Chasing the tail of atomic broadcast protocols

Daniel Cason*¥ Parisa J. Marandif

Luiz E. Buzato* Fernando Pedonet

*University of Campinas (UNICAMP), Brazil
TMicrosoft Research, UK
iUniversity of Lugano (USI), Switzerland

Abstract—Many applications today rely on multiple services,
whose results are combined to form the application’s response.
In such contexts, the most unreliable service and the slowest
service determine the application’s reliability and response time,
respectively. State-machine replication and atomic broadcast are
fundamental abstractions to build highly available services. In this
paper, we consider the latency variability of atomic broadcast
protocols. This is important because atomic broadcast has a
direct impact on the response time of services. We study four
high performance atomic broadcast protocols representative of
different classes of protocol design and characterize their latency
tail distribution under different workloads. Next, we assess how
key design features of each protocol can possibly be related to the
observed latency tail distributions. Our observations hint at re-
quest batching as a simple yet effective way to shorten the latency
tails of some of the studied protocols; an improvement within the
reach of application implementers. Indeed, our observation is not
only verified experimentally, it allows us to assess which of the
protocol’s key design principles favor the construction of latency
predictable protocols.

I. INTRODUCTION

Atomic broadcast, also known as total order broadcast, is
a fundamental group communication abstraction that lies at
the core of different approaches to replication, such as state-
machine replication [1, 2]. In state-machine replication, servers
replicate the service’s state and deterministically execute client
requests such that the failure of one or more replicas does
not prevent client requests from being executed against non-
faulty replicas. State-machine replication requires that (i) every
non-faulty replica receive all requests and (ii) no two replicas
disagree on the order in which requests are received. These
requirements are captured by atomic broadcast.

Atomic broadcast has been extensively studied by the
scientific community and many protocols under various as-
sumptions have been proposed [3]. From a performance per-
spective, improving throughput and reducing latency have
been the two main driving forces for new protocols. Years
of research combined with developments in communication
technology have led to atomic broadcast protocols that can
meet most application requirements with respect to throughput
and latency. In this paper, we consider an angle that has
been unexplored in the design space of atomic broadcast
protocols, namely latency variability. Latency variability is
important because in many applications today, the execution
of a request triggers the execution of multiple services, whose
results are aggregated to form the request’s response. In such
environments, the responsiveness of the application will be
determined by the latency of the slowest service; thus, each
service must be as predictably responsive as possible. Although
state-machine replication improves the availability of a service,
it does not eliminate variations in the service’s latency.

Two components account for the latency variability of a
replicated service: the ordering of requests, that is, the atomic
broadcast protocol, and the execution of requests. Taming the
latency variability of the execution of requests has received
much attention in the literature recently [4, 5]. It turns out
that state-machine replication naturally reduces this source
of variability in latency because commands are executed by
all replicas and clients consider a command executed upon
receiving the first (and thus the fastest) response from the
replicas [4]. Reducing latency variations in the ordering of
requests, however, requires different strategies since replicas
interact in complex ways, depending on the total order protocol
used, and slowdowns in one replica during the ordering of
messages can easily slow down other replicas.

In this context, this paper analyses four different total
order protocols with two goals in mind: (i) characterizing
their design and implementation decisions in the light of
their latency variability (i.e., latency tail distribution), and
(i) finding and assessing mechanisms that can be used to
reduce the latency variability of these protocols.

The remainder of the paper is structured as follows. Sec-
tion II presents the atomic broadcast protocols considered in
our study. Section III explains our experimental methodology.
Section IV describes the results of our experimental evaluation.
Section V discusses the lessons learned. Sections VI reviews
related work and Section VII concludes the paper.

II. ATOMIC BROADCAST PROTOCOLS

In this section, we overview the four atomic broadcast
protocols considered in this study. These protocols are repre-
sentatives of different engineering approaches to the problem
of designing and implementing atomic broadcast.

A. System model

We consider a distributed system composed of processes
that communicate with each other exclusively through message
passing and do not have access to a common source of time.
We assume processes may fail by crashing, but do not behave
maliciously. The system is asynchronous and extended with
additional assumptions to circumvent the FLP impossibility
result [6]. For brevity, we do not describe these extensions
here; detailed descriptions can be found in the papers that
introduce the protocols assessed.

Atomic broadcast is defined by the primitives broad-
cast(m) and deliver(m), with the following guarantees: (i) if
a non-faulty process broadcasts message m, it eventually
delivers m; (ii) if a process delivers m, then all non-faulty
processes deliver m; and (iii) no two processes deliver any
two messages in different orders.

B. Ring Paxos

Ring Paxos is a high-throughput atomic broadcast protocol
derived from Paxos [7]. Ring Paxos implements Paxos by
distributing processes in a logical uni-directional ring [8].
Establishing a ring among processes maximizes throughput
as it enables a balanced usage of the available bandwidth.
In brief, Ring Paxos works as follows. Clients submit their
requests to the processes in the ring. The dissemination of
client requests is decoupled from the ordering of requests,
which is accomplished using consensus on message identifiers.
Requests are forwarded along the ring until they reach the
leader, which creates the message identifiers used to totally
order the requests. The leader tags each request with a unique
identifier and initiates a consensus instance using a subset of
the processes in the ring (i.e., Paxos’s acceptors). The result
of each consensus instance is circulated in the ring until all
processes receive it. The execution of successive consensus
instances induces a total order on requests.

C. S-Paxos

S-Paxos is an atomic broadcast protocol based on Paxos
whose main design concern is to relieve the leader’s load [9].
S-Paxos offloads the Paxos leader by balancing the load among
the processes that execute the protocol. Similarly to Ring
Paxos, S-Paxos separates request dissemination from ordering.
Clients send their requests to a replica. Replicas create unique
identifiers for the requests and send both (uid, request) to all
other replicas. Requests become stable when acknowledged
by a majority of replicas. When a request becomes stable, the
leader passes its uid to the ordering layer, which uses instances
of consensus. Batching is used by both the dissemination and
the ordering layers to optimize throughput; acknowledgements
are piggybacked on the messages used to transport the batches.
S-Paxos operates on batches of requests and batches of uids.
All processes execute all requests but only the replica that
originally received a request forwards the result to the client.
S-Paxos strives to balance CPU and network resources, the
cost for which is paid by the number of messages that must
be exchanged before a request can be ordered.

