A B

C

90

150

70

X

A B

C

90

150

70

X X

A B

C

90

150

70

X

X

A B

C

90

150

70

X

X

A B

C

90

150

70

X

X

X

Single-serializer configurations

Multi-serializer configurations

A B

C

90

150

70

X

A B

C

90

150

70

X

Fig. 3: Configurations for object X (X : serializer for X).

information about the system topology, that is, the approximate

communication latency between replicas. The topology is a

graph that represents the cost between pairs of replicas in

terms of latency. Any other metric that reflects meaningful

costs between replicas may also be used (e.g., link bandwidth).

We define δA,B as the latency between replicas A and B,

represented by the edge weight in Fig. 2(a) (150 in this

case). Workload is a per-object information and represents the

number of read and write operations that clients have issued

in some pre-defined time frame. In Fig. 2(b) clients connected

to A read object X 10 times, while clients connected to C
write 5 times to X.

With the topology and the workload, we assign one or more

serializers to each object in such a way that it minimizes the

final cost and the overall operation latency. The intuition is

that in a read-intensive workload, multiple replicas can order

read operations for a specific object independently, i.e., read

operations are local to each replica (low latency) and scale

with the number of replicas. However, if there are many write

operations on an object from a specific replica, this replica

should be the serializer for this object to avoid expensive

multi-replica write operations.

We now derive a general optimization model to compute

the serializers of an object. Fig. 3 exhibits the possible

configurations N for object X in the system described in

Fig. 2(a). A configuration PX,i is a set of serializers for X . The

total number of possible configurations is
∑N

i=1

(

N
i

)

, where

N is the number of replicas in the system. Each configuration

PX,i for object X has cost CX,i, which depends on the number

of read and write operations on X and the latency to perform

reads and writes in PX,i:

CX,i =

N
∑

g=1

wX,g(Wi + δg) + rX,g(Ri + δg) (1)

In equation (1), wX,g and rX,g are the number of reads and

writes on X issued at replica g. Ri and Wi are the latency of

a single read or write operation involving serializers in PX,i.

Since we can always read from a serializer, Ri = 0; since

a write operation must involve all serializers in PX,i, Wi =
max{δk,h | k, h ∈ PX,i}. If g is not a serializer in PX,i,

then both read and write operations will have an additional

cost δg to reach the closest serializer to g, computed as δg =
min{δg,h | ∀h ∈ PX,i}.

The ideal configuration, PX,best, has the smallest cost, as

defined in Eq. 2:

CX,best = min{CX,i, ∀PX,i ∈ N} (2)

C. Example

To illustrate our optimization model, consider the deploy-

ment shown in Fig. 2. In such a case, we have N = 3 and
(

3

1

)

+
(

3

2

)

+
(

3

3

)

= 7 possible configurations. Table I details the

cost for each configuration in our example. We can observe

that cost CX,best = 2400 corresponds to the configuration with

object X serialized by replicas A, B and C. In this case, the

cost of a write operation, Wi, is given by δA,B = 150, since

this is the maximum latency between replicas. For replicas A,

B and C, we have δA,best = δB,best = δC,best = 0, since A,

B, and C are serializers for object X in this configuration.

Most operations are reads from clients connected to replicas

B and C, which can be served locally by a replica; more than

half the number of writes are from clients connected to replica

A (see Fig. 2(b)).

PX,i Wi Ri δA,i δB,i δC,i CX,i

{A} 0 0 0 150 70 19000
{B} 0 0 150 0 90 7950
{C} 0 0 70 90 0 10490
{A,B} 150 0 0 0 70 6250
{A,C} 70 0 0 90 0 10210
{B,C} 90 0 70 0 0 2840
{A,B,C} 150 0 0 0 0 2400

TABLE I: Cost CX,i per configuration PX,i for object X .

D. Speeding up optimization

The complexity of our optimization function grows linearly

with the number of objects and exponentially with the number

of replicas. This section presents strategies to speed up the

execution of our optimization model.

1) Hot replicas: The approach presented in §III recalculates

preferred replicas for all tree nodes that have changed since

the last computation. The hot replicas technique reduces the

number of combinations that we have to consider for each

node: whenever the number of operations issued by clients

to a replica g is within a configurable threshold of the other

replica’s operations count, configurations where g is serializer

are not considered. In the workload in Fig. 2(b), since replica

A receives fewer operations than any other replicas, configura-

tions involving A could be skipped in the calculation, reducing

possible configurations from 7 to 3. The threshold for skipping

a replica represents a compromise between faster calculation

and accuracy.

