Gossip Consensus

Daniel Cason
Universita della Svizzera italiana (USI)
Lugano, Switzerland

Zarko Milosevic
Informal Systems
Toronto, Canada

Abstract

Gossip-based consensus protocols have been recently proposed
to confront the challenges faced by state machine replication in
large geographically distributed systems. It is unclear, however, to
which extent consensus and gossip communication fit together. On
the one hand, gossip communication has been shown to scale to
large settings and efficiently handle participant failures and mes-
sage losses. On the other hand, gossip may slow down consensus.
Moreover, gossip’s inherent redundancy may be unnecessary since
consensus naturally accounts for participant failures and message
losses. This paper investigates the suitability of gossip as a commu-
nication building block for consensus. We answer three questions:
How much overhead does classic gossip introduce in consensus?
Can we design consensus-friendly gossip protocols? Would more ef-
ficient gossip protocols still maintain the same reliability properties
of classic gossip?

CCS Concepts: « Computer systems organization — Reliabil-
ity; Availability; Redundancy.

Keywords: Distributed consensus, Fault tolerance, Gossip commu-
nication

ACM Reference Format:

Daniel Cason, Nenad Milosevic, Zarko Milosevic, and Fernando Pedone.
2021. Gossip Consensus. In 22nd International Middleware Conference (Mid-
dleware ’21), December 6—10, 2021, Vitual Event, Canada. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3464298.3493395

1 Introduction

Consensus is a fundamental abstraction, at the core of state ma-
chine replication [29, 45]. Although consensus and state machine
replication have been extensively studied under a variety of condi-
tions (e.g., synchrony assumptions, failure models, roles assigned to
processses), most studies assume that processes can communicate
directly with one another. More precisely, the network graph, where
vertices represent processes that execute consensus and edges rep-
resent the possibility that two processes can communicate directly,
is fully connected. A fully connected network graph is a reasonable
assumption in systems that run within the same administrative
domain (e.g., Google’s Spanner [14]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware "21, December 6—10, 2021, Vitual Event, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8534-3/21/12...$15.00
https://doi.org/10.1145/3464298.3493395

Nenad Milosevic
Universita della Svizzera italiana (USI)
Lugano, Switzerland

Fernando Pedone
Universita della Svizzera italiana (USI)
Lugano, Switzerland

A new breed of decentralized systems, however, notably block-
chain systems, is at odds with the assumption of a fully connected
network graph. In decentralized systems, no single entity owns the
infrastructure; instead, multiple entities from different administra-
tive domains collaborate. In such environments, it is unreasonable
to expect that each process of one domain can communicate directly
with all processes of another domain. For example, some processes
in a domain may hide behind a firewall, instead of connecting
directly to processes in other domains.

Reaching consensus in the absence of full connectivity is chal-
lenging [2]. Some blockchain consensus protocols face the partially
connected-network-graph challenge by relying on gossip commu-
nication [4, 10, 11, 46]. With gossip, processes communicate using
rounds of message exchanges. In each round, a process can send
messages to and receive messages from its neighbors (i.e., processes
it is connected to in the graph) [7, 15]. A process communicates in-
directly with processes it is not connected to, possibly after several
rounds of message exchanges. Since gossip provides high com-
munication reliability and some consensus algorithms can handle
message losses (e.g., Paxos [30]), one could naturally lay a con-
sensus protocol on top of a gossip communication protocol (see
Figure 1). This gossip-based consensus approach suggests that one
does not need to design a consensus protocol from scratch for a
partially connected network graph.

At the core of the gossip-based consensus approach lies a funda-
mental question, and the main driver of the research reported in
this paper: Do consensus protocols and gossip-based communication
indeed fit together? The answer is not obvious: On the one hand,
gossip provides consensus with highly reliable communication in a
partially connected network. On the other hand, gossip’s multiple
rounds of message exchanges may slow down consensus. Moreover,
gossip’s inherent message redundancy may be unnecessary since
consensus accounts for process failures and message loss.

This paper investigates gossip-based consensus from a systems
perspective. We consider a particular consensus protocol, Paxos [30],
and experimentally study its behavior when relying on gossip com-
munication. Our choice of Paxos is justified as follows: (a) Paxos
is sufficiently known in the distributed systems community and
needs no lengthy explanation; (b) while Paxos is not simple, it is
simpler than many other consensus protocols (e.g., [12, 32, 34, 41]);
(c) process interactions in Paxos include all communication pat-
terns of interest (i.e., one-to-one, one-to-many, many-to-one, and
many-to-many), which renders our study of general interest; and
(d) Paxos is a viable option for decentralized systems that tolerate
benign failures only (e.g., [4]).

We start by considering the impact of gossip communication
on the performance of consensus (i.e., throughput and latency).
Unsurprisingly, Paxos atop gossip performs poorly (in terms of

https://doi.org/10.1145/3464298.3493395
https://doi.org/10.1145/3464298.3493395

throughput and latency) when compared to a baseline Paxos de-
ployment where processes can communicate directly with the Paxos
coordinator. The adoption of gossip causes a latency degradation up
to 52% in our experiments, while the maximum achieved through-
put can be reduced by up to 74%, depending on the system size.
Although this comparison is not fair, as Paxos atop gossip can run
in a partially connected network, while baseline Paxos assumes a
fully connected network, it provides a reference.

Consensus

T
broadcast(m) *
deliver(m)
|

Semantic Gossip

senld(m) *
recelive(m)

Partially connected
network

Figure 1. Gossip-based consensus.

We then consider the design and implementation of a “consensus
friendly” gossip communication substrate. The idea is to reduce
the overhead of gossip by exploiting consensus semantics. We in-
troduce Semantic Gossip, which optimizes classic gossip with two
techniques, semantic filtering and semantic aggregation. Semantic fil-
tering allows the gossip layer to discard messages that have become
dispensable, according to the consensus logic. In the case of Paxos,
decision messages render voting messages irrelevant. Thus, once a
process starts propagating a decision message, it stops the propa-
gation of any voting messages that lead to the decision. Semantic
aggregation allows processes to group multiple messages into a sin-
gle one with equivalent meaning to consensus. In Paxos, multiple
voting messages can be grouped into a single multi-process voting
message. Notice that while Semantic Gossip uses knowledge about
Paxos, it does not require any changes in the Paxos implementation.

Semantic filtering and aggregation substantially reduce the num-
ber of messages exchanged by processes to reach consensus. When
both techniques are combined, the reduction can be up to 58%,
compared to messages exchanged with classic gossip. Moreover,
Semantic Gossip boosts the performance of Paxos when compared
to implementations based on classic gossip. The adoption of the two
semantic techniques improves the latency of gossip-based Paxos
by from 7% to 24%, while it is also able to sustain higher workloads
than the Paxos implementation based on classic gossip.

The performance improvements brought by Semantic Gossip
are welcome as long as they do not come at the expense of the
reliability that classic gossip provides. To consider this aspect, we
inject failures (i.e., message loss) in the execution of Paxos based on
both classic gossip and Semantic Gossip. We found that Semantic
Gossip-based Paxos retains the resilience of gossip, up to 20% of
injected message loss.

The remainder of the paper is organized as follows. Section 2
defines the system model and introduces background information
on gossip and Paxos. Section 3 proposes the design and implementa-
tion of Semantic Gossip. Section 4 describes the evaluation of Paxos

using point-to-point, classic gossip, and Semantic Gossip commu-
nication. Section 5 surveys related work and Section 6 concludes
the paper.

2 Background

In this section, we detail our distributed system assumptions, and
provide some basic background on gossip communication and the
adopted consensus algorithm (Paxos [30]).

2.1 System model

We consider a distributed system composed of a fixed set of pro-
cesses that communicate through message exchange. We assume,
however, that not every pair of processes can communicate directly
with each other. Processes that can communicate directly with each
other are connected by bi-directional communication channels. The
communication between processes that are not directly connected
to each other requires the cooperation of intermediate processes to
relay messages until they reach their destinations.

The system is partially synchronous [16]: processes and commu-
nication channels are asynchronous in general with synchronous
periods during which messages are processed and delivered within
a bounded but unknown delay. This is a requirement to circumvent
the impossibility of fault-tolerant consensus in pure asynchronous
systems [20]. We adopt the crash-recovery failure model. Processes
can fail by crashing, when they cease to participate in the distributed
algorithm without prior notice, and may later recover. Before crash-
ing, and after recovering, processes behave strictly according to the
distributed algorithm (i.e., we do not consider Byzantine behavior).
Communication channels are unreliable: messages can be dropped,
duplicated, reordered, or arbitrarily delayed, but we assume that
they cannot be corrupted.