D. Spread

Spread is a widely used toolkit that provides several pro-
cess group communication services, including atomic broad-
cast. Spread’s initial atomic broadcast protocol was based
on Totem [10] and was recently modified to include the
Accelerated Ring protocol [11]. Both protocols distribute the
processes in a logical ring and use a token to ensure total
order. The token circulates along the ring and only the process
that possesses the token can broadcast messages. In Totem,
the process that holds the token increments its sequence
number, broadcasts a message, and passes the token to the
next participant. In the Accelerated Ring protocol, the token
holder can pass the token to its successor before completing
the broadcast of messages. In both the protocols, if the token
holder needs to broadcast multiple messages, the sequence
number in the token must be updated once per each message.
Spread implements a sophisticated flow control mechanism
combining a global message window and two per-process
message windows (“personal” and “accelerated”) [11]. These
windows are managed by the protocol in order to implement

a ring-based reliable communication channel. The practical
consequence of the focus on efficient communication is a token
that circulates with predictable latency along the ring.

E. THyTOB

THyTOB uses rounds to total order client requests [12].
The idea is to emulate synchronous rounds of communication
atop of an asynchronous distributed system. At the beginning
of each round, all processes broadcast messages (batches
of requests). Each broadcast message includes its sender’s
identifier and a sequence number. Rounds are communication-
closed, meaning that all messages broadcast in a round are
received by all processes within that same round. However,
since the underlying network is unreliable and asynchronous,
messages may be lost or arrive after the end of the round
in which they were broadcast. THyTOB guarantees progress
only in synchronous rounds. A process is allowed to broadcast
a message with sequence number ¢ + 1 only if it has received
messages with sequence number ¢ from all the other processes.
If this is not the case, processes retransmit messages in order
to resynchronize themselves. The total order is established by
the sequence numbers and senders’ identifiers. Messages are
only delivered after becoming stable, which requires another
synchronous round. The second round ensures that the system
state can be restored in case of process failures by relying on
consensus instances, which are also employed to reconfigure
the system. THyTOB exploits the fact that processes and
the underlying network behave synchronously for reasonably
long periods of time to build a trivial total order among the
messages, while ensuring safety under asynchrony and in the
presence of process failures.

F. Discussion

The four protocols compared represent interesting classes
of design choices. The first class includes two implementations
of (multi-)Paxos optimized for local-area networks. Ring Paxos
was designed to maximize throughput. It uses a ring topology
to organize the dissemination and ordering of requests. We
wanted to assess whether its ring design has implications on
its latency distribution. S-Paxos is also a protocol designed
for maximizing throughput. Like Ring Paxos, S-Paxos sep-
arates request dissemination from ordering but uses a classic
multicast communication strategy. S-Paxos implements a fairly
sophisticated request batching mechanism that can in theory
contribute to keep latency tails short. Both protocols are im-
plemented based on reliable unicast communication (TCP/IP).

Spread, the most mature of the systems tested, represents
a class of protocols based on a ring where a control token
circulates. The possession of the token dictates the broadcast,
retransmission, and delivery of messages. It contains a careful
congestion control mechanism, which may contribute to curb
latency variations. The third class of protocols is based on the
notion of synchronous rounds and represented by THyTOB. Its
key design assumption regards network latency predictability
(i.e., synchrony) that allows round-based broadcasts to be built
and their use allow a very fine control of the load applied to
the network. We hypothesize that well-behaved latency distri-
butions should result from THyTOB’s capacity to condition
network load. Both Spread and THyTOB implementations are
based on unreliable broadcast communication (UDP/IP).

III. EXPERIMENTAL METHODOLOGY

This section details the key experimental aspects of our
study: the metrics used to report results, the workloads and
workload generator, and the computational environment.

A. Metrics and reported results

The metric used throughout the experiments is the latency
(response time) experienced by requests submitted to the
atomic broadcast protocol under test. Latency variability, the
result of interest, is reported using the cumulative distribution
function (CDF) of the latencies measured. The CDF describes
the probability (shown in the y-axis in the graphs) that a
random variable, in our case the latency, has a value less than
or equal to a certain value (shown in the z-axis in the graphs,
in milliseconds). For example, coordinate (z = 10,y = 0.99)
means that with probability 0.99 (99%) latency is less than or
equal to 10 milliseconds. We report probabilities and latencies
in linear-linear and in log-log scales. A probability of 0.99, for
example, corresponds to the distribution’s 99th percentile.

B. Workload generator

To conduct our experiments, we have built a simple work-
load generator inspired by the software architecture of S-
Paxos [9], depicted in Figure 1. The workload generator has
two components: a client node and a replica node.

The client node can generate different workloads by vary-
ing the number of client threads. Each thread starts its execu-
tion by randomly selecting and connecting to a replica node.
The replica node contacted by the client assigns a unique id to
the client thread. The client thread id, together with a request
sequence number, uniquely identify all requests submitted.
Client threads execute in a closed loop: the thread submits
a request and waits for its response before it submits another
request. If a request times out, the client tries to connect to
other replicas, in a round-robin fashion; as soon as it is able to
connect to a different replica, the client resends its last request.