2) Least Recently Used (LRU) Caching: The idea is to

leverage two important aspects that can be observed in

GeoPaxos+. The first observation is that, given two similar

“enough” workloads, serializer assignments will be the same,

which means that we can cache computed results. The second

observation is that changes in the workload typically happen

gradually over time, meaning that there is a certain probability

that recent calculations can be re-used.

Previous calculations are cached in a map data structure

providing retrievals in constant time. In such a map, keys are

a combination of normalized workload and update ratio, which

are the two aspects the calculations depend on. Intuitively, the

normalized workload captures the proportion of operations re-

ceived from different replicas, while the update ratio represents

the proportion of read and write operations for each replica.

We limit the size of the cache using an LRU strategy.

The normalized workload for object X at replica g, LX,g ,

is the amount of total operations on X at g compared to the

total number of operations on X at all replicas, and can be

expressed as:

LX,g =
wX,g + rX,g

∑N

h=1
(wX,h + rX,h)

(3)

The update ratio, UX,g , is defined as the relation between

writes and total number of operations for g:

UX,g =
wX,g

rX,g + wX,g

(4)

Considering the example in Table 2(b), we have normalized

workload LA = (20)/(176) ≈ 0.11 and update ratio UA =
10/20 ≈ 0.50. We cap the results at two decimal digits to

reduce the number of combinations, increase the hit ratio, and

use the result as part of the key to look up an entry in the

map data structure. The final key is the concatenation of the

normalized workload and the update ratio without the decimal

point, in this case 011050.

IV. DISTRIBUTED B+ TREE

In this section, we present an overview of our B+Tree

implemented with GeoPaxos+ (§IV-A), discuss the B+Tree

algorithm in detail (§IV-B), and explain how the optimization

model is recomputed on the fly (§IV-C).

A. Overview

A B-tree is composed of a root node, internal nodes, and

leaves with a variable but often large number of children per

node. The root may be either a leaf or a node with two or more

children. A B+Tree is a B-tree in which each node contains

only keys (not key-value pairs) with an additional level at the

bottom with linked leaves. A typical use of a B+Tree is storing

data for efficient retrieval in a block-oriented storage context,

like file systems, primarily because a B+Tree has a very high

fanout (i.e., the number of pointers to child nodes in a node).

Fig. 4 shows a B+Tree as implemented by GeoPaxos+ (with

fanout equal to three). Each tree node is an object containing

fields to store serializer information (set G in Fig. 4), and

counters for monitoring reads and writes from each replica

(see Table II). For example, the root of the tree has replicas A
and B as serializers. Therefore, reading the root must involve

either serializer A or B; updating the root must involve both

A and B.

 15

 4 10

 1 2 3 5 8 12 13 17 20 40 77 89

 21 37

G = {A, B}

G = {A, B}G = {B}

G = {B} G = {A, B}G = {A}G = {A} G = {A}

Fig. 4: B+Tree with serializers G for each node.

Field Type Description

uid long unique identifier
depth int depth in the tree
parent pointer parent node (∅ if root)
is leaf boolean whether it is a leaf or not
size int current number of keys
keys key_type[] sorted array of keys
values pointer[] pointers to the next node/value
reps int[] serializers (set G in Fig. 4)
changed boolean whether it has changed
reads int[] number of reads from each replica
writes int[] number of writes from each replica

TABLE II: Structure of a distributed B+Tree node (in gray the

data used by GeoPaxos+).

Clients send requests to the closest replica in the form of

a tuple (OP, k, v), where OP is one of the requests listed in

Table III, k represents the key on which the request will be

executed, and v is the value (or ⊥, when no value is required).

A request to read key 13 in the tree can be serialized by replica

B alone, since B is one of the serializers of the root node, the

left child of the root, and the leaf node containing 13.

Operation Description

READ(k,⊥) returns value of key k
GET-NEXT(k,⊥) returns value of the smallest key bigger than k
GET-PREV(k,⊥) returns value of the biggest key smaller than k
UPDATE(k, v) updates the value of key k and returns the old one
INSERT(k, v) inserts key k and value v

TABLE III: Operations on a B+Tree node.

Since GeoPaxos+ periodically recomputes serializers based

on the frequency of read and write operations on tree nodes,

it may happen that after a replica computes the serializers of

a request and the request is ordered by these serializers, the

mapping of objects to serializers has changed. We explain next

how GeoPaxos+ detects and handles such cases.