Processes are distributed across data centers in several geo-
graphic regions worldwide. Processes within a region are connected
via local-area network links, with low latency; processes in differ-
ent regions communicate via wide-area network links, with higher
and more variable latencies. We assume that clients of the consen-
sus protocol know the region that is closest to themselves from
a latency perspective and interact with processes located in that
region.

2.2 Gossip communication

The gossip communication approach is derived from epidemic dis-
semination strategies used to propagate information in a distributed
system. Originally proposed for the dissemination of updates in
replicated databases [15], epidemic algorithms have proven to be
an efficient and resilient approach to implementing multicast and
broadcast primitives [7]. The operation of epidemic dissemination
consists of periodic message-exchange rounds, in which every pro-
cess randomly selects other processes with which to interact.
There are three general gossip dissemination strategies. In the
push strategy, every process that has updates (i.e., new messages)
to propagate sends them to the selected peers. In the pull strategy,
processes request updates to the selected peers, which transmit
the updates, if they have any, to the requesting processes. These
two strategies can be combined into a push-pull strategy, in which
processes in a round can both send updates to peers and receive
updates from them. The push, pull, and push-pull strategies differ
in terms of performance, the number of messages exchanged, and

the number of rounds to contact a given portion of the processes
with high probability. The best strategy typically depends on the
application behavior, the size and frequency of updates, and on
the methods used to control the dissemination [15]. In this work
we adopt the push strategy, however, our contributions could be
extended to other strategies.

An algorithm interacts with the gossip communication layer us-
ing a broadcast primitive that addresses a message to all processes.
It is a non-blocking primitive, as the dissemination is asynchro-
nous and may take several rounds. The deliver primitive returns
messages broadcast by processes. It is a blocking primitive return-
ing messages locally broadcast and messages received from other
processes. There are no guarantees that a message broadcast by a
non-faulty process is delivered by all non-faulty processes; due to
process or link failures, a message may never reach some destina-
tions. In addition, the random choice of peers to which messages are
sent may not provide full connectivity. However, a proper choice of
parameters provides very high reliability, specially when the push
dissemination strategy is adopted [7].

2.3 Paxos

Paxos [30] is a distributed consensus algorithm used to implement
state machine replication [45]. In short, Paxos allows a set of pro-
cesses, some of which can fail, to agree on a totally ordered se-
quence of values. This is achieved by running multiple independent
instances of consensus, identified by positive integers, where each
sequence decides on a single value. The output of the algorithm
consists of the values decided in subsequent instances of consensus,
following the total order established by instance identifiers, with
no gaps.

Paxos distinguishes among the roles that processes play in the
execution of the algorithm: proposers, acceptors, and learners. We
assume that each Paxos process plays all these roles. Thus, a process
proposes values, works to ensure that a single value is accepted in
each instance of consensus, and learns the decided values. Paxos
has been optimized in many ways (e.g., [6, 32, 37, 39, 41, 43]). In
this paper we adopt the classic version of the algorithm, described
in [30].

Each instance of consensus proceeds in rounds, identified by
positive integers. Each round is orchestrated by a process, the
coordinator. A coordinator can start the same round in multiple
instances of consensus. A round consists of two phases, Phase 1
and Phase 2. In each phase, the coordinator sends a message, either
a Phase la or Phase 2a message, to all processes (one-to-many
communication pattern) and waits for Phase 1b or Phase 2b reply
messages from a majority of them (many-to-one communication
pattern). Messages are tagged with the identifier of the instance
they belong to. A process replies to the coordinator of a round
provided that it has not replied to messages from higher-numbered
rounds in that instance of consensus. In Phase 1, the coordinator of
a round tries to find out if a value may have been chosen in lower-
numbered rounds. In Phase 2, the coordinator asks the processes to
accept a value, either learned from Phase 1b messages or any value
proposed by a client.

When a majority of processes accept a value in the Phase 2 of
a round, the value of that instance of consensus is decided. Paxos
ensures that no other values can be chosen in higher-numbered
rounds of that instance of consensus, as at least one process will
report the accepted value in Phase 1. When the coordinator learns,

from Phase 2b messages, that a value is decided, it informs all
processes using a Decision message (one-to-many communication
pattern). This communication step becomes redundant if Phase 2b
messages are received by all non-faulty processes, not only by the
coordinator.

Paxos is safe in the presence of concurrent coordinators, but
for the sake of progress a single process is expected to act as the
coordinator at a time. Once elected as the coordinator, a process
starts a round in multiple instances of consensus at once. In a
restricted set of instances processes may have accepted values,
forcing the coordinator to re-propose them in Phase 2. But for most
instances no process will report having accepted values in previous
rounds; in these cases, the coordinator is free to propose any value
in Phase 2. Thus, in regular (fail-free) operation, the decision of a
value only requires the execution of Phase 2 of a round [30].

3 Semantic Gossip

In this section, we motivate the need for gossip protocols optimized
for consensus, describe the design of a gossip protocol that takes
advantage of consensus semantics, and detail its implementation.

3.1 Motivation

Implementing consensus on top of gossip communication is straight-
forward. Essentially, the original communication layer, which as-
sumes a fully connected network graph and provides (one-to-one)
send and receive primitives, is replaced by a gossip communica-
tion layer, which provides (many-to-many) broadcast and deliver
primitives (see Figure 2).

In Paxos, Phase 1a and Phase 2a messages, sent by the coordina-
tor to all processes (one-to-many communication pattern) naturally
benefit from gossip communication. Instead of sending Phase 1a
and Phase 2a messages to all processes the coordinator is directly
connected to, it can broadcast the messages via gossip. Eventu-
ally, with reasonably high probability, the messages are delivered
to all Paxos participants and their propagation cease. Notice that
Paxos tolerates message loss, so probabilistic delivery guarantees
are sufficient.

Gossip is not well-suited for propagating Phase 1b messages,
from all processes to the coordinator (many-to-one communication
pattern), as these messages only concern the coordinator, but will
be delivered to all participants. Fortunately, Phase 1b messages are
rarely sent during regular, fail-free operation; thus, the overhead
of propagating them via gossip should not have relevant impact
on the overall performance. In the case of Phase 2b messages, the
fact that they will be delivered to all processes, not only to the
coordinator, can end up being positive. In fact, processes do not
need to wait for a Decision message from the coordinator if they
receive identical Phase 2b messages from a majority of processes.
As a result, the propagation of Phase 2b messages via gossip may
actually speed up decisions.

The mismatch between Paxos, and more generally a fault-tolerant
consensus protocol, and gossip communication stems from the fact
that Paxos was designed to tolerate process crashes and message
losses, while gossip protocols strive to provide probabilistic reliable
communication. Both consensus and gossip achieve their guar-
antees by means of communication redundancy. The result is an
unnecessarily high number of message exchanges, which penal-
izes performance. The degree of redundancy increases when using

gossip communication, as processes are likely to receive the same
message multiple times, from different peers.

The use of gossip as an underlying means of communication,
however, is beneficial for Paxos since gossip does not require direct
communication between every pair of processes. This feature natu-
rally extends to environments in which processes are connected
to subsets of processes only, and balances the communication load
among processes.

3.2 Design

In this section, we discuss simple techniques to address the mis-
match between a fault tolerant consensus protocol, using Paxos as
reference, and the underlying gossip communication substrate. The
goal is essentially to reduce the message redundancy at the gos-
sip layer, employing the knowledge about the message semantics
provided by the consensus protocol. The challenge is to achieve
this reduction in message redundancy without sacrificing modu-
larity (i.e., without modifying the original Paxos protocol) and the
original resilience guarantees offered by gossip.

Semantic filtering. The first technique provides to the consen-
sus protocol the ability to decide whether a message should be sent
to a peer. This means interfering with the operation of the gossip
layer, which by default forwards every message to all peers. The
consensus protocol can then restrain the propagation of messages
that are (potentially) no longer useful to a peer, and therefore to all
other processes the peer is connected to. The main goal is to save
network and processing resources that would be used to forward
messages that peers will probably disregard.

Semantic filtering is implemented through a set of rules to iden-
tify messages that, according to the consensus semantics, have be-
come obsolete or redundant. For instance, a message from a given
round of consensus typically renders any message from previous
(smaller) rounds obsolete. Or, for some round steps, acknowledge-
ments from a majority of processes may render further acknowl-
edgements redundant. The semantic filtering rules are evaluated
when a message is ready to be sent to a peer. If the message is
filtered out, because it is identified as either obsolete or redundant,
the gossip layer discards it; otherwise, it is sent as usual.

The evaluation of the semantic filtering rules can be seen as a
lightweight execution of the consensus protocol on behalf of a peer.
In fact, to identify messages that can be filtered out it is necessary
to store some information about messages that were previously
sent to that peer. The more comprehensive the rules are, the more
information is stored per peer, and the more costly is to evaluate
them. Thus, the choice of a set of semantic filtering rules should
balance the cost of evaluating them for every message forwarded,
with the benefits that an effective filtering can provide.