The replica node has three components: a client proxy,
a connector, and a service load emulator. The client proxy
is responsible for managing connections with client threads,
receiving requests from them, and sending responses back
to them. The client proxy keeps the last response computed
per client thread so that responses can be retransmitted when
clients (re-)connect to a replica. The connector allows the
connection of any of the atomic broadcast protocols to the
service load emulator. Client requests are delivered to and
executed by the service load emulator. A service load emulator
can implement any function considered a legitimate load for
the replicated service node. In our setup, it implements a null
service, that is, a function whose only purpose is to return a
fixed-size response for each request it processes. The service
load emulator processes requests sequentially, in the order they
are delivered to it, with corresponding responses being relayed
back to the client proxy. Prior to the processing of a request, a
service load emulator checks the message’s sequence number
to ensure a request is executed at most once.

In order to submit all protocols tested to the same exper-
imental conditions, all experiments use the same Java-based
implementation of the workload generator. In the case of

%Iien(tj 0 Proxy
threal -
® |4o

Client Y Atomic |@®

thread Broadcast ||

) lient ®

more clien .

" threads Service
Client node Replica node

more client more replica

nodes nodes

Fig. 1. Architecture of a replicated service: (1) client submits a request to
the client proxy of a replica, which (2) broadcast the request to all replicas;
(3) upon delivering a client request, the service executes it, and (4) responds
to the proxy, that acknowledges (5) the execution of the request to the client.

Spread, it is worth noting that the literature reports better
performance results with a workload generator implemented
in C [11]. The client proxy instantiates a pool of four threads.
Each thread executes in an interruption-driven closed-loop that
blocks in the absence of communication requests. The client
proxies used by S-Paxos have been originally programmed
so that sending events do not interrupt the thread if it has
already entered its 10 millisecond sleep. As a consequence,
communication between replicas and clients in S-Paxos occurs
at regular intervals.

C. Workloads

We use two workloads to chase the tail distributions of
atomic broadcast protocols, as described next. The workloads
were generated using requests with three sizes: small (256 B),
medium (2 KB) and large (32 KB).

The peak workload is the workload that takes the replicated
service to 98-99% of its maximum throughput, for each of
the protocols tested. We have determined the peak workload
by observing when workload increments resulted in minor
throughput variation but significant increase in response time,
indicating that the atomic protocol under test had reached its
saturation point, that is, any increment in the number of threads
used to generate the workload did not result in a significant
increase in the throughput.

The operational workload is the workload under which the
replicated service provides around 70% of the peak throughput,
for each protocol tested. Since it was not always possible to
find a number of clients that matches this percentage and
ensures a fair distribution of clients per replica node, we
report in the graphs the exact percentages of peak throughput
obtained. The operational workload is motivated by the fact
that production systems provision resources to operate within
certain safety margins in order not to risk major response time
fluctuations in the presence of workload peaks.

D. Computational environment

All experiments were executed on a cluster with HP
SE1102 nodes equipped with two quad-core Intel Xeon L5420
processors running at 2.5 GHz and 8 GB of main memory.
Nodes were connected to a 1 Gbps HP ProCurve 2910al-48G
switch, with round-trip time of approximately 0.1 ms.

The replicated service was implemented by five processes,
each one hosted in a different node. Experiments lasted 200
seconds. Requests submitted in the first 20 seconds were dis-
regarded when computing the latency distributions, which then
refer to 3 minutes of execution. The setups for the protocols,
insofar as possible kept unchanged, were the following.

We used the Java version of Ring Paxos, based entirely
on unicast communication (TCP/IP) [13]. The five nodes
instantiated implemented all the three Paxos roles: proposer,
learner, and acceptor. The quorum size was set to 3 acceptors.
Proposers implemented a batching procedure in which a batch
of client requests was broadcast when either: (i) its size reached
32 KB, or (ii) no new request was received within 0.5 ms.

For S-Paxos, we adopted the settings presented in [9] for
experiments with the best performance. The batch sizes for
dissemination and ordering layers were set to 8700 and 50
bytes; the maximum batch delays to 5 and 10 ms. Batches were
broadcast when either their size exceeded the maximum size,
or the corresponding maximum delays expired. Parallelism was
limited to 30 pending consensus instances at a time.

Five Spread daemons were instantiated, belonging to the
same Spread segment. Each replica connected to the daemon
hosted in the same node, and all replicas joined the same group.
The service type for the messages broadcast was set to safe,
as it ensures that messages delivered by a daemon have been
received by all daemons. Based on [11], sizes of accelerated,
personal and global windows were set to 15, 20, and 160.

For THyTOB, the maximum batch size was set to 32
KB and the round duration to 2.6 ms. Processes broadcast
a batch with up to the maximum size at the beginning of each
round. With five processes, this lead to an “optimal” (target)
throughput of about 500 Mbps, which on average is the best
reported in [12], for various maximum batch sizes.

IV. EXPERIMENTAL EVALUATION

In this section, we present and analyze the results of our
experiments with the peak and the operational workloads,
and discuss our findings from the perspective of the different
protocol designs.

A. Peak workload

Table I summarizes the performance of the four protocols
when subject to the peak workload. The latency distributions at
peak workload are depicted in Figure 2. We present results for
this workload using CDFs with linear-linear (left) and log-log
(right) scales. CDFs with log-log scales emphasize the latency
tail, which in many cases cannot be easily distinguished in the
linear-linear CDFs.

For medium and large request sizes, all protocols reached
high throughput, with Ring Paxos and S-Paxos sporting per-
formance closer to the network capacity (1 Gbps). Spread and
THyTOB presented lower and also less dispersed latencies,
with mean latencies always below 10 ms. For small requests,
we observed more variation among the protocols.