B. Detailed algorithm

When a replica r receives a request from a client, it

computes the serializers involved in the request using function

psite in Algorithm 1 (line 17). Function find has two input

parameters, the local tree T at the replica and the key op.k
accessed in the request; it returns the leaf node in T that

contains (or would contain) op.k.

The serializers involved in the request depend on the type

of the request (see Table III). A READ operation (line 24)

is always serialized by a single replica, either r, if r is a

serializer of the object read, or the closest serializer g to r
(i.e., the replica g with the lowest cost δr,g in the topology).

Both GET-NEXT and GET-PREV (line 26) involve the closest

serializer for key k’s leaf node and the serializer of next or

previous key’s leaf node. An UPDATE (line 30) must involve

all the serializers of the leaf node that contains key k.

An INSERT (line 32) can alter the tree structure causing one

or more nodes to split. Such splits can propagate to parent

nodes up to the root in the worst case. For consistency, a

modification in the tree structure should involve the serializers

of every tree node modified as part of the insert. A conservative

solution would be to include the serializers of the leaf node

and of its ascendants in the tree up to the root. We introduce

an optimization to reduce the number of serializers involved

in the insert. We initially check if the leaf node would split

as a result of the insert, i.e., if the leaf size is close to the

maximum allowed (line 34). If so, we include the serializers

of the leaf parent in the list of serializers of the insert. We

then repeat the procedure above for each of the ascendents of

the leaf up to the root.

A replica invokes primitive serialize(op) to serialize request

op. The serialization of op involves all the serializers in op.dst,
using the procedure described in §II-B. Once the request is

serialized, it is available to a replica by means of primitive

deliver(op).
When a replica delivers a request op (line 10), it checks

whether the current serializers of op match the serializers used

to order op. This is necessary because GeoPaxos+ periodically

recomputes a “new configuration” based on the workload

(described in §IV-C). If the configuration has changed between

the serialization of a request and its delivery, a replica may

need to resubmit the request. In particular, the replica resub-

mits the request if the new set of serializers for op include a

serializer that was not used to serialize op. A new configuration

request is ordered with respect to all requests it shares objects

with; thus, replicas observe a consistent mapping of objects to

serializers.

C. Distributed B+Tree management

GeoPaxos+ keeps track of the objects read and written as

part of the execution of a request. These are counter fields

reads and writes of a tree node (in Algorithm 1, these

counters are updated at lines 43 and 45, respectively). Note that

the read and write counters are per replica, in particular, the

replica that received client’s request op (stored in op.from).

As clients issue requests, the workload information for

tree nodes builds up. To recompute a configuration, using

the mechanism presented in §III, a replica invokes the DOP

function, as depicted in Algorithm 1, line 58. Since the

operation impacts many tree nodes, the destination comprises

Algorithm 1: Replica r implements distributed B+Tree T .

1: Initialization:
2: T ← ∅ {local B+Tree replica}

3: when receive(OP, k, v) from a client
4: op.type← OP
5: op.k ← k
6: op.v ← v
7: op.from← r
8: op.dst← psite(op)
9: serialize(op)

10: when deliver(op) {delivers ordered operation op}

11: if psite(op) ⊆ op.dst then
12: result← execute(op)
13: send result to client
14: else
15: op.dst← psite(op)
16: serialize(op)

17: function psite(op) {returns the serializers of request op}
18: if op.type = DOP then
19: dst← {g1, ..., gN}
20: else
21: dst← ∅
22: n←find(T , op.k)
23: switch op.type
24: case READ :
25: dst← g | g ∈ n.reps ∧ ∀h ∈ n.reps, δr,g ≤ δr,h
26: case GET-NEXT ∨ GET-PREV :
27: dst← g | g ∈ n.reps ∧ ∀h ∈ n.reps, δr,g ≤ δr,h
28: n← op.type(T , op.k,⊥)
29: dst← dst ∪ g | g ∈ n.reps ∧ ∀h ∈ n.reps, δr,g ≤ δr,h
30: case UPDATE :
31: dst← n.reps
32: case INSERT :
33: dst← dst ∪ n.reps
34: while n.parent 6= ∅ ∧ n.size+ 1 = T .order do
35: n← n.parent
36: dst← dst ∪ n.reps
37: return dst