In the case of Paxos, the proposed semantic filtering rules affect
the propagation of Decision and Phase 2b messages. A Decision
message is broadcast by the coordinator when it receives Phase
2b messages from a given round and instance from a majority of
processes. A Decision message from a given instance thus renders
any Phase 2b message from that same instance obsolete. A (regular)
process can also learn the value decided in an instance of consen-
sus by receiving identical Phase 2b messages from a majority of
processes. From this point on, any further Phase 2b message from
the same instance becomes redundant. In both cases, Phase 2b mes-
sages are not forwarded to a peer when they refer to an instance

for which the peer is expected to already know the decision, from
the messages previously sent to it.

Semantic aggregation. The second technique provides the con-
sensus protocol with the possibility to replace a number of similar
or related messages, which will be sent to a peer, with a single mes-
sage comprising the information carried by the original messages.
This technique explores the scenario in which the gossip layer has
multiple pending messages to send to a peer, so that some of them
are likely, according with the consensus semantics, to be aggre-
gated. It is an opportunistic mechanism that aims to reduce the
number of messages exchanged by processes via gossip, especially
when they operate under moderate to high load.

Semantic aggregation is also implemented through a set of rules
that, from a list of pending messages: (i) identify those that are
prone to aggregation, and (ii) define how an aggregated message
can be built from the original messages. When messages prone
to aggregation are found, the first of them in the list of pending
messages is replaced by the aggregated message, built according
with the respective rule, while the remaining ones are removed
from the list. In other words, an aggregated message both replaces
and filters out the original messages that it aggregates. Messages
that are not prone to aggregation, or for which aggregation is not
deemed advantageous by the consensus protocol, are not affected
by this technique. They are kept in the list of pending messages,
and are forwarded to the peers as usual.

Semantic aggregation rules can be either reversible or not. When
a process receives from a peer a message aggregated using a re-
versible rule, it reconstructs the original messages and treats them
as regular messages. That is, messages that are received for the
first time are delivered to the consensus protocol and forwarded to
other peers—in this process, in particular, they can be semantically
aggregated again. When an aggregated message is built from a
non-reversible rule, it is treated as a new message broadcast by the
process that aggregated it. In this case, the consensus protocol must
be able to handle the semantically aggregated message.

Observe that, despite the similarities, semantic aggregation is
not the same as batching [21]. When implemented at network level,
batching essentially concatenates messages, treated as raw byte
arrays, to optimize the network usage. At application level, some
message types are batched until the batch size reaches a threshold or
a timeout expires. As a result, batching can have negative effect on
performance when the system is subject to low loads, as the sending
of messages is postponed. This does not happen with semantic
aggregation, which despite being ineffective under low loads, does
not delay the sending of any messages. Moreover, the technique is
more flexible than batching, as messages are not only concatenated,
but can be transformed, merged, in any arbitrary way defined
by semantic aggregation rules. So, while the size of a batch of
messages is proportional to the number of messages in the batch,
an aggregated vote message, for instance, has essentially the same
size regardless of the number of single vote messages it has replaced.

As for semantic filtering, the best candidates in Paxos for seman-
tic aggregation are Phase 2b messages. When there are multiple
identical Phase 2b messages pending to be sent to a process, they
can be easily replaced by a single message. For this, a single se-
mantic aggregation rule was adopted. It considers for aggregation
Phase 2b messages referring to the same instance and round of
consensus; so they only differ by their senders. The aggregated

message consists of any of the original Phase 2b messages plus a
field to store the multiple senders. As reconstructing the original
Phase 2b is straightforward, the aggregation rule is reversible and
no changes in the Paxos protocol were required.

3.3 Implementation

We implemented a gossip-based communication layer to intercon-
nect processes. At the system setup, each process opens connections
to a randomly selected set of k processes, where k is a system pa-
rameter. Connections are bi-directional, so that the set of peers of a
process includes both the k peers to which it opened connections,
and a number of peers from which it received connection requests.
In fact, the expected number of peers each process interacts with is
2k.

Consensus

Y
broadcast
queue

Duplication
check

Message
forwarding

—L dropped
b messages v
receive [~ send . send
queue queue 1 queue k
Receive Receive Send Send
routine T routine routine o routine
1 k 1 k
Network

Figure 2. Architecture of the gossip layer at a process.

Classic gossip. Figure 2 illustrates the architecture of the gossip
layer. A process interacts with the consensus protocol via two
queues. The broadcast queue is fed by locally broadcast messages,
and the delivery queue offers messages to the consensus protocol.
A process also maintains, for each peer it is connected to, a Send
and a Receive routine. A send queue is associated to each Send
routine; messages added to a send queue are eventually sent to
the corresponding peer. There is a single receive queue shared by
all Receive routines, to which messages received from all active
peers are added. A message added to the broadcast queue is locally
delivered and sent to all peers: it is added to the delivery queue and
to all active send queues. A message added to the receive queue is
delivered and forwarded to all peers but the peer the message came
from: it is added to the delivery queue and to all, but the message’s
origin, send queues. The selection of peers to which a message is
sent is done by the Message forwarding module from the gossip
main routine.

Messages are propagated using the push disseminating strategy.
This means that the same message can be received by a process sev-
eral times, from distinct peers. We control the flooding of messages
using a simple approach based on a cache of recently seen messages,

maintained by every process. A message is registered to the recently
seen cache before it is delivered to the consensus protocol and sent
to the process’ peers. If the same message is received within a short
period of time, so that the message’s identifier is still on the re-
cently seen cache, the message is dropped—i.e., it is not delivered
nor forwarded to the peers. This is the role of the Duplication check
module represented in Figure 2: it prevents, with some probability,
a message from being delivered and forwarded more than once.
There is no actual guarantee of a deliver-and-forward once behav-
ior, but the adoption of a reasonable recently seen cache size reduces
the probability of message duplication. It is worth noting that the
recently seen cache stores message unique identifiers, that can be
defined by the consensus protocol to prevent hash collisions, and
not full messages, so its size is constant and relatively small. The
same functionality could be obtained adopting other approaches,
such as a sliding Bloom filter [42].

Semantic extensions. The gossip layer offers two ways to con-
trol its behavior, the techniques presented in Section 3.2: semantic
filtering and semantic aggregation. The consensus protocol can
adopt one or both techniques by implementing interface methods
offered by the gossip layer.

Semantic filtering is provided by allowing the consensus protocol
to implement a validate method, which receives a message and a
destination peer, and returns a boolean:

Bool validate(Message, Peer)

The wvalidate method is invoked by a Send routine when it is
ready to send a message to the respective peer. If the method returns
false, the message is dropped, as the decision was to filter out the
message. Otherwise, the message is sent to the peer, the default
behavior when the method is not implemented. Implementations
of the validate method should be fast and non-blocking, as it is
likely to be invoked concurrently by multiple sending routines. The
implementation should keep some information about the state of
each peer, essentially a summary of relevant messages that were
previously processed and not filtered out, and thus sent to that peer.
The cost of storing such information versus the benefit in terms of
resource saving by filtering out messages that would be sent to a
peer should be considered.

Semantic aggregation is provided through the implementation
of a pair of methods, aggregate and disaggregate:

Message[] aggregate(Message[], Peer)
Message[] disaggregate(Message)

The aggregate method receives an array of messages and a desti-
nation peer, and returns an array of messages. It is invoked by a
Send routine when it has multiple pending messages to be sent to
the respective peer. Messages returned by the aggregate method,
both original and aggregated ones, are sent to the peer, in the order
in which they are returned. The disaggregate method receives an
aggregated message and returns either an array of reconstructed
messages, for reversible semantically aggregated messages, or the
same message received otherwise. It is invoked by the main gossip
routine of a process when a message marked as aggregated is re-
ceived from a peer. Messages returned by the method are processed
as regular messages, in the order in which they are returned: they
are checked against the recently seen cache and, if not duplicated,
delivered and forwarded to peers.

4 Experimental evaluation

In this section, we evaluate the performance of the Paxos consensus
protocol under different network assumptions.

4.1 Methodology

We carried out experiments with Paxos using three setups, which
differ by the implementation of the communication substrate, while
sharing the same Paxos implementation.

The first setup, Baseline, provides a reference for the performance
of a classic Paxos deployment (with three phases, as presented in
Section 2.3) in the experimental environment. In the Baseline setup,
the Paxos coordinator communicates directly with every other pro-
cess, which essentially assumes a fully connected network and vio-
lates the multi-administrative environment that we assume in the
paper. Nevertheless, comparing to the Baseline setup illustrates the
inherent difficulty of designing protocols for multi-administrative
environments: performance-wise and under normal conditions, the
Baseline setup provides a best case.