Ring Paxos. Although not very noticeable on the overall
latency distribution (CDF at the top left of Figure 2), Ring
Paxos has the longest tails—i.e., the most skewed latency

Workload Request size Latency (mean + stdev) Throughput
Ring Paxos
40 clients 32 KB 11.8 + 4.0 ms 887 Mbps
160 clients 2 KB 11.6 £ 18.8 ms 568 Mbps
1280 clients 256 B 13.1 £ 33.3 ms 198 Mbps
S-Paxos
75 clients 32 KB 23.8 £ 5.4 ms 825 Mbps
600 clients 2 KB 133 £ 2.5 ms 736 Mbps
7680 clients 256 B 27.0 &+ 6.0 ms 578 Mbps
Spread
20 clients 32 KB 82 £ 1.7 ms 643 Mbps
100 clients 2 KB 4.8 £ 0.7 ms 345 Mbps
400 clients 256 B 9.2 + 1.4 ms 89 Mbps
THyTOB
15 clients 32 KB 7.8 £ 0.6 ms 502 Mbps
240 clients 2 KB 7.8 £ 0.5 ms 503 Mbps
1800 clients 256 B 8.0+ 1.2 ms 461 Mbps
TABLE 1. PERFORMANCE WITH PEAK WORKLOAD.

distributions—among the tested protocols, with tails becoming
longer as the request sizes get smaller. For example, from the
90th-percentile to the 99th-percentile (CDF at the top right of
Figure 2, y-axis at 0.9 and 0.99) latency increases by more than
8 times with medium (2 KB) requests and by more than 13
times with small (256 B) requests. Large (32 KB) requests
experience an increase of 67% from the 90th-percentile to
the 99th-percentile. Longer tails imply, on average, latencies
larger than the medians (around 8.0 ms for medium and small
requests), and larger standard deviations.

S-Paxos. S-Paxos presents the higher latencies among the four
protocols, and distinct tail distributions for each request size.
For large requests, 99% of the latencies are from 12 and 37 ms,
while more concentrated around the average, which coincided
with the median. The 99.9th-percentile is about 80% bigger
than the average latency, and a long tail is observed around
the 99.99th-percentile, where latencies exceeded 215 ms. For
medium requests, a better behavior is observed, with latencies
much more concentrated: 99.99th-percentile around 30 ms,
while the average was 13.3 ms. Finally, latencies for small
requests are the highest and most scattered: average at 27.0
ms and 99.99th-percentile about three times higher, at 75 ms.

Spread. The shape of the tail distribution curves for Spread at
peak workload resemble those for S-Paxos, although Spread
presents significantly lower and less dispersed latency values.
The largest tail is observed for large requests, although la-
tency scatters only at high percentiles. For example, while
from the 99.9th to the 99.99th-percentile latency increases
by almost 7 times, from the 99th to the 99.9th-percentile it
increases by only 15%. Both small and medium requests have
smaller latency tails than large requests, with medium requests
presenting the lowest average latency and standard deviation.
It is worth noting, however, that in our experiments Spread
saturated at considerably low loads for smaller requests. As
a consequence, the throughput Spread reached for medium
requests was 46% lower than for large requests; and for small
requests it was 7 times lower, reaching only 89 Mbps.

THyTOB. THyTOB presented the most predictable and stable
behavior among the protocols assessed, with little performance
variation with different request sizes. To understand the latency

Ring-Paxos Ring Paxos
1 T T T 0.99999

HE AR
S [
0.5 / l /

0.4 / 0.99 e
0.3 / //
0.2 I/ 32KB —— | 0.9 32KB (887 Mbps) T
0.1 2 KB i 2 KB (568 Mbps)

0 J 256B —— 0 S 256 B (198 Mbps)

0 5 10 15 20 25 30 35 40 1 10 100 1000
Latency (ms) Latency (ms)
S-Paxos S-Paxos

1 T T 0.99999 [
0.9 : // T J
0.8 / 0.9999 ~
0.7 f
0.6 / 0.999
o / /
0.4 / 0.99
0.3 # /
0.2 _J 32KB ——] 0.9 32 KB (825 Mbps) 7
0.1 L 2 KB i 2 KB (736 Mbps)

. |~ 2568 N J _ 256B (678 Mops) ——

0 5 10 15 20 25 30 35 40 1 10 100 1000
Latency (ms) Latency (ms)
Spread Spread

i A=
g; ’I/ 0.999 f
gg ’,/ 0.99 }/

0.2 // 32 KB =]| 0.9 32 KB (643 Mbps)
04 2 KB ,_ / 22 KB (345 Mbps)

o 2568 —— o , 56 B (89 Mbps)
0 5 10 15 20 25 30 35 40 1 10 100 1000
Latency (ms) Latency (ms)
THyTOB THyTOB
1 = 0.99999
0.9
0.8 0.9999 |
0.7 -
0.6 0.999 &
0.5 |
0.4 0.99
0.3 J
0.2 32 KB =— | 0.9 ‘ 32 KB (502 Mbps)
0.1 2 KB i 2 KB (503 Mbps)
0 o] 256 B (461 Mbps)
0 5 10 15 20 25 30 35 40 1 10 100 1000
Latency (ms) Latency (ms)

Fig. 2. Overall latency distributions (linear-linear CDFs, on the left) and the corresponding latency tail distributions (log-log CDFs, on the right) for Ring
Paxos, S-Paxos, Spread and THyTOB under peak workload.

distributions of THyTOB, recall that it operates in synchronous
rounds, whose duration was set to 2.6 ms. Since in the best case
requests needed three rounds to be delivered (two rounds for
ordering and one for client-replica interaction), we can expect
a lower bound of about 7.8 ms. When a round fails, due to
message loss or timing faults, latencies of all ongoing requests
are increased by an additional round. For medium and large
requests, about 99.3% of requests fitted THyTOB’s best case,
and were delivered in three rounds. For small requests, 96%
of requests fell in this category. We can also observe that tails
become significant only at high percentiles.

B. Operational workload

We now observe the behavior of Ring-Paxos, S-Paxos,
Spread, and THyTOB at the operational workload, i.e., at
70% of peak workload. We have selected this workload to
assess whether the latency tails observed at peak workload are
the result of the saturation of the servers, or are intrinsic to
the protocols. The tail distributions (CDFs) are presented in
Figure 3, while the overall performance and the workload for
these experiments are summarized in Table IV-B.