38: function execute(op) {executes the delivered operation}
39: if op.type 6= DOP then
40: n←find(T , op.k)
41: while n.parent do {update R/W counter for replica op.from}
42: if op.type ∈ {READ, GET-NEXT, GET-PREV} then
43: n.reads[op.from]← n.reads[op.from] + 1
44: else
45: n.writes[op.from]← n.writes[op.from] + 1
46: n← n.parent
47: execute op.type(op.k, op.v) using tree T
48: else
49: foreach n ∈ T | n.changed = true {if node n changed}
50: replicas← ∅

51: cost =∞
52: foreach i ∈ Pn,i {for each configuration}
53: if cost < Cn,i then {updates mininum cost}
54: cost← Cn,i

55: replicas← i
56: n.reps← replicas {minimum cost configuration}
57: n.changed← false {resets changed flag}

58: function dop() {recomputes configuration}

59: op.type← DOP

60: op.dst← psite(op)
61: serialize(op)

all replicas. Once delivered, replicas apply the calculations

explained in §III-B to each node n that has changed since the

last time the computation happened. After calculating the cost

for each configuration Pn,i according to (1), replica r updates

node n’s serializers to Pn,best as defined in (2).

V. IMPLEMENTATION

We extended GeoPaxos with the techniques described in

the paper. The C++ source code is publicly available.1 In

GeoPaxos+, each replica is a multi-threaded process with a

full copy of the B+Tree, with the additional fields described in

Table II and initially empty. A set of threads receives requests

from clients and enqueues such requests for further processing.

Additional threads the serializers for each request op in this

queue invoking the function psite(op) before propagating

the operation to the corresponding groups. A learner for each

Paxos instance is executed as an independent thread and only

synchronizes with other learners when a request multiple

serializers. Multi-threaded clients connect to the closest replica

and submit requests in a closed-loop, i.e., a new request is only

submitted after the reply for the current one.

VI. PERFORMANCE EVALUATION

In this section, we explain our setup (§VI-A), experi-

mentally assess GeoPaxos+ in a LAN and WAN (§VI-B

and §VI-C), evaluate the performance of our optimization

model (§VI-D), and conclude with a summary of our findings

(§VI-E).

A. Evaluation rationale

We implemented requests to retrieve a key-value entry from

the tree and to insert 100-byte objects in the tree; hereafter,

we refer to them as read and write operations, respectively.

We evaluate GeoPaxos+ under three client access patterns:

(i) locality workload represents a situation where co-located

clients tend to access more often the same subset of the

system objects, which is common in typical geographically

distributed applications (e.g., social networks); (ii) uniform

workload represents a situation without locality: each client

has the same probability of accessing any key in the system;

(iii) skewed workload corresponds to a situation with moderate

locality, where some objects have higher probability of being

accessed by every client in the system, corresponding to a

Zipfian distribution. We also vary the percentage of reads in

the workload.

We conducted experiments in a LAN and a WAN. The

LAN provides a controlled environment, where experiments

can run in isolation; the WAN represents a setting in which

we expect our solution to be used in practice. In a LAN,

we use a cluster of nodes, each node with an eight-core

Intel Xeon L5420 processor working at 2.5GHz, 8GB of

memory, sata SSDs and 1Gbps ethernet cards. The WAN

deployment runs on Amazon EC2, where each node is a

m3.large instance with 2vCPUs and 7.5GB of memory. We

deploy replicas along 3 Amazon geographic regions (i.e.,

1https://github.com/paulo-coelho/gbtree

Central Europe, California and Virginia). Paxos acceptors for

the same replica (i.e., used to replicate serialization logic, see

§II) reside in different regions to tolerate the catastrophic event

of a complete geographic region failure. We report results for

our B+Tree protocol with a random assignment of serializers

(“DBTb” in the graphs) and after the computation of our

optimization model (“DBTa”).

We compare our replicated B+Tree to implementations of a

B+Tree using Multi-Paxos [18] and EPaxos [3]. Multi-Paxos

stands as a baseline for performance reference while EPaxos

poses as a more realistic competitor since, similarly to our pro-

tocol, it allows clients to connect to the closest replica, being

more judicious about round-trips in geographically distributed

environments.

B. Performance in a LAN

The first experiment evaluates GeoPaxos+ under three dif-

ferent access patterns and two read percentages. We consider

settings with 3 and 5 replicas. In Figure 5(a) we can observe

that with locality (top left graph) the read percentage has low

impact on performance; GeoPaxos+ outperforms Multi-Paxos

and EPaxos in each workload, and scales with the number of

replicas, reaching over 140 thousand requests per second in

the best case against around 60 thousand requests per second

for EPaxos. These results reinforce our initial expectations that

with locality, few objects tend to be assigned to more than one

serializer, resulting in both read and write requests involving

a single serializer. With skewed and uniform workloads, the

read percentage matters since the greater the number of write

operations, the higher the chances of multi-serializer requests.