In the second setup, Gossip, processes can communicate directly
only with a small subset of other processes, chosen at random. Com-
munication takes place via gosssip, and messages are disseminated
through a randomly generated overlay network. In the third setup,
Semantic Gossip, processes communicate in the same way as in the
Gossip setup, but the gossip layer is augmented with the semantic
filtering and aggregation techniques described in Section 3.2.

The evaluation seeks to address three aspects. First, we compare
the performance of Paxos (i.e., throughput and latency) in the three
considered setups using different system sizes. As we will show,
Paxos with Semantic Gossip substantially outperforms Paxos with
gossip. We then consider how the two approaches compare with
respect to their reliability. Finally, we discuss the results in light of
different network topologies.

4.2 System setup

We implemented Paxos, the gossip communication layer, and the
Semantic Gossip extensions in Go. We rely on libp2p [1] to es-
tablish and maintain communication channels between pairs of
processes. Libp2p channels are build atop TCP connections, and
provide encryption, multiplexing, flow control, and network-level
batching. Although libp2p channels are reliable, our implemen-
tation may discard messages when queues connecting different
routines are full, as a way to prevent slow processes from blocking
the main transport routine. In addition, libp2p connections may be
dropped when receivers are much slower than senders; although
the dropped connections are reestablished, some messages may be
lost. Temporary disconnections between peers, however, do not
compromise the network connectivity.

The same Paxos implementation was used for all setups. In the
Baseline setup, the elected Paxos coordinator opens libp2p chan-
nels to all other processes, which during fail-free operation only
interact with the coordinator. In the Gossip and Semantic Gossip
setups, each process opens a libp2p channel to a random subset
of k processes, so that each process communicates directly with
logan other processes on average, where n is the system size. This
number of connections per process ensures, with high probability,
that the generated network overlay is connected [17]. To provide a
fair comparison of results, for each system size n, we enforce the
same network overlay in experiments with Gossip and Semantic

Gossip setups. In Section 4.6, we then consider multiple randomly
generated network overlays and argue that this choice does not
affect our conclusions.

We conducted the main experiments in a geographically dis-
tributed environment, with processes evenly spread among 13 AWS
regions: North Virginia, Canada, Northern California, Oregon, Lon-
don, Ireland, Frankfurt, Sdo Paulo, Tokyo, Mumbai, Sydney, Seoul,
and Singapore. We have placed the Paxos coordinator in North
Virginia in all experiments because it is the region that has the
lowest latency to and from all other regions. Table 1 lists the WAN
latencies between the coordinator’s region (North Virginia) and the
other twelve regions. Processes were hosted by t2.medium Amazon
EC2 instances, with 2 vCPUs and 4GB of RAM.

We conducted an additional set of experiments in a cluster, where
we emulated the wide-area latencies between the above mentioned
13 AWS zones. Latencies between cluster nodes were configured
using the Linux Traffic Control kernel module [25], that allows post-
poning the sending of messages to a given destination for a provided
delay. The emulated WAN provided an affordable approximation
of the AWS environment for experiments requiring hundreds of
executions. Those experiments we carried out in a cluster with two
groups of machines: (i) Dell PowerEdge 1435 with two Dual-Core
AMD Opteron 2GHz and 4GB of RAM, and (ii) HP SE1102 with
two Quad-Core Intel Xeon 2.5GHz and 8GB of RAM. By hosting
two processes in nodes of group (ii), the performance observed in
the emulated environment was comparable with the performance
observed in AWS.

Clients generate an experiment workload by proposing values to
Paxos. There is one client per region that submits values to a Paxos
process hosted in the same region as the client. The communication
between clients and Paxos processes is reliable. When a Paxos
process receives a value from a client, it forwards the value to the
coordinator; the coordinator then proposes the client value in Phase
2 of the next unused Paxos instance. Paxos processes inform all
connected clients about Paxos decisions. This happens because
clients are state machine replicas and, as so, should execute all
commands ordered by the consensus protocol. When a client is
notified of the decision of a value it has submitted, it computes the
end-to-end latency; throughput is computed as the rate of decisions
per time unit. Clients operate in an open-loop model: a client does
not wait for the decision of a submitted value before submitting
a new one. The rate at which clients submit values to Paxos is an
experiment parameter, and all clients submit values at the same
rate.

4.3 Overall performance

Figure 3 compares the performance of Paxos in the three setups:
Baseline, Gossip, and Semantic Gossip. Experiments were carried
out in AWS with distinct numbers of Paxos processes: n = 13, 53,
and 105. These system sizes were obtained by placing, respectively,
1, 4, and 8 processes in each of the 13 AWS regions. An additional
process, acting as the Paxos coordinator was placed in North Vir-
ginia region, so that to achieve n = 53 and 105. In all experiments,
the load is generated by 13 clients, one per region, that submit
values at a fixed rate. We ran experiments with distinct values
sizes, but we only present data for 1KB values, because results with
other values sizes presented similar trends. We subjected Paxos
to increasing client workloads (submission rates) until we noticed
that the protocol is saturated. We highlight the saturation points

T 1
500 s
1
2 / .
£ 400 é
> 1
o]
g 300 A_’__.,.“" ®
kS i ¢ L4
%200 ° 0 mr-0-0ee 8- -0 --- 0 --®{®
e 13 processes
< 100 Baseline - ®- |
Gossip
0 Sqmantic Qossip ——
0 500 1000 1500 2000 2500 3000 3500 4000
1
500 ;
>)
g 300
= —o—— ‘l
%200--_ ————— .—--—.—-"Q.
2 53 processes
< 100 Baseline - ®- |
Gossip
Semantic Gossip —e—
0 1 I
0 100 200 300 400 500 600
500 \
[%2]
E 400
) e
g 300 = .-
= *—o—0— g —*
S 200 @e-@----®-0° 7777 ©
o 105 processes
Z 100 Baseline - -
Gossip
0 ‘ Semantip Gossip ——
0 50 100 150 200 250 300 350

Throughput (msg/s)

Figure 3. Overall performance of Baseline, Gossip and Semantic
Gossip, with varying system sizes and 1KB values.

in the graphs by drawing a circle around them. More precisely, for
each setup and system size we highlight the point of the highest
ratio between average latency and throughput. From this point on,
increasing client workloads results in small throughput increments
at the cost of relevant latency increments. Saturation throughputs,
normalized for the system size, are summarized in Figure 4.

The first conclusion we can draw from Figure 3 is the relevant
overhead derived from the adoption of gossip as a communication
means in a partially connected network. In fact, the multiple com-
munication hops required to deliver messages to their destinations
via gossip results in a relevant increment in the average latencies
to order values, when compared to the Baseline setup, where we
artificially assume full connectivity. When considering the lowest
workload, the left-most points in the graphs of Figure 3, the average
latencies in the Gossip setup are 38%, 39%, and 25% higher than in
the Baseline setup for n = 13, 53, and 105. As we increase the work-
load, the overhead due to the adoption of gossip communication
grows, so that in the saturation points of the Gossip setup average
latencies are 51%, 52%, and 49% higher than in the Baseline setup,
for n = 13, 53, and 105. In addition, we observe that Paxos in the
Gossip setup saturates before, i.e., at lower workloads than in the

Baseline setup. As a result, throughputs at the saturation points in
the Gossip setup are, for n = 13, 53, and 105, respectively, 47%, 74%,
and 59% lower than in the Baseline setup.

An explanation for the performance degradation of Paxos in the
Gossip setup is the inherent redundancy of gossip communication.
We then compared the number of messages received by the Paxos
coordinator in Baseline and Gossip setups. In the Baseline setup the
coordinator is the only process that communicates directly with all
processes, thus the most overloaded process. In the Gossip setup,
in terms of communication, the coordinator is a process like any
other. With n = 105 processes, the number of messages received
by a regular process in the Gossip setup is around 8 times the
number of messages received by the coordinator in the Baseline
setup. In fact, the gossip layer discards around 87% (about 7/8) of
received messages because they are duplicated. For smaller system
sizes the redundancy factor observed in the Gossip setup is smaller
but still relevant. For n = 53, the redundancy factor is about 5
times and around 80% of received messages are duplicated. For
n = 13, the redundancy factor is about 2 times and around 49%
of received messages are duplicated. This difference is due to the
average number of processes to which each process is connected, of
the order of logan (log2105 =~ 6.7, l0og253 ~ 5.7, and loga13 ~ 3.7).