Workload Request size Latency (mean =+ stdev) Throughput
Ring Paxos
10 clients 32 KB 42 £+ 1.7 ms 619 Mbps
120 clients 2 KB 4.9 4+ 10.5 ms 400 Mbps
420 clients 256 B 6.1 £ 19.4 ms 140 Mbps
S-Paxos
25 clients 32 KB 11.4 £ 1.5 ms 576 Mbps
360 clients 2 KB 11.2 £+ 0.5 ms 526 Mbps
3200 clients 256 B 153 £ 2.1 ms 428 Mbps
Spread
10 clients 32 KB 54 £ 0.5 ms 483 Mbps
30 clients 2 KB 2.0 + 0.3 ms 241 Mbps
80 clients 256 B 2.6 + 0.4 ms 64 Mbps
THyTOB
10 clients 32 KB 7.8 & 0.3 ms 336 Mbps
170 clients 2 KB 7.8 &+ 0.3 ms 357 Mbps
1280 clients 256 B 7.8 £ 0.8 ms 335 Mbps
TABLE II. PERFORMANCE WITH OPERATIONAL WORKLOAD.
Ring Paxos. We note that the shape of the tail distributions

at peak and operational workload are similar. The main dif-
ference, in particular for medium and small requests, is that
the tails were displaced to higher percentiles: while under peak
workload they affected about 3% of requests, under operational
workload this percentage dropped to 0.75%. Further reducing
the load leads to similar tails, although affecting even smaller
portions of requests. This suggests that latency tails are intrin-
sic to the protocol.

S-Paxos. 'The most remarkable change when the load is
reduced to 70% is the better behavior for large requests. The
tail observed in peak performance is no longer noticeable,
indicating that it is not inherent to the protocol, but due to
queuing effects at high load. In addition, there is a “step”
around the 98th-percentile, with a leap from about 13 ms
to beyond 20 ms. This behavior results from a peculiarity of
the protocol. As pointed out in Section III, the client proxies
of S-Paxos were originally programmed to communicate with
clients periodically, every 10 ms. S-Paxos presumably assumes
that most requests will be ordered within this period, which

results in latencies starting at 10 ms, independently of the load.
Moreover, requests for which this assumption fails, about 2%
in this case, will only be replied in the next iteration of the
respective client proxy threads; their latencies will then start
at 20 ms. This same effect can also be observed for medium
requests under peak workload (Figure 2, left side).

Spread. The most well-behaved latency distributions among
those presented in Figure 3 belong to Spread. Latencies for the
three request sizes did not exceed 14 ms, while the 99.99th-
percentiles were 10.6 ms, 5.0 ms, and 5.2 ms for large, medium
and small requests, respectively. We repute this behavior to
the sophisticated flow control mechanisms adopted by Spread.
They ensure a strict control of the load applied to the network,
enabling the broadcast of requests to be completed, with high
probability, within stipulated deadlines. However, it is worth
noting that the workload applied, specially for small requests,
is much lower than for the remaining protocols.

THyTOB. As for Ring Paxos, there is not significative change
in the shape of the latency distribution when the load is reduced
to 70%. There is an increase in the portion of requests that fit
in the best case of the protocol, with latencies of three rounds:
from 96% to about 99.4% for small requests, and from 99.3%
to 99.8% for medium and large requests. For the latter two,
in particular, latencies did not exceed nine rounds (23.4 ms).
However, there is still a tail at very high percentiles for small
requests. Apparently, the processing overhead induced by such
small requests causes, in very few occasions, a long sequence
of consecutive rounds to fail, affecting all ongoing requests.

C. Discussion

We could identify two aspects in the design of Ring Paxos
that may explain the long tails observed for the protocol.
First, there is no flow control in the proposers. A proposer
can circulate requests in the ring at the same rate they are
received from the clients. Without any flow control, proposers
may overcharge their outgoing links, as they are responsible
for circulating requests and protocol control messages along
the ring, leading to an increase in latency variability. Second,
the ring topology adopted by the protocol tightly couples the
communication behavior of the processes. In effect, there is a
single stream of messages circulating the ring, implying that
every message has to be received, processed and forwarded
by every process in the ring. When a process blocks because
of background activities (i.e., garbage collection), it neither
broadcasts new requests nor forwards messages received from
its predecessor in the ring. Consequently, irregular delays expe-
rienced by a process are potentially propagated throughout the
ring, affecting (i.e., delaying the deliver of) ongoing requests.

To verify these two hypotheses, we profiled the proposers
of Ring Paxos and measured their request sending rates and
delays. With increasing sending rates, average delays increase,
reaching about 0.12 ms for large, 0.65 ms for medium, and 1.7
ms for small requests. The higher delays for smaller messages
are due to the batching procedure, which requires more smaller
messages to fill a batch. When analyzing their distributions, we
could observe some abnormal sending delays, exceeding 40 ms
for large, 150 ms for medium, and 500 ms for small requests.
We were able to associate most of these outliers to garbage

Ring Paxos
0.99999 /_[}
0.9999 / /J_/J
0.999 7
0.99 //-
0.9 7 32 KB (69.8%) =——]
2 KB (70.4%)
o - 256 B (70.7%)
1 10 100 1000
Latency (ms)
Spread
0.99999 / T /,
0.9999 / /
0.999 / //
0.99 / /
0.9 32 KB (75.1%) =———]
2 KB (69.9%)
o 256 B (71.9%)
1 10 100 1000

Latency (ms)

Fig. 3.

collection events, which were more frequent and had longer
durations than those observed for smaller requests.

The abnormal delays measured in the proposers necessarily
affect the overall request latencies, and in part explain the long
tails observed for Ring Paxos. However, only these outliers
alone cannot account for the magnitude and the frequency of
the latency peaks measured by the clients. This lead us to
suspect that other effects contribute to Ring Paxos’s latency
variability. In fact, when analyzing the peaks of latency as
measured by the clients of different replicas, we observed that
they were often correlated to each other in terms of the moment
in which their executions occurred in the replicas (ring). This
indicates that the occurrence of an abnormal delay at one
process of the ring is actually propagated throughout the ring,
a shortcoming that seems intrinsic to the topology.