GeoPaxos+ outperforms the competitors with more than 90%

of reads executing up to 150 thousand requests each second.

Figure 5(b) assesses GeoPaxos+ with up to 9 replicas. With

read-only operations, GeoPaxos+ scales with the number of

replicas despite the different workloads. In particular, for the

uniform workload, the worse results for 7 and 9 replicas are

due to reaching our cluster maximum capacity before we could

reach peak performance (i.e., we ran out of resources for

clients). As we add write operations, the dependency on the

workload becomes more evident. With locality, the system

throughput behaves similarly independent of the operation

type. With skewed and uniform workload, the additional

replicas do not bring performance improvements.

C. Performance in a WAN

The following experiments assess GeoPaxos+ and EPaxos in

a disaster-tolerant deployment within three Amazon regions,

two in the US and one in Europe. The latencies vary from

approximately 70 msec for the two regions in the US, and 90

and 150 msec from US regions to Europe.

Figure 6 exhibits the latency observed by clients in Europe

for each workload, with 95% and 100% read operations in 3

different situations: (i) low contention represents a scenario

with 54 clients equally distributed among all the regions;

(ii) medium contention presents 5400 clients; and (iii) high

contention, 16200 clients. With low contention in locality and

https://github.com/paulo-coelho/gbtree

 0

 30

 60

 90

 120

 150

 180

3G 5G 3G 5G

Locality
workload

T
h

ro
u

g
h

p
u

t
[x

1
0

0
0

 m
s
g

s
/s

e
c
]

MP
EP

DBTb
DBTa

100% read90% read

 0

 30

 60

 90

 120

 150

 180

3G 5G 3G 5G

Skewed workload

100% read90% read

 0

 30

 60

 90

 120

 150

 180

3G 5G 3G 5G

Uniform workload

100% read90% read

(a) Varying workload and read percentage with 3 and 5 replicas.

 0

 40

 80

 120

 160

 200

 240

 280

 320

3G 5G 7G 9G 3G 5G 7G 9G

Locality workload

T
h

ro
u

g
h

p
u

t
[x

1
0

0
0

 m
s
g

s
/s

e
c
] DBTb

DBTa

100% read90% read

 0

 40

 80

 120

 160

 200

 240

 280

 320

3G 5G 7G 9G 3G 5G 7G 9G

Skewed workload

100% read90% read

 0

 40

 80

 120

 160

 200

 240

 280

 320

3G 5G 7G 9G 3G 5G 7G 9G

Uniform workload

100% read90% read

(b) Effect of dynamic access on throughput with increasing number of replicas.

Fig. 5: Peak throughput in a LAN (“DBTb”: random assignment of serializers, “DBTa”: after optimization model).

uniform workloads, the latency for each protocol is similar

to the expected optimum: one round-trip to the closest region

(around 90 msec). With a skewed workload, EPaxos has a

greater latency since the chance of conflicts increase due to

most clients accessing the same subset of keys.

With medium and high contention, EPaxos latencies soar,

reaching above 2 seconds in some cases, since more clients

means more conflicts and additional round-trips (slow path).

Besides, we observed that EPaxos has higher CPU usage as the

conflict graph grows, also contributing to such higher latencies.

Although GeoPaxos+’s latency also increases with the number

of clients, it is not as noticeable as EPaxos’s.

Figure 7 shows that GeoPaxos+’s throughput ranges from

around 40000 operations per second in the worst case (95%

reads and skewed workload) to over 85000 with read-only

operations and locality workload. EPaxos presents throughput

below 3000 operations per second for skewed and uniform

workloads, and a best-case of around 20000 read-only opera-

tions per second with the locality workload.

D. Performance of optimizer

The last set of experiments evaluate the performance of

the optimizer. The experiments measure the average time to

execute the optimization algorithm for a B+Tree with one

million keys considering four different strategies: (i) brute

force: the algorithm is executed for each tree node; (ii) hot

replicas: the algorithm is only executed when the number

of accesses from clients in a particular replica reaches a

threshold of the number of accesses for the most accessed

replica (10% in our case); (iii) caching: we save results from

previous calculations to be used by similar workloads; and

finally, (iv) hot replicas + caching: we combine strategies (ii)

and (iii). The tree is initially half populated, then we compute

the serializers, and reset the read-write counters. Then, clients

execute with a locality workload and write ratio of 50%.

