
Optimistic Parallel State-Machine Replication

Parisa Jalili Marandi
University of Lugano

Switzerland

Fernando Pedone
University of Lugano

Switzerland

Abstract—State-machine replication, a fundamental approach
to fault tolerance, requires replicas to execute commands de-
terministically, which usually results in sequential execution of
commands. Sequential execution limits performance and under-
uses servers, which are increasingly parallel (i.e., multicore). To
narrow the gap between state-machine replication requirements
and the characteristics of modern servers, researchers have
recently come up with alternative execution models. This paper
surveys existing approaches to parallel state-machine replication
and proposes a novel optimistic protocol that inherits the scalable
features of previous techniques. Using a replicated B+-tree ser-
vice, we demonstrate in the paper that our protocol outperforms
the most efficient techniques by a factor of 2.4 times.

I. INTRODUCTION

State-machine replication (SMR) is a fundamental ap-
proach to designing fault-tolerant services [1], [2]. In this
technique, to preserve consistency replicas of a service execute
a unique ordered sequence of commands deterministically. If
some of the replicas fail, the service remains available to
clients through the operational replicas. Determinism prevents
replicas from exploiting multithreading and is contrary to the
nature of modern servers, which are essentially parallel (i.e.,
multicore architectures). Therefore, services replicated with the
state-machine approach cannot benefit from parallelism.

Requiring replicas to execute commands sequentially limits
performance. This limitation is acknowledged by the depend-
ability community and some approaches have been proposed
to enable multithreaded replicas in state-machine replication—
we survey these techniques in Section III. One prominent
approach is to exploit application semantics [3], [4], [5].
The idea is to allow independent commands to execute in
parallel and serialize the execution of dependent commands.
Independent commands are those that access disjoint sections
of the replica’s state and therefore do not interfere with each
other [2]. Dependent commands are those that access and
modify common sections of the state; executing dependent
commands concurrently may result in unpredictable and in-
consistent states across replicas.

This paper builds on Parallel State-Machine Replication
(P-SMR) [5], a scalable multithreaded model for replication.
Its scalability stems from the absence of any centralized
component in the execution path of independent commands.
P-SMR replaces atomic broadcast, typically used in state-
machine replication to order commands, by atomic multicast.
Atomic multicast creates the abstraction of groups (i.e., disjoint
ordered sequences of commands), and threads in a replica can
subscribe to different groups. Clients multicast commands to
one or more groups, where the groups are chosen using a
deterministic mapping that depends on the command and its

parameters. The mapping is such that (a) independent com-
mands are likely mapped onto different groups and (b) any two
dependent commands are mapped onto at least one common
group. Consequently, independent commands multicast to dis-
joint groups can be executed concurrently by different threads
in a replica, and dependent commands are synchronized by
their common group and executed by a single thread.

Despite its highly scalable execution model, P-SMR’s
Achilles heel is its conservative strategy to map commands
to groups. Clients decide on the group that a command
is multicast to based only on the command type and its
parameters. Since clients lack access to service state, they
must choose groups conservatively to avoid the concurrent
execution of potentially dependent commands, even if in the
end these commands do not access any common service state
(i.e., a false positive). For example, consider two commands
to insert an item in a B-tree. Since these commands may
lead to common structural changes in the tree, in P-SMR they
must be declared dependent, even though when executed they
modify different tree nodes. False positives protect the integrity
of the service at the cost of reducing its performance with
unnecessary serialization.

In this paper, we present opt-PSMR, an approach that
replaces P-SMR’s conservative strategy by a more aggres-
sive optimistic strategy. In opt-PSMR, when uncertain about
command interdependencies, clients identify the commands
as independent. Replicas are augmented with additional logic
to check whether concurrent execution of commands risks
corrupting the replica’s state (i.e., the optimistic assumption
does not hold). If two commands deemed independent turn
out to be dependent, they are multicast again using P-SMR’s
conservative strategy. Using a B+-tree service, we demonstrate
in the paper that opt-PSMR with its optimistic strategy out-
performs P-SMR by a factor of 2.4 times.

Several optimistic (and speculative) replication protocols
have been proposed in the literature, typically with the goal of
reducing latency (i.e., the delay between the submission of a
command and the receipt of its answer). These protocols can
be broadly divided into two classes. One class of protocols
reduces latency by shortening the protocol execution when the
optimistic assumption holds. For example, when order happens
spontaneously, an optimistic atomic broadcast protocol can
deliver messages in fewer steps than a conservative protocol
(e.g., [6], [7], [8]). Another class of protocols reduces latency
by overlapping the ordering of commands with their execution
(e.g., [9], [10], [11]). If the optimistic assumption does not
hold, command’s execution must be rolled back. opt-PSMR
differs from these protocols in that optimism is used to increase
throughput without penalizing latency.

ar
X

iv
:1

40
4.