The same behavior was not observed for S-Paxos, despite
some similar design principles it shares with Ring Paxos:
both protocols separate request dissemination from ordering
to mitigate the bottleneck in the coordinator, and use TCP
unicast to achieve throughput close to the network capacity.
S-Paxos’s behavior can be in part explained by the adoption
of several flow control mechanisms, including a conservative
batching policy, and limitation on the number of concurrent
broadcast instances at both dissemination and ordering layers.
But the main reason is probably the adoption of a fully
connected communication graph topology plus majority-based
mechanisms for the dissemination and ordering of requests.
Since with this approach processes tend to be loosely coupled,

S-Paxos

0.99999 .
0.9999 l
0.999 /
0.99
09 | 32 KB (69.8%) —— |
[2 KB (71.5%)
0 o4 256 B (74.0%)
! 10 100 1000
Latency (ms)
THyTOB
0.99999 I_L//
0.9999 7;’
0.999 j
0.99 ’(
o° \ 32 KB (67.1%) —— |
2 KB (71.0%)
0 256 B (72.7%)
! 10 100 1000

Latency (ms)

Tail distributions for Ring Paxos, S-Paxos, Spread and THyTOB at operational workload; actual percentages of peak throughput shown in parentheses.

the blocking of a single process is less likely to affect requests
that were broadcast by other processes.

Another interesting aspect of S-Paxos’s design is the effect
of its intricate batching mechanisms. On the one hand, for
medium requests they proved quite efficient in conditioning
latency. Under both peak and operational performance, the
99.99th-percentiles for medium requests were approximately
twice the average latencies. In particular, the mechanisms were
effective in amortizing the load applied by replicas to the
network. Thus, despite a throughput only 10.8% lower than
that for large requests (which are not subject to batching at the
dissemination layer), there was no significant effect of network
contention under peak workload. On the other hand, latencies
for small requests were considerably dominated by queuing
delays: they were significantly higher and quite dispersed. The
probable reason is the larger number of requests required to
fill a batch. As a result, batches were more likely to be sent by
timeout than by size. The latency variability was then caused
by contention and can be seen as an overhead of batching.

Spread needs to establish a reliable communication channel
among a group of processes atop an unreliable datagram
service (UDP). For this end, the protocol relies on a complex
flow control mechanism, orchestrated by a token that circulates
a logical ring of processes. To improve performance, requests
are disseminated using ip-multicast, an efficient broadcast
primitive in local-area networks, but prone to message loss [8].
By restricting the number of concurrent broadcasts, Spread
manages to minimize the shortcomings of this primitive. In

fact, when monitoring the protocol, we noted that the message
loss and retransmissions rates were negligible. This explains
the good behavior of its latency distributions.

Another interesting design decision of Spread, not present
in the other protocols, is to use a separate process, the Spread
daemon, to handle the inter-process communication. Once the
replica executes in a different process, the possible overheads
of handling clients and executing requests are less likely to be
propagated to the protocol, which contributes to its stability.
However, the interaction between replicas and local daemons,
accomplished through a TCP connection, may have curbed
the performance of Spread in our experiments, specially with
small requests. Thus, if on the one hand separating the protocol
implementation from the replica execution can be useful in
controlling latencies, on the other hand the communication
between replica and daemon may limit performance.

THyTOB'’s key design feature is to emulate a synchronous
communication service atop an asynchronous (and unreliable)
broadcast network. It organizes the execution in synchronous
rounds, by means of which it controls the load applied to the
network. In fact, the duration of the rounds, as a function of
the number of processes and maximum batch size, determines
the protocol’s maximum throughput and minimum latency.
The longer the rounds, the lower the throughput, the higher
the latency, and the lower the probability of a round to
fail because of message loss or timing faults. This trade-off
between achievable performance and latency predictability is
at the core of the synchronous design of THyTOB. When
considering that more than 99% of latencies, in particular for
large and medium requests, fitted the protocol’s best case, it is
possible to affirm that this strategy can lead to quite controlled
latencies, while providing good throughput.

V. LESSONS LEARNED

A remarkable aspect of the results of our experiments is
the significative performance degradation—in terms of latency
distribution and throughput—of the four protocols with small
requests. Although affecting all protocols, two aspects allow us
to distinguish two groups of protocols, in terms of performance
with small requests. First, Ring Paxos and Spread presented
a noticeable throughput degradation as requests got smaller,
an effect that was not observed in the same proportion for
S-Paxos and THyTOB. For instance, from large to medium
requests, the peak throughput dropped by 46% for Spread, and
by 36% for Ring Paxos; for S-Paxos it dropped by only 11%,
and it remained fairly stable, almost constant, for THyTOB.
Second, while the latency distribution of Ring Paxos became
more scattered for medium requests, for this request size (2
KB) both S-Paxos and THyTOB presented the least latency
variations.

The distinct behavior of these two groups of protocols can
be explained by their batching policies. S-Paxos and THyTOB
are protocols designed from scratch to operate on batches of
requests, instead of single requests. Processes of both protocols
wait for client requests and aggregate them into batches,
which are then disseminated and ordered. Upon the delivery
of a batch, the requests are retrieved, and then processed
by the replicas. Ring Paxos and Spread do not expressly
adopt batching of requests; instead, they consider alternative

strategies to handle small requests. Ring Paxos is optimized
for large requests; proposers try to aggregate small requests in
order to send them together, but this is a “network batching”,
since requests are individually processed by all participants.
Spread considers the size of pending requests to compute the
message windows, which use “packets” as unit. Large requests
may be split in several packets, while small requests can be
aggregated into a single packet. Similarly, all requests are
processed one by one, not in batches. In our experiments, these
alternative strategies have proven ineffective to minimize the
performance loss with small requests. This led us to consider
the adoption of a batching policy at the replicas.