Figure 8(a) shows the time for each strategy for 3, 4

and 8 replicas. The fastest technique is represented by the

combination of hot replicas and caching strategies. In par-

ticular, such a combination can reduce optimization time by

up to 50 times when compared to the brute force strategy.

The last experiment, depicted in Figure 8(b), exhibits the

combined technique with respect to using only the caching

(LRU) strategy. Even after a few iterations, the time for “Hot

replicas + LRU” is around half the time of LRU alone.

E. Summary

The results from the LAN deployment allow us to draw the

following conclusions:

• GeoPaxos+ outperforms both MultiPaxos and EPaxos.

GeoPaxos+’s advantage stems from its efficient ordering

mechanism and the multithreaded execution of requests

that the ordering mechanism enables.

• Differently from MultiPaxos and EPaxos, GeoPaxos+

scales performance (throughput) with an increasing num-

ber of replicas.

Regarding the WAN deployment, our results show that:

 10

 100

 200

 500

 1000

 2000

 10000

95% 100% 95% 100% 95% 100%

Locality workload

L
a

te
n

c
y
 [
m

s
e

c
]

EPaxos
DBTb
DBTa

HighMediumLow

 10

 100

 200

 500

 1000

 2000

 10000

95% 100% 95% 100% 95% 100%

Skewed workload

HighMediumLow

 10

 100

 200

 500

 1000

 2000

 10000

95% 100% 95% 100% 95% 100%

Uniform workload

HighMediumLow

Fig. 6: Mean latency in a WAN (whiskers represent 95th percentile).

 0

 15000

 30000

 45000

 60000

 75000

 90000

95% 100% 95% 100% 95% 100%

T
h
ro

u
g

h
p
u

t
[m

s
g
s
/s

e
c
]

EPaxos
DBTb
DBTa

UniformSkewedLocality

Fig. 7: Peak throughput in a WAN.

• GeoPaxos+ outperforms EPaxos in terms of latency for

low, medium, and high contention with every workload.

• Taking clients’ access patterns into consideration im-

proves GeoPaxos+ throughput more than twofold in read-

only scenarios, no matter the workload.

• GeoPaxos+’s throughput is 3 to 20 times greater than

EPaxos’s, because of our dynamic object placement and

the processing cost of EPaxos conflict graph as contention

builds up.

Concerning the optimizations in the dynamic object replace-

ment algorithm, the results show their effectiveness with a re-

duction in execution time of almost two orders of magnitude.

VII. RELATED WORK

If on the one hand state machine replication is widely used

to increase service availability (e.g., [19], [20], [1]), on the

other hand it is often criticized for its overhead. From single-

leader algorithms (e.g., Paxos [21]) to leaderless algorithms

(e.g., [3], [22]) and variations that take the semantics of

operations into account (e.g., [23], [24]), all efforts have been

directed at finding faster ways to order operations. None of

the solutions, however, can avoid the latency imposed by a

geographically distributed majority quorum of replicas [25].

Furthermore, existing solutions experience reduced perfor-

mance as the number of replicas increases.

GeoPaxos+ improves the performance of state machine

replication by (a) exploiting the fact that operations do not

need a total order; (b) distinguishing ordering from execution;

 0.05

 0.1

 1

 10

 20

 40

 100

3 groups 4 groups 8 groups

T
im

e
 [
s
e
c
]

Brute Force
Hot Group

LRU-1x
LRU-10

LRU + Hot Group

(a) Time to define object access. LRU-1x and LRU-100x represent
executions with the caching technique after 1 and 100 runs.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

T
im

e
 [
s
e
c
]

Number of iterations

LRU
LRU + Hot Group

(b) Time for LRU vs. “LRU + Hot replicas”.

Fig. 8: Dynamic object access duration for different techniques

with 1 million objects.

(c) judiciously choosing the serializer (i.e., Paxos group) that

will order operations; (d) dynamically analyzing and recom-

puting serializers to account for locality; and (e) differentiating

read and write operations to increase parallelism. Partially

ordering operations with the goal of improving performance

has been previously implemented by EPaxos, Alvin, Caesar

and M2Paxos.

EPaxos [3] improved on traditional Paxos [21] by reducing

the overload on the coordinator and allowing any replica

to order operations. As long as replicas observe common

dependencies set, operations can be ordered in one round-trip

fast decision).

Alvin [22] is a system for managing concurrent transac-

tions that relies on Partial Order Broadcast (POB) to order

conflicting transactions. While POB is similar to EPaxos, its

main contribution lies in the substitution of EPaxos complex

dependency graph analysis by a set of cycle-free dependencies

based on timestamps.