A second observation from Figure 3 is the performance improve-
ment obtained with the adoption of the semantic filtering and
aggregation techniques. For the smallest system size, n = 13, and
workloads below the saturation of Paxos, we observe a discrete but
consistent reduction in average latencies in the Semantic Gossip
setup when compared with the Gossip setup: from 6% to 7%. Then,
around the saturation workload of the Gossip setup, the behavior
in the Gossip and Semantic Gossip setups become quite similar,
although the saturation throughput in the Semantic Gossip setup
is 14% higher than in the Gossip setup. With n = 53, despite some
fluctuation in results, we note an overall performance improvement
derived from the adoption of the semantic techniques. At the Gos-
sip setup’s saturation workload, in particular, the average latency
is 11% lower in the Semantic Gossip setup, which also reaches a
saturation throughput 79% higher than in the Gossip setup. The
improvement is more noticeable for n = 105, where the correspond-
ing reduction in average latency reaches 24% while the increase in
the saturation throughput is of 2.4X with Semantic Gossip.

The advantage of Semantic Gossip can be explained when we
compare the number of messages exchanged by processes via gos-
sip. With n = 105, considering the saturation point of the Gossip,
the number of messages received by a process in the Semantic
Gossip setup is 58% lower than in the Gossip setup. For this reduc-
tion, of about 2.1x, contribute both the messages discarded through
semantic filtering and multiple messages replaced by a single mes-
sage through semantic aggregation. If we consider the messages
delivered to Paxos (when received for the first time and possibly
disaggregated), the number is 16% lower in the Semantic Gossip
setup, as a direct result of semantic filtering. The portion of mes-
sages discarded because they are duplicated is 82% in the Semantic
Gossip setup, a small reduction from the 87% observed in the Gossip
setup. The inherent redundancy of gossip communication is thus
preserved, just as Paxos still operates with a reasonably safe level
of redundancy.

Regions

‘Canada N.California Oregon London Ireland Frankfurt S.Paulo Tokyo Mumbai Sydney Seoul Singapore

Latency (ms) | 7 30 39 38 33

44 58 73 93 98 87 105

Table 1. WAN latencies between the coordinator’s region (North Virginia) and the other twelve regions.

3.0
Baseline ———
2.5 [: Gossip KX s =
Semantic Gossi
2.0 [@ prE B -
© e
1.5 e O fo K 0 B3 .
05 || Dot R .
P
0.0 KR

n=105

Figure 4. Normalized throughput at saturation point in the three
setups. Absolute throughput (messages per second) presented in
the bars.

100
90 ///
80 : /
;\'o\ 70 R
S 60 -
b Sy
£ R /4
o 30 '. //,
20 o Baseline (216 + 70ms) = = = = -]
10 S ‘/,/ _ Gossip (279 * 47ms) E
0 Vi S‘emant|c‘GOSS|p‘(265 + A}Sms) ‘

50 100 150 200 250 300 350 400 450 500
Latency (ms)

Figure 5. Latency distribution in all setups with n = 105. Legend
with average latency and standard deviation.

4.4 Latency distributions

Figure 5 presents the cumulative distribution function (CDF) of
latencies measured by clients in a given configuration for the three
analyzed setups. The data presented refers to experiments with n =
105 and the same client workload (104 submissions/s), the bigger
workload under which the protocol is not yet saturated in the
three setups. Due to space limitations, we don’t present data for
other system sizes, which under corresponding workloads present
a behavior similar to the one observed in Figure 5.

As observed in Figure 5, latency distributions show considerable
dispersion and present several noticeable steps. This occurs because
latencies are measured by 13 clients, one client per region, that
submit a value to a Paxos process located at the same region, then
wait until the corresponding decision is informed by the same
process. The client located at the same region as the coordinator
has the advantage of having its values delivered to the coordinator
with low delays. Latencies measured by this client, about 7.7% (1/13)
of all, are the lowest, noticeable in the bottom left part of the CDFs.
Values submitted by clients located in other regions are forwarded
to the coordinator, an operation subjected to WAN latencies. The
cost of this operation is more noticeable in curves for the Baseline
setup, as Paxos processes are, exceptionally, allowed to send values
directly to the coordinator. From the second region (Canada) to the
coordinator’s region (North Virginia) the latency is relatively small:

7ms. The second step in Baseline’s CDF is thus around 15.4% (2/13).
Then, up to the seventh region (Frankfurt), WAN latencies are larger
but still below 50ms. The step around 53.8% (7/13) represents this
interval, corresponding approximately to the median of the latency
distributions in the Baseline setup.

Latencies observed by a client are less affected by its geographic
location in the Gossip and Semantic Gossip setups than in Baseline
setup. As a result, the standard deviation of latencies is lower in
the Gossip and Semantic Gossip setups than in the Baseline setup.
The least latency variability in gossip-based setups is associated
to the adoption of a randomly generated overlay network. While
processes located in close geographical regions are not necessarily
connected, which increases latency between them, processes farther
from the coordinator are not so significantly penalized. In fact, from
the 70th-percentile, corresponding to latencies measured by the 4
clients more distant from the coordinator, the overhead imposed
by the adoption of gossip communication is much less noticeable
(less than 20ms or 6%).

When comparing the Gossip and Semantic Gossip setups, we
observe an almost constant distance between the CDFs. Except for
the latencies measured by clients connected to the Paxos coordi-
nator, from the 7th to the 97th percentiles latencies measured in
the Semantic Gossip setup are from 13ms to 20ms (5.0% to 5.6%)
lower than in the Gossip setup. The average latency in the Semantic
Gossip setup is 5.4% lower than in the Gossip setup. The improve-
ment in average latencies reaches 24% in the saturation point of the
Gossip setup, but we choose to compare the setups under a work-
load at which none of them is saturated. A less noticeable aspect in
Figure 5 is the tail of the latency distributions. The 99.9th latency
percentile in the Semantic Gossip setup is 140ms (28%) lower than
in the Gossip setup; which, in its turn, is 54ms lower than in the
Baseline setup. In addition to the lowest latency standard deviation,
this reaffirms the less variable latencies observed in the Semantic
Gossip setup.

4.5 Reliability

A major feature of gossip-based communication is its reliability,
which allows masking link and process failures. This capability
stems from the inherent redundancy of gossip communication, at-
tested by the data collected in our previous experiments. Since a
message is transported through multiple distinct paths in the over-
lay network, a communication disruption between two processes is
less likely to prevent the message from being received by all desti-
nations. In this section, we assess the degree of reliability provided
by the Gossip and Semantic Gossip setups.

We implemented a fault-injection mechanism that randomly
discards messages received by a process. In addition, the timeout-
trigged procedures that enable Paxos to react to message loss events
were disabled. As a result, Paxos processes may fail to learn the
decision for some consensus instances. The impact for the clients is
more relevant: a single unsuccessful instance of consensus renders
all subsequent instances in the same execution also unsuccessful, as
values are delivered in total order, with no gaps. As clients operate

Gossip Semantic Gossip

Q 30
2 104 2% 8% 1% 5% o5
:2 52 5% 15% 0.7% 4% 11% |[] 20
15
S 2 2% 8% 01% 3% 9% 10
a
g 13 05% 09% 6% 3% 6% 5
0
- 5 10 20 30 5 10 20 30

Injected message loss (%) Injected message loss (%)
Figure 6. Impact of message loss in the reliability of Paxos in the
Gossip and Semantic Gossip setups under injected message loss, as
the portion of failed instances of consensus.

in open-loop, they continue submitting values at a given rate even
after failing to order a value. We can then compute the number of
values that were submitted by clients but not ordered by Paxos, due
to the injected message loss.

Figure 6 summarizes the impact of message loss in the operation
of Paxos with n = 105 processes in the Gossip and Semantic Gossip
setups. We subjected Paxos to increasing workloads, the number of
values submitted per second by the 13 clients (y axis), and increasing
injected message loss rates (x axis). We ran 10 experiments for
each client workload and message loss rate, to minimize the effect
particularly favorable or unfavorable executions (as messages are
discarded at random). Due to the large number of executions, the
experiments were carried out in the emulated AWS environment.
Figure 6 depicts the aggregate portion of values submitted but not
ordered in each configuration. The white cells of the graph represent
configurations in which all submitted values were successfully
ordered in the 10 executions, despite the injected message loss (i.e.,
we omit the 0% values).

We can draw two major conclusions from Figure 6. First, the Gos-
sip setup is indeed resilient to message loss: with injected message
loss rates below 10% every submitted value is ordered. This means
that: (i) every submitted value was received by the coordinator;
(ii) at least a majority of processes received the Phase 2a message
from the coordinator and accepted the submitted value; and (iii) all
13 processes handling clients received both the Phase 2a message
and Phase 2b messages from a majority of processes. With 10% of
injected message loss, only 2.5% of the submitted values were not
ordered, due to the violation of any of the three conditions above
mentioned. Notice that potentially less than 2.5% of the consensus
instances have actually failed, but the client did not deliver any val-
ues ordered after the first unsuccessful instance of consensus. With
20% of message loss, up to 8% of instances of consensus are affected,
while when 30% are discarded up to 23% of the submitted values
are not ordered—in both cases under more than 100 submissions/s
workload. Second, the benefits on performance obtained with the
adoption of the semantic extensions do not come at the cost of
lower reliability. In fact, the Semantic Gossip setup has proved to
be, in the overall, as reliable as the Gossip setup under message
loss rates up to 20%. With 30% of message loss and under higher
workloads, however, the portion of values that Paxos failed to order
reaches 29% in the Semantic Gossip setup. This indicates that under
such (extreme) circumstances the semantic extensions may impact
the inherent reliability of gossip communication.