We conducted a second set of experiments to assess the
performance of Ring Paxos and Spread with batched requests.
To this end, we implemented a simple routine in the replicas,
responsible for building batches of requests. Replicas broadcast
a batch, composed by requests individually received from the
clients, when either its size reaches 32 KB or the batching
delay exceeds a maximum duration J. The value of & was
computed so that if all replicas broadcast a full batch every §
units of time, the aggregate broadcast rate is equivalent to the
maximum throughput of the protocol (a similar method is used
in THyTOB to select the duration of rounds). For Ring Paxos,
6 was set to 1.5 ms and for Spread it was set to 2.0 ms. The
tail distributions for these protocols with batched requests, at
peak and operational workload, are depicted in Figure 4, and
the protocols performance is summarized in Table III.

Workload Request size Latency (mean =+ stdev) Throughput
Ring Paxos with batched requests
Peak workload
40 clients 32 KB 119 £+ 4.1 ms 883 Mbps
640 clients 2 KB 12.0 + 4.0 ms 874 Mbps
2720 clients 256 B 10.6 £ 6.6 ms 521 Mbps
Operational workload
15 clients 32 KB 5.6 £ 2.2 ms 707 Mbps
160 clients 2 KB 43 + 1.8 ms 611 Mbps
960 clients 256 B 5.5+ 2.0 ms 356 Mbps
Spread with batched requests
Peak workload
25 clients 32 KB 12.1 £ 0.9 ms 542 Mbps
320 clients 2 KB 10.3 £ 0.8 ms 509 Mbps
2560 clients 256 B 13.8 £ 1.9 ms 377 Mbps
Operational workload
10 clients 32 KB 5.8 £ 0.6 ms 451 Mbps
100 clients 2 KB 4.7 £ 0.8 ms 349 Mbps
960 clients 256 B 74 £+ 1.2 ms 264 Mbps
TABLE III. PERFORMANCE WITH BATCHED REQUESTS.

The best improvement in the overall performance when
replicas batch client requests was observed in Ring Paxos.
While in the original setup the latency distributions at peak
throughput for the three request sizes were comparable up to
around the 97th-percentile, with batched requests they are quite
similar up to the 99.95th-percentile. In addition, for medium
requests the peak throughput was 874 Mbps, 54% higher than
in the original setup, and very close to the one achieved with
large requests. Throughput also increased for small requests,
by 2.6 times, while the average latency decreased by 2.5 ms.
Since the performance for medium and small requests became
more similar to the achieved for large requests, we can affirm
that batching at replicas is more efficient to cope with smaller
requests than the batching implemented at the proposers.

The reasons for this improvement were found by profiling

Ring Paxos + Batching

0.99999 / #—f
0.9999 /o
0.999 /
0.99
09 2 32 KB (883 Mbps) -
/ 2 KB (874 Mbps)
0 4 256 B (521 Mbps)
1 10 100 1000
Latency (ms)
Spread + Batching
0.99999 I
0.9999 /
0.999 i /
0.99 /
09 32 KB (542 Mbps)
2 KB (509 Mbps)
0 . 256 B (377 Mbps)
! 10 100 1000

Latency (ms)

Ring Paxos + Batching

/-

0.99999

0.9999

0.999

0.99

0.9 32 KB (80.1%) =———]|
2 KB (69.9%)
. - 256 B (68.3%)

1000

Latency (ms)

Spread + Batching
0.99999 {
j
,

0.9999

[
|

0.9 / 32 KB (83. :
2 KB (68.6%)
o . 256 B (70.0%)

1 10
Latency (ms)

Fig. 4. Tail distributions for Ring Paxos and Spread with batched requests under peak workload (on left) and at operational workload (on right).

the batching routine and, as done for the proposers, measuring
the sending rates and delays. While the sending rates for small
and medium requests increased, the average delays remained
almost unchanged—1.6 ms and 0.6 ms, respectively—from
the original experiments. However, abnormal sending delays,
which in the original setup exceeded 150 ms for medium, and
500 ms for small requests, very few times exceeded 40 ms for
all request sizes. The explanation for this difference is related
to the number of requests a proposer has to handle, and the
overhead of temporary information it stores for each of them.
When batching is done at replicas, a single metadata instance
is allocated for each batch of requests, instead of one instance
for each client request in the original setup. Considering that
metadata instances are sent together with the requests, and are
potentially stored by all processes, this makes a big difference,
specially for small requests. In fact, the time spent in garbage
collection events at peak throughput for single small requests
is up to 14 times higher than for batched small requests.

As a consequence, we also observed with batched requests
a reduction on the range within which latencies are distributed,
that is, on the length of the latency tail. While in the original
setup of Ring Paxos at peak throughput the 99.9th-percentiles
for medium and small requests were about 180 and 260 ms,
with batched requests they were both around 30 ms. It is also
true that tails at high percentiles are still observed, mainly with
small requests. This possibly explains why the peak throughput
for such requests is 40% lower than for the larger ones.

For Spread, the impact of batching at replicas was mostly

on throughput for smaller requests. Compared to the original
setup, throughput was 4.2 times higher for small, and 32%
higher for medium requests. The increase in throughput was
accompanied by an increase in average latency, by 4.6 ms and
5.5 ms, respectively. Latencies also increased by 3.9 ms for
large requests, which caused the corresponding throughput to
drop by 16%. This was the consequence of requests being
broadcast only by the batching routine (a single thread) rather
than by the client proxies (four threads), as done in the original
setup. The increase in latency reveals how costly, in terms
of delay, calls to the broadcast method provided by Spread,
responsible for transferring requests to the daemon, are.