Caesar [26] extends POB and reduces the number of

scenarios that would impose one additional round-trip (slow

decisions). Differently from Alvin and EPaxos, where nodes

must agree on operation dependency sets, Caesar seeks agree-

ment on a common final timestamp for each operation. This

strategy allows fast decisions even in specific cases where

dependencies do not match, resulting in better performance as

contention increases. Depending on the workload, however, the

rate of slow decisions in EPaxos, Alvin and Caesar increases,

a price to be paid by geographically distributed applications.

M2Paxos [4] is another implementation of Generalized

Consensus [23] that does not establish operation dependencies

based on conflicts, but, similar to GeoPaxos+, maps replicas

to accessed objects. M2Paxos guarantees that operations that

access the same objects are ordered by the same replica. It

needs at least two communications steps for local operations

and one additional step for remote operations. M2Paxos’s

mechanism to handle operations that access objects mapped

to multiple replicas requires remapping the involved objects to

a single replica. Replicas executing different operations may

dispute the same objects indefinitely.

Mencius [27] extends traditional Multi-Paxos with a multi-

leader solution that partitions the sequence of consensus

instances among geographically distributed replicas to avoid

the additional round-trip for clients far from the single-leader.

Besides, it provides a mechanism to deal with unbalanced load,

allowing one replica to propose a SKIP message when there

is no operation to be executed in that instance. Mencius also

allows out-of-order execution of commutative operations.

Several solutions that partition (i.e., shard) the data have

appeared in the literature. Systems in this category are some-

times referred to as partially replicated systems, as opposed

to designs in which each replica has a full copy of the

service state, like in GeoPaxos+. Spanner [1] is a partitioned

distributed database for WANs. It uses a combination of two-

phase commit and a TrueTime API to achieve consistent

multi-partition transactions. TrueTime uses hardware clocks

to derive bounds on clock uncertainty, and is used to assign

globally valid timestamps and for consistent reads across

partitions. It requires elaborate synchronization mechanisms

to keep the clock skew among nodes within an acceptable

limit. Furthermore, Spanner supports a more restrictive type of

operations (read-write objects) than state machine replication

(read-modify-write objects).

Spinnaker [28] is similar to the approach presented here. It

also uses several instances of Multi-Paxos to achieve scala-

bility. However, Spinnaker does not support operations across

multiple Multi-Paxos instances.

Differently from existing sharded systems, where replicas

contain only part of the service state, in GeoPaxos+ each

replica contains the entire state. In doing this, we can improve

performance without sacrificing the simplicity of the state

machine replication approach. Moreover, there is no need to

reshard and migrate data across server nodes for load balance

or in response to failures.

Regarding distributed B+Trees, HyperDex [29] and

Yesquel [30] are the most related to our proposal. Hyper-

Dex implements a partitioned key-value store which allows

efficient search functions and secondary indexes based on a

novel multi-dimensional hash function. Yesquel implements

a distributed B-tree and proposes several optimizations to

use the tree for a distributed SQL database. The architec-

ture and concurrency control used in Yesquel are similar

to Sinfonia [31] mini-transactions. Two other designs of a

distributed B+Tree were proposed in Minuet [32], on top of

Sinfonia [31], and STI-BT [33]. Both exploit multi-versioning

to enhance concurrency between transactions. While Minuet

handles multi-versioning externally to Sinfonia, relying on

a centralized snapshot identifier that increments whenever a

read-only transaction requires a fresh snapshot, STI-BT uses

a scalable distributed multi-versioning scheme to improve

the performance of read-only transactions. Besides, Minuet

distributes the tree nodes randomly across the Sinfonia cluster.

STI-BT exploits the structure of the tree to co-locate tree nodes

and maximize data locality. Since these solutions partition the

B+Tree state, they also require resharding with data migration

to adapt to locality changes. Besides, Yesquel largely relies

on data stored within the client for performance. Our B+Tree

built on GeoPaxos+ is transparent to clients.

The work in [34] describes a workload-driven approach that

optimizes the latency of a sharded database by leveraging

leader placement, the roles of different servers, and replica

location. GeoPaxos+ is more general, both with respect to the

metrics to be optimized and the particular application.