& 500 [I E
€ o} o
) : &

= i

% 300 E o e E
& 200 |- 105 processes H
S i Gossip © |{
2 100 P ‘ Median (rtt=170) =
< . ‘ 3 Median at AWS

0
100 150 200 250 300 350
Overlay network median RTT (ms)

Figure 7. Latency of Paxos in the Gossip setup under low workload
in 100 distinct overlay networks. The overlay network adopted in
the core experiments is highlighted.

4.6 Network overlays

The overlay network interconnecting the processes, and in par-
ticular the latencies between the coordinator and the remaining
processes, affects the performance of Paxos. In fact, since the de-
cision of a value requires a round-trip from the coordinator to a
majority of processes, the median of RTTs from the coordinator to
other processes ultimately dictates the latency of a Paxos instance.
Distinct random overlay networks are likely to present different
median of RTTs from the coordinator to other processes, and so
will have different baseline latencies for deciding values. This is the
reason for enforcing the same network overlay in all experiments
in the Gossip and Semantic Gossip setups with the same system
size, as mentioned in Section 4.2.

Figure 7 illustrates the method to select the overlay network
enforced in experiments with the same system size, n = 105 in the
case. We randomly generated 100 network overlays and submitted
them to a minimal client workload in the Gossip setup. For each
network overlay we compute the median of RTTs from the coor-
dinator to all processes (x axis), and associate it with the obtained
latency (y axis). Notice that multiple overlay networks can have
the same median RTT but sport distinct latencies, as the RTT is
not the only element to determine latencies. These two parameters
allows totally ordering the multiple overlay networks, from which
we select the median one. Due to the high number of executions
required, we carried out these experiments in the emulated AWS
environment. Once the overlay network is selected, we enforce it
in AWS and verify whether the performance in the real environ-
ment is similar. Figure 7 highlights the selected overlay network,
and presents the latency achieved in this overlay network in both
emulated and actual AWS EC2 environments.

The adoption of a single network overlay for all core experiments
with Gossip and Semantic Gossip setups raises another research
question: Are the performance improvements observed with the
adoption of the semantic techniques associated to the choice of a
particular overlay network? To answer this question we selected
a client workload at which the Gossip setup becomes saturated,
and adopted this workload to assess the Paxos performance in the
Gossip and Semantic Gossip setups in 100 distinct overlay networks.
Due to the high number of executions involved, experiments were
carried out in the emulated AWS environment.

Figure 8 presents results with n = 105 processes in the Gossip and
Semantic Gossip setups, adopting the same 100 overlay networks

& 500 [s
£ g
= 400 |- :
3 :
c F
3 300 |- .
e b
D200 [e —— R s
o F 105 processes]
g 100 [P ‘ Gossip —*— [
< 0 F : : Semantic Gossip —+— |
100 150 200 250 300 350

Overlay network median RTT (ms)

Figure 8. Latency of Paxos in the Gossip and Semantic Gossip se-
tups in 100 distinct overlay networks. The overlay network adopted
in the core experiments is highlighted.

illustrated in Figure 7. We aggregate data of overlay networks with
the same median RTT (x axis), presenting the average latency (y
axis) among multiple experiments, for the sake of readability; Fig-
ure 8 therefore present 44 data points for each setup. The workload
applied to Paxos in these experiments is enough to evidence the
performance improvements derived from the adoption of the se-
mantic techniques. In fact, for all network overlays considered in
Figure 8, Semantic Gossip improves latency from 11% to 39%, 23%
on average, when compared to the Gossip setup. As a reference,
the improvement observed in the network overlay adopted in the
core experiment is of 24% from the Semantic Gossip to the Gossip
setups.

4.7 Discussion

In this section, we recall the main conclusions from our study and
comment on the generality of the proposed approach.

The adoption of gossip communication has a negative impact
on the performance of Paxos. While this is an expected result, our
study quantifies this overhead: Gossip slows down the decision
of values, by increasing by up to 52% the average latencies when
compared with the Baseline setup.

Augmenting the gossip-based communication substrate with
semantic extensions improves the performance of Paxos in all con-
figurations evaluated: Semantic filtering and aggregation reduce
the number of messages exchanged by processes via gossip by up
to 58%. As a result, Semantic Gossip provides average latencies
from 7% to 24% lower than in the Gossip setup, while sustaining
up to 2.4x higher workloads and providing stable and less vari-
able latencies. Moreover, the proposed semantic extensions do not
compromise the reliability of gossip communication. For example,
without any timeout-trigged retransmission mechanisms, Paxos
was able to operate correctly despite up to 10% of message loss,
both in the Gossip and Semantic Gossip setups.

We now draw some general considerations from our study. These
considerations suggest that other agreement protocols could also
benefit from a gossip-based communication substrate with seman-
tic extensions. First, semantic filtering is motivated by the fact
that some messages in Paxos supersede previous messages. When-
ever this happens, superseded messages can be dropped without
negative consequences for the protocol. This is an aspect that is
not particular to Paxos, but present in other agreement protocols
(e.g., based on rounds). Second, semantic aggregation is inspired

by a common pattern in agreement protocols where a protocol
step depends on votes cast by processes in previous steps. Instead
of sending all votes to all processes, votes can be aggregated and
propagated as one message. In Byzantine-fault tolerant agreement
protocols, however, semantic aggregation requires special care to
avoid new attack vectors. In such cases, an aggregated message
should contain signed votes so that a process can ascertain that the
votes are valid (although more efficient schemes could also be used
to reduce the message size [5]). Finally, since gossip communica-
tion offers probabilistic delivery guarantees, agreement protocols
that can cope with message loss would be more appropriate to the
proposed techniques.

5 Related work

The work presented in this paper is at the intersection of two areas:
consensus protocols and gossip protocols. In this section, we briefly
review both areas.

5.1 Consensus

Paxos is probably the most known consensus protocol, widely
adopted in both academic and industrial setups [6, 13, 28, 32, 38, 39].
While optimal in terms of communication steps and number of
tolerated failures [33], Paxos is not easy to understand [9, 43] and
implement [13, 28]. Moreover, the distinguished role of the Paxos
coordinator makes it the protocol’s bottleneck [6, 32, 37], limiting
its performance.

Raft [43] is a protocol inspired by Paxos, designed to be easier to
understand and implement than Paxos. Raft focuses on replicating
a totally-ordered sequence of values, rather than solving single
instances of consensus. This lead to important improvements in
the leader-replacement mechanism, used in case of (suspicion of)
failures. In the absence of failures, however, the operation of Raft
and Paxos are identical [24]: the leader broadcasts values, that
must be acknowledged by a majority of processes. This makes the
semantic extensions proposed for the regular operation of Paxos
easily applicable to a gossip-based Raft deployment.

Several Paxos variants address the performance bottlenecks of
Paxos. In Mencius [37] processes take turns as the coordinators of
successive instances of consensus. While this strategy allows dis-
tributing the coordinator load among multiple processes, it does not
necessarily improve performance, as it will be ultimately dictated
by the slowest coordinator. In S-Paxos [6], the dissemination and
ordering of values are detached. Processes disseminate values with-
out the intervention of the coordinator, which proposes value ids in
Paxos instances, thus alleviating the coordinator’s load. S-Paxos is
a good candidate for a gossip-based implementation, where values
are inherently disseminated to all processes, while the proposed
semantic techniques can be adopted to improve the ordering layer.

Fast Paxos [32] enables any process to propose values directly to
all processes, thus bypassing the coordinator. This allows reaching
consensus in two communication steps (while Paxos requires three)
in instances in which conflicting proposals do not collide. Collisions
occur when values are received in distinct orders by processes,
which tends to be common with the latency variability of WAN
setups, and can be worsened when communication takes place
via gossip. Generalized consensus [31] allows processes to deliver
some values, considered independent by the application, in distinct

order: the total ordering is relaxed to a partial ordering. The best-
known implementation of this approach is EPaxos [41], which
allows values to be ordered in two communication steps when
no dependent values are concurrently proposed. However, when
dependent values are concurrently proposed, EPaxos requires a
complex collision-solving procedure, with a communication pattern
that is not efficiently implemented atop gossip.