Spread saturated at different loads with batched requests,
and this had some impact on the latency distributions. When
taking into account the increase in the average latencies,
the distributions for small and medium requests were more
dispersed for batched than they were for single requests. In
particular, for small requests long tails were observed from
the 99.99th-percentile. It is worth noting, however, that we
are comparing here latencies from experiments that achieved
different peak throughputs, and were subjected to different
workloads: 400 clients with single requests versus 2560 clients
with batched requests. The opposite behavior is observed for
large requests, for which throughput was lower with batched
requests. The latency distribution became more concentrated,
and almost no tail was noticed, even at peak throughput. Thus,
Spread is subject to a tradeoff involving the load it can sustain
and the resulting latency distribution. The more the protocol
amortizes the load applied, the better controlled latencies are,

but also the lower the throughput is. Thus, mechanisms that
attenuate the protocol contention, as batching does, can indeed
improve throughput, at the cost of less predictable latencies.

VI. RELATED WORK

The increased attention to the latency tail by companies
such as Google and Amazon [4, 14] indicates the importance
of end-to-end latency guarantees to distributed applications.
This has raised interest in the scientific community, and several
works have considered the problem (e.g., [15, 16, 17, 18]).

When a request enters a system it passes through many lay-
ers and stages, both locally on a single machine, and globally
across machines. Moreover, current distributed applications are
complex, composed of several services, each one operating
independently. The latency a request experiences depends on
each of these stages, layers, and services. Therefore, it is
important that each component reduces the delays it imposes
on the final response time of a request. A recent work [5] con-
siders the effects of different layers on a request’s lifetime in
an individual machine, and makes suggestions to mitigate the
latency tail, e.g., controlling background processes, scheduling
tasks to specific threads, and using core-affinity.

In the context of atomic broadcast protocols, most early and
recent work focused on maximizing throughput and minimiz-
ing latency, but not on latency variability. When the response
time has been of interest, its average over periods of system
operation has been considered, rather than its stability and
equality across requests. An exception is Totem, Spread’s
atomic broadcast protocol, that had its latency distribution
studied in some works [19, 20, 21]. The latency probability
functions for Totem were determined analytically by [19],
analysis that was experimentally verified in a subsequent
work [20]. Finally, the end-to-end latency of remote methods
invoked in a replicated CORBA server built atop Totem was
analyzed in [21]. Our findings are consistent with the analysis
presented in these studies: Spread provides controlled latency,
as a result of carefully designed flow control mechanisms.

This paper expands on these previous studies as we con-
sider the latency distribution of four different atomic broadcast
protocols, including Spread’s recent revamped implementation,
based on the Accelerated Ring Protocol [11]. Moreover, we
identify bottlenecks and propose ways to improve performance
and reduce the latency tail of existing protocols.

VII. FINAL REMARKS

Given the importance of atomic broadcast protocols to
replicated services, this work offers a novel analysis of their
behavior, focused on latency tail distribution instead of average
latency or throughput. The results presented shed light on the
design tradeoffs—topology, communication, role of synchrony,
batching—made by four representative protocols to achieve
a fair balance between throughput and the maintenance of
short-tailed, predictable, response latency distributions. Among
the design principles assessed, we have identified batching as
having a key role to curb latency variability. While it is well-
known that batching can boost throughput [22], it is remarkable
that in some cases (i.e., Ring Paxos) it can also help shorten
the latency tail of atomic broadcast.

10

ACKNOWLEDGMENTS

This work was partially supported by FAPESP under grants
2011/23705-4 and 2013/21651-0, CNPq grant 473340/2009-7,
and CAPES PVE grant 88881.062190/2014-01.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” CACM, vol. 21, no. 7, pp. 558-565, 1978.
F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM CS, vol. 22, no. 4,
pp- 299-319, 1990.

X. Défago, A. Schiper, and P. Urbdn, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM CS, vol. 36,
no. 4, pp. 372421, 2004.

J. Dean and L. A. Barroso, “The tail at scale,” CACM, vol. 56,
no. 2, pp. 74-80, 2013.

J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales
of the tail: Hardware, OS, and Application-level sources of tail
latency,” in SoCC, 2014.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty processor,” JACM, vol. 32,
no. 2, pp. 374-382, 1985.

L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16,
no. 2, pp. 133-169, 1998.

P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos:
A high-throughput atomic broadcast protocol,” in DSN, 2010.
M. Biely, Z. Milosevic, N. Santos, and A. Schiper, “S-paxos:
Offloading the leader for high throughput state machine repli-
cation,” in SRDS, 2012.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella, “The Totem single-ring ordering and membership
protocol,” ACM TOCS, vol. 13, no. 4, pp. 311-342, 1995.

A. Babay, “The accelerated ring protocol: Ordered multicast
for modern data centers,” Master’s thesis, The Johns Hopkins
University, 2014.

D. Cason and L. E. Buzato, “Time hybrid total order broad-
cast: Exploiting the inherent synchrony of broadcast networks,”
JPDC, vol. 77, pp. 2640, Mar. 2015.

S. Benz, “Unicast Multi-Ring Paxos,” Master’s thesis, University
of Lugano, 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: Amazon’s highly available key-value store,” in
SOSP, 2007.

Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoid-
ing long tails in the cloud.” in NSDI, 2013.

T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “PriorityMeister: Tail latency QoS for shared
networked storage,” in SoCC, 2014.

A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: enabling high-level SLOs on shared storage systems,” in
SoCC, 2012.

Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho, Y. Nomura,
and C. Pu, “Lightning in the cloud: A study of very short
bottlenecks on n-tier web application performance,” in TRIOS,
2014.

E. Thomopoulos, L. Moser, and P. Melliar-Smith, “Analyzing
the latency of the Totem multicast protocols,” in ICCCN, 1997.
, “Latency analysis of the Totem single-ring protocol,”
ACM NET, vol. 9, no. 5, pp. 669-680, 2001.

W. Zhao, L. Moser, and P. Melliar-Smith, “End-to-end latency
of a fault-tolerant CORBA infrastructure,” in ISORC, 2002.

R. Friedman and R. van Renesse, “Packing messages as a tool
for boosting the performance of total ordering protocols,” in
HPDC, 1997.

(2]

(3]

(4]
(3]

(6]

(7]
(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]
[21]

[22]