Droopy and Dripple [35] introduce an approach similar to

GeoPaxos+ with a dynamic set of serializers and a mechanism

to cope with workload changes. Like Droopy, our solution

adapts to workload changes and can redefine the set of serializ-

ers to reduce latency. Unlike Droopy, we monitor the access to

objects to dynamically change the serializers. Unlike Dripple,

we do not partition the state, but the ordering. Besides, we

do not require either grouping non-commutative requests in

advance or additional computation to break cycles and define

the final execution order.

VIII. FINAL REMARKS

Online services with clients distributed all over the globe

are becoming common, imposing tough requirements on

replicated protocols. Coordinating replicas geographically dis-

tributed, while keeping performance at acceptable levels is

challenging. The paper proposes a practical geographical state

machine replication protocol and illustrates its use with a

B+Tree. Although the contribution focuses on a B+Tree, the

discussion is general enough to be used with other complex

data structures. Most important, we describe the challenges

that one must overcome to design general services in the

context of state machine replication.

REFERENCES

[1] J. D. J. C. Corbett and M. E. et al, “Spanner: Google’s globally
distributed database,” in OSDI, 2012.

[2] N. Schiper, P. Sutra, and F. Pedone, “P-Store: Genuine partial replication
in wide area networks,” in SRDS, 2010.

[3] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in SOSP, 2013.

[4] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran, “Making
fast consensus generally faster,” in DSN, 2016.

[5] T. Kraska, G. Pang, M. J. Franklin, and S. Madden, “MDCC: Multi-Data
Center Consistency,” CoRR, 2012.

[6] P. Coelho and F. Pedone, “Geographic state machine replication,” in
SRDS, 2018.

[7] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in SOSP, 2011.

[8] A. Brodersen, S. Scellato, and M. Wattenhofer, “Youtube around the
world: Geographic popularity of videos,” in WWW, 2012.

[9] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” CACM, vol. 21, pp. 558–565, July 1978.

[10] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[11] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996.

[12] L. Lamport, “The part-time parliament,” ACM Transactions on Computer

Systems, vol. 16, no. 2, pp. 133–169, 1998.

[13] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty processor,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[15] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” Trans. on Programming Languages and Systems,
vol. 12, pp. 463–492, July 1990.

[16] P. Coelho and F. Pedone, “Geographic state machine replication,” tech.
rep., USI, 2017.

[17] D. K. Gifford, “Weighted voting for replicated data,” in SOSP, 1979.

[18] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in PODC, 2007.

[19] B. e. a. Calder, “Windows azure storage: A highly available cloud storage
service with strong consistency,” in SOSP, 2011.

[20] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in USENIX ATC, 2010.

[21] L. Lamport, “The part-time parliament,” Trans. on Computer Systems,
vol. 16, no. 2, pp. 133–169, 1998.

[22] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, “Be general and
don’t give up consistency in geo-replicated transactional systems,” in
OPODIS, 2014.

[23] L. Lamport, “Generalized consensus and paxos,” Tech. Rep. MSR-TR-
2005-33, Microsoft Research (MSR), Mar. 2005.

[24] F. Pedone and A. Schiper, “Generic broadcast,” in DISC, 1999.

[25] L. Lamport, “Lower bounds for asynchronous consensus,” Distributed

Computing, vol. 19, no. 2, pp. 104–125, 2006.

[26] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran, “Speeding
up consensus by chasing fast decisions,” in DSN, 2017.

[27] Y. Mao, F. Junqueira, and K. Marzullo, “Mencius: Building efficient
replicated state machine for WANs,” in OSDI, 2008.

[28] J. Rao, E. Shekita, and S. Tata, “Using Paxos to build a scalable,
consistent, and highly available datastore,” in VLDB, 2011.

[29] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: A distributed,
searchable key-value store,” in SIGCOMM, 2012.

[30] M. K. Aguilera, J. B. Leners, and M. Walfish, “Yesquel: scalable sql
storage for web applications,” in SOSP, 2015.

[31] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: a new paradigm for building scalable distributed systems,” in
SOSP, 2007.

[32] B. Sowell, W. Golab, and M. A. Shah, “Minuet: A scalable distributed
multiversion b-tree,” in VLDB, 2012.

[33] N. Diegues and P. Romano, “Sti-bt: A scalable transactional index,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 8,
pp. 2408–2421, 2015.

[34] A. Sharov, A. Shraer, A. Merchant, and M. Stokely, “Take me to your
leader! online optimization of distributed storage configurations,” in
VLDB, 2015.

[35] S. Liu and M. Vukolić, “Leader set selection for low-latency geo-
replicated state machine,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 7, pp. 1933–1946, 2016.