5.2 Gossip

Gossip algorithms were first introduced by Demers et al. [15] to
manage replica consistency in the Xerox Clearinghouse Service [44].
The proposed algorithms were specific for the dissemination of
database updates, assumed to not be very frequent (a few per second,
at most). The adoption of gossip mechanisms as a building block for
the dissemination of arbitrary application messages derives from
Bimodal Multicast [7]. The algorithm consists of two phases. In
the first phase, messages are disseminated in a best-effort fashion
through multicast trees, using IP-multicast when available. In the
second phase, processes periodically send to a random-selected
peer a list of recently received messages, so that to retransmit, on
demand, messages that have not yet been received by the peer.
Since then, multiple approaches have been proposed to improve
throughput and robustness of gossip dissemination [8, 18, 23, 27,
35, 36, 40, 49].

Research in gossip-based broadcast algorithms has focused es-
sentially on two issues. First, the efficient dissemination of mes-
sages in large-scale systems through the adoption of overlay net-
works. Proposed approaches consider building pseudo-random net-
work overlays, by selecting links based on geographic proximity
and available bandwidth [27, 40], or topological and connectivity
properties [35, 36, 50]. A second research direction addresses the
cost/effectiveness of epidemic mechanisms which enable processes
to request messages that they failed to receive. The efficiency of
these anti-entropy [7, 15] or gossip repair [8, 18, 23, 49] mecha-
nisms is crucial to improve the reliability of gossip dissemination.
Efforts have also been made to develop gossip-based services to
support large-scale broadcast and multicast algorithms, such as
failure detection [48], group membership [22, 26], monitoring and
management systems [47].

Semantic Gossip differs from existing approaches because it is
designed to support distributed applications that, by themselves,
include layers of redundancy. This is the case of Paxos, which
includes both typical broadcast steps (to propose values) and the
exchange of control messages to ensure agreement, which is a
strong form of reliability.

Probabilistic Atomic Broadcast [19] is the algorithm whose be-
havior most resembles the operation of Paxos atop gossip. The
algorithm proceeds in rounds, in each round a process can broad-
cast a message and should vote for a message, either broadcast or
received during the round. Processes periodically exchange the list
of messages and associated votes with a random subset of peers.
When the number of votes reaches a threshold, all messages in the
list are delivered, and the process proceeds to the next round. As in
our Paxos deployment, processes send and forward values (broad-
cast messages) and votes to peers via gossip. Unlike Paxos, the
algorithm of [19] only provides probabilistic safety guarantees: two
processes may deliver messages in distinct orders, which is equiv-
alent in Paxos to deciding different values in the same consensus
instance.

Even though most work on gossip has considered benign failures
(e.g., process crashes), recent Byzantine fault tolerant consensus
protocols for large-scale environments (e.g., blockchain) have con-
sidered the use of gossip as underlying communication substrate.
Tendermint is a blockchain middleware based on a BFT consensus
algorithm [10] designed for gossip communication. Tendermint has
its own gossip layer implementation, that is application-specific and
tightly coupled with the consensus implementation. Casper [11],
the BFT consensus algorithm proposed to replace the proof-of-work
core of the Ethereum blockchain is also designed for a gossip-based
environment. HotStuff [51], the BFT consensus protocol at the core
of the Libra Blockchain [3], although not designed for gossip-based
communication, considers its adoption as the number of processes
participating on consensus (validator nodes) grows [46]. The key ar-
chitectural aspect that distinguishes these proposals from Semantic
Gossip is that gossip in blockchain systems is intertwined with con-
sensus logic. Semantic Gossip exploits application (i.e., consensus)
semantics without giving up modularity.

6 Conclusions

This paper investigates the deployment of consensus protocols
in partially connected networks that rely on gossip communica-
tion. We introduce Semantic Gossip, a gossip-based communication
substrate that takes consensus semantics into account to optimize
performance. Semantic Gossip relies on two techniques, semantic
filtering and semantic aggregation. With semantic filtering, the
gossip protocol can stop propagating messages that have become
redundant from the perspective of the consensus protocol. With
semantic aggregation, the gossip protocol can replace multiple
consensus protocol messages by a single message of equivalent
meaning. Both techniques reduce the number of messages that are
propagated by gossip without penalizing the resilience of gossip
communication. We have demonstrated the usefulness of Semantic
Gossip using Paxos, a well-known consensus protocol. We intend
to consider other forms of consensus in the future, in particular
consensus protocols that can tolerate Byzantine failures.

Acknowledgments

We wish to thank Patrick Eugster, Pascal Felber, and the anonymous
reviewers for the constructive feedback. This work was partially
supported by the Swiss National Science Foundation (project num-
ber 175717), the Interchain Foundation, and the Hasler Foundation.

References

[1] [n.d.]. Libp2p. https://libp2p.io. [Accessed 2020-05-17].

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 1999. Using the heart-
beat failure detector for quiescent reliable communication and consensus in
partitionable networks. Theoretical Computer Science 220, 1 (June 1999), 3-30.
https://doi.org/10.1016/s0304-3975(98)00235-7

Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu Baudet, et al. 2020. The
Libra Blockchain. White paper. The Libra Association. https://developers.libra.
org/docs/the-libra-blockchain-paper [Accessed 2020-06-01].

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukoli¢, Sharon Weed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference. Article 30, 15 pages. https:
//doi.org/10.1145/3190508.3190538

Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. 2002. Effi-
cient Algorithms for Pairing-Based Cryptosystems. In CRYPTO, Moti Yung (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 354-369.

—_
A

—_
=)

—
&

https://libp2p.io
https://doi.org/10.1016/s0304-3975(98)00235-7
https://developers.libra.org/docs/the-libra-blockchain-paper
https://developers.libra.org/docs/the-libra-blockchain-paper
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538

(6]

7

[

[9

=

[10]
[11]
[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. 2012. S-Paxos:
Offloading the Leader for High Throughput State Machine Replication. In 2012
IEEE 31st Symposium on Reliable Distributed Systems (SRDS’12). 111-120. https:
//doi.org/10.1109/srds.2012.66

Kenneth P. Birman, Mark Hayden, Ozny Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. 1999. Bimodal Multicast. ACM Transactions on Computer Systems
(TOCS) 17, 2 (May 1999), 41-88. https://doi.org/10.1145/312203.312207
Kenneth P. Birman, Robbert van Renesse, and Werner Vogels. 2001. Spinglass: se-
cure and scalable communication tools for mission-critical computing. In Proceed-
ings DARPA Information Survivability Conference and Exposition II (DISCEX’01,
Vol. 2). 85-99. https://doi.org/10.1109/discex.2001.932161

Romain Boichat, Partha Dutta, Svend Frelund, and Rachid Guerraoui. 2003. De-
constructing paxos. ACM SIGACT News 34, 1 (March 2003), 47-67. https:
//doi.org/10.1145/637437.637447

Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT
consensus. arXiv:1807.04938 [cs.DC] https://arxiv.org/abs/1807.04938

Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
(Oct. 2017). arXiv:1710.09437 [cs.CR] https://arxiv.org/abs/1710.09437

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the Third USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Margo 1. Seltzer and Paul J. Leach (Eds.). USENIX
Association, 173-186.

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made
live. In Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing (PODC’07). ACM Press, 398-407. https://doi.org/10.1145/
1281100.1281103

James C. Corbett, Jeffrey Dean, and Michael et al Epstein. 2012. Spanner: Google’s
globally distributed database. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12). USENIX Association,
USA, 251-264.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, and John Larson. 1987. Epi-
demic algorithms for replicated database maintenance. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing (PODC’87). ACM
Press, 1-12. https://doi.org/10.1145/41840.41841

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (April 1988),
288-323. https://doi.org/10.1145/42282.42283

P. Erdos and JW. Kennedy. 1987. k-Connectivity in random Graphs. European
Journal of Combinatorics 8, 3 (July 1987), 281-286. https://doi.org/10.1016/s0195-
6698(87)80032-x

Patrick Th Eugster, Rachid Guerraoui, Sidath B. Handurukande, Petr Kouznetsov,
and Anne-Marie Kermarrec. 2003. Lightweight probabilistic broadcast. ACM
Transactions on Computer Systems (TOCS) 21, 4 (Nov. 2003), 341-374. https:
//doi.org/10.1145/945506.945507

Pascal Felber and Fernando Pedone. [n. d.]. Probabilistic atomic broadcast. In
Proceeedings of 21st IEEE Symposium on Reliable Distributed Systems, 2002 (SRDS
’02). 170-179. https://doi.org/10.1109/reldis.2002.1180186

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (April 1985),
374-382. https://doi.org/10.1145/3149.214121

Roy Friedman and R. van Renesse. 1995. Packing Messages as a Tool for Boosting
the Performance of Total Ordering Protocols. Technical Report 94-1527. Cornell
University, Dept. of Computer Science. Submitted to IEEE Transactions on
Networking.

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. 2003. Peer-to-
peer membership management for gossip-based protocols. IEEE Trans. Comput.
52, 2 (Feb. 2003), 139-149. https://doi.org/10.1109/tc.2003.1176982

Indranil Gupta, Kenneth P. Birman, and Robbert van Renesse. 2002. Fighting
fire with fire: using randomized gossip to combat stochastic scalability limits.
Quality and Reliability Engineering International 18, 3 (May 2002), 165-184. https:
//doi.org/10.1002/qre.473

Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. 2015.
Raft Refloated. ACM SIGOPS Operating Systems Review 49, 1 (Jan. 2015), 12-21.
https://doi.org/10.1145/2723872.2723876

Bert Hubert, Gregory Maxwell, Martijn van Oosterhout, Remco van Mook, Paul B.
Schroeder, et al. 2002. Linux Advanced Routing & Traffic Control HOWTO.
https://lartc.org/lartc.html. [Accessed 2020-05-17].

Havard Johansen, André Allavena, and Robbert van Renesse. 2006. Fireflies:
scalable support for intrusion-tolerant network overlays. ACM SIGOPS Operating
Systems Review 40, 4 (April 2006), 3-13. https://doi.org/10.1145/1218063.1217937
David Kempe, Jon Kleinberg, and Alan Demers. 2004. Spatial gossip and resource
location protocols. Journal of the ACM (JACM) 51, 6 (Nov. 2004), 943-967. https:
//doi.org/10.1145/1039488.1039491

Jonathan Kirsch and Yair Amir. 2008. Paxos for System Builders. In Proceedings of
the 2nd Workshop on Large-Scale Distributed Systems and Middleware (LADIS 08).
ACM Press, Article 3, 6 pages. https://doi.org/10.1145/1529974.1529979

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558-565. https://doi.org/10.1145/
359545.359563

(30]

[31

[32

[33

(34]

[35

&
2

[37

[38

[39

=
=

[41

[42]

[43

S
it

[45

[46

[47

[50

[51

Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer
Systems 16, 2 (May 1998), 133-169. https://doi.org/10.1145/279227.279229
Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical Report MSR-
TR-2005-33. Microsoft Research. https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr-2005-33.pdf

Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19, 2 (June 2006), 79-103.
https://doi.org/10.1007/500446-006-0005-x

Leslie Lamport. 2006. Lower bounds for asynchronous consensus. Distributed
Computing 19, 2 (jun 2006), 104-125. https://doi.org/10.1007/s00446-006-0155-x
Butler W. Lampson. 2001. The ABCD’s of Paxos. In Proceedings of the Twenti-
eth Annual ACM Symposium on Principles of Distributed Computing (PODC’01).
13 pages. https://doi.org/10.1145/383962.383969

Joao Leitao, Jose Pereira, and Luis Rodrigues. 2007. Epidemic Broadcast Trees. In
26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007).
301-310. https://doi.org/10.1109/srds.2007.27

Meng-Jang Lin and Keith Marzullo. 1999. Directional Gossip: Gossip in a Wide
Area Network. In Proceedings of Third European Dependable Computing Conference
(EDCC-3). Springer Berlin Heidelberg, 364-379. https://doi.org/10.1007/3-540-
48254-7_25

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANS. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (San Diego, Califor-
nia) (OSDI'08). USENIX Association, 369-384.

Parisa Jalili Marandi, Samuel Benz, Fernando Pedonea, and Kenneth P. Birman.
2014. The Performance of Paxos in the Cloud. In IEEE 33rd International Sympo-
sium on Reliable Distributed Systems. 41-50. https://doi.org/10.1109/srds.2014.15
Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. 2010.
Ring Paxos: A high-throughput atomic broadcast protocol. In Proceedings of
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’10).
527-536. https://doi.org/10.1109/DSN.2010.5544272

Roie Melamed and Idit Keidar. 2004. Araneola: a scalable reliable multicast
system for dynamic environments. In Third IEEE International Symposium on
Network Computing and Applications (NCA 2004). https://doi.org/10.1109/nca.
2004.1347755

Tulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP °13). 358-372. https://doi.org/
10.1145/2517349.2517350

Moni Naor and Eylon Yogev. 2013. Sliding Bloom Filters. In Algorithms and
Computation. Springer Berlin Heidelberg, 513-523. https://doi.org/10.1007/978-
3-642-45030-3_48

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association, 305-319.

Derek C. Oppen and Yogen K. Dalal. 1983. The clearinghouse: a decentralized
agent for locating named objects in a distributed environment. ACM Transactions
on Information Systems (TOIS) 1, 3 (July 1983), 230-253. https://doi.org/10.1145/
357436.357439

Fred B. Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: a tutorial. Comput. Surveys 22, 4 (Dec. 1990), 299-319. https:
//doi.org/10.1145/98163.98167

Libra Engineering Team. 2018. Libra: The path forward. Online. https://libra.
org/en-US/blog/the-path-forward/ [Accessed 2020-06-01].

Robbert van Renesse, Kenneth Birman, Dan Dumitriu, and Werner Vogels. 2002.
Scalable Management and Data Mining Using Astrolabe®. In Peer-to-Peer Systems.
Springer Berlin Heidelberg, 280-294. https://doi.org/10.1007/3-540-45748-8 27
Robbert van Renesse, Yaron Minsky, and Mark Hayden. 1998. A Gossip-Style
Failure Detection Service. In Middleware’98. Springer London, 55-70. https:
//doi.org/10.1007/978-1-4471-1283-9_4

Werner Vogels, Robbert van Renesse, and Ken Birman. 2003. The power of
epidemics. ACM SIGCOMM Computer Communication Review 33, 1 (Jan. 2003),
131-135. https://doi.org/10.1145/774763.774784

Spyros Voulgaris and Maarten van Steen. 2013. Vicinity: A Pinch of Randomness
Brings out the Structure. In Middleware 2013. Springer Berlin Heidelberg, 21-40.
https://doi.org/10.1007/978-3-642-45065-5_2

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and It-
tai Abraham. 2018. HotStuff: BFT Consensus in the Lens of Blockchain.
arXiv:1803.05069 [cs.DC] https://arxiv.org/abs/1803.05069v6

https://doi.org/10.1109/srds.2012.66
https://doi.org/10.1109/srds.2012.66
https://doi.org/10.1145/312203.312207
https://doi.org/10.1109/discex.2001.932161
https://doi.org/10.1145/637437.637447
https://doi.org/10.1145/637437.637447
https://arxiv.org/abs/1807.04938 [cs.DC]
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/42282.42283
https://doi.org/10.1016/s0195-6698(87)80032-x
https://doi.org/10.1016/s0195-6698(87)80032-x
https://doi.org/10.1145/945506.945507
https://doi.org/10.1145/945506.945507
https://doi.org/10.1109/reldis.2002.1180186
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/tc.2003.1176982
https://doi.org/10.1002/qre.473
https://doi.org/10.1002/qre.473
https://doi.org/10.1145/2723872.2723876
https://lartc.org/lartc.html
https://doi.org/10.1145/1218063.1217937
https://doi.org/10.1145/1039488.1039491
https://doi.org/10.1145/1039488.1039491
https://doi.org/10.1145/1529974.1529979
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1145/383962.383969
https://doi.org/10.1109/srds.2007.27
https://doi.org/10.1007/3-540-48254-7_25
https://doi.org/10.1007/3-540-48254-7_25
https://doi.org/10.1109/srds.2014.15
https://doi.org/10.1109/DSN.2010.5544272
https://doi.org/10.1109/nca.2004.1347755
https://doi.org/10.1109/nca.2004.1347755
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1007/978-3-642-45030-3_48
https://doi.org/10.1007/978-3-642-45030-3_48
https://doi.org/10.1145/357436.357439
https://doi.org/10.1145/357436.357439
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://libra.org/en-US/blog/the-path-forward/
https://libra.org/en-US/blog/the-path-forward/
https://doi.org/10.1007/3-540-45748-8_27
https://doi.org/10.1007/978-1-4471-1283-9_4
https://doi.org/10.1007/978-1-4471-1283-9_4
https://doi.org/10.1145/774763.774784
https://doi.org/10.1007/978-3-642-45065-5_2
https://arxiv.org/abs/1803.05069
https://arxiv.org/abs/1803.05069v6

	Abstract
	1 Introduction
	2 Background
	2.1 System model
	2.2 Gossip communication
	2.3 Paxos

	3 Semantic Gossip
	3.1 Motivation
	3.2 Design
	3.3 Implementation

	4 Experimental evaluation
	4.1 Methodology
	4.2 System setup
	4.3 Overall performance
	4.4 Latency distributions
	4.5 Reliability
	4.6 Network overlays
	4.7 Discussion

	5 Related work
	5.1 Consensus
	5.2 Gossip

	6 Conclusions
	References