67
21

v1
 [

cs
.D

C
]

 2
7

A
pr

 2
01

4

This paper makes the following contributions: (a) it surveys
parallel approaches to state-machine replication, (b) it proposes
opt-PSMR, a novel approach that overcomes P-SMR’s short-
comings, and (c) it assesses the performance of opt-PSMR and
compares it to other replication techniques.

The rest of the paper is structured as follows. Section II de-
scribes our system model and assumptions. Section III reviews
parallel approaches to SMR. Sections IV and V present and
experimentally evaluate opt-PSMR, respectively. Section VI
overviews related work and Section VII concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume a distributed system composed of intercon-
nected processes. There is an unbounded set C = {c1, c2, ...}
of client processes and a bounded set S = {s1, s2, ..., sn}
of server processes. The system is asynchronous: there is no
bound on message delays and on relative process speeds. We
assume the crash failure model and exclude malicious and
arbitrary behavior (e.g., no Byzantine failures). Processes are
either correct, if they never fail, or faulty, otherwise. We
assume f faulty servers, out of n = f + 1 servers.

Processes communicate by message passing, using either
one-to-one or one-to-many communication. One-to-one com-
munication is through primitives send(m) and receive(m),
where m is a message. If sender and receiver are correct,
then every message sent is eventually received. One-to-many
communication is based on atomic multicast. Atomic multicast
is defined by the primitives multicast(γ,m) and deliver(m),
where γ is a group of destinations. Let relation < be defined
such that m < m′ iff there is a process that delivers m before
m′. Atomic multicast ensures that (i) if a process delivers m,
then all correct processes in γ deliver m (agreement); and
(ii) relation < is acyclic (order). The order property implies
that if processes p and q deliver messages m and m′, then they
deliver them in the same order.

Atomic multicast is typically available to applications as a
library (encapsulated as an agreement layer) and implemented
using one-to-one communication and additional system as-
sumptions [12], [13]. Atomic broadcast is a special case of
atomic multicast where there is only one group to which all
the destinations belong.

Our consistency criterion is linearizability. A system is
linearizable if there is a way to reorder the client commands
in a sequence that (i) respects the semantics of the commands,
as defined in their sequential specifications, and (ii) respects
the real-time ordering of commands across all clients [14].

III. A SURVEY ON PARALLEL SMR

In this section we review the basics of state-machine repli-
cation and survey proposals that have adapted state-machine
replication to multicore architectures.

A. Non-replicated setup

A typical way for clients to interact with a (non-replicated)
server is by means of remote procedure invocations [15], [16].
Clients access the service by invoking service commands with
the appropriate parameters. Client proxies intercept client in-
vocations and turn them into requests that include a command

identifier and the marshaled parameters. Requests are delivered
by the server proxies, which re-assemble invocations and issue
them against the local service. Similarly to remote procedure
calls, the client and client proxy (respectively, server and server
proxy) can be implemented as a single process, sharing a
common address space. The command’s response follows the
reverse path to the client using one-to-one communication.
As depicted in Figure 1 (a), in a non-replicated service: (i)
client requests are communicated to the server directly, without
passing through an agreement layer, and (ii) execution of client
requests at the server can be multithreaded.

B. Sequential SMR

State-machine replication provides clients with the illusion
of a non-replicated service, that is, replication is transparent
to the clients. A command issued by a client is handled
by the client proxy, which multicasts the command to all
replicas and waits for the response from one replica (see
Figure 1 (b)). Before requests can be executed on the replicas
they are ordered by the agreement layer. Since replicas execute
commands deterministically and in the same order, every
replica produces the same response after the execution of
the same command. Differently from a non-replicated service,
clients remain oblivious to failures, as the service remains
operational despite the failure of some of its replicas. In failure-
free scenarios, however, a non-replicated service is often more
efficient than a replicated service since in the replicated case
requests reach the servers through an agreement layer and
execution is single-threaded.

C. Pipelined SMR

Having replicas execute commands sequentially by a sin-
gle thread does not imply that the whole replica’s logic
must be single-threaded; multiple threads on a replica can
cooperatively handle the requests. For example, one thread
receives the requests, another executes the requests, and a third
thread responds to the clients. In [17], the authors propose
a pipelined architecture to exploit the processing power of
multicore servers. The agreement layer (atomic broadcast) and
the replicas are organized as a collection of modules connected
through shared message queues where messages are totally
ordered (see Figure 1 (c)). Although staging improves the
throughput of state-machine replication, there is always only
one thread sequentially executing the commands.

D. Sequential Delivery-Parallel Execution (SDPE)

Replicas in classic state-machine replication, execute all the
commands sequentially by adhering to the order decided by the
agreement layer. It has been observed that a replica can execute
commands that access disjoint variables (independent com-
mands) concurrently without jeopardizing consistency [2]. The
notion of command interdependency is application-specific and
must be provided by the application developer or automatically
extracted from the service code. Recently, several replication
models have exploited command dependencies to parallelize
the execution on replicas. We discuss these techniques in this
and the next two sections.

To understand the concept of dependencies among com-
mands, consider a service composed of three objects x, y, and

Agreement and
VerificationAgreement and

Verification

Proxy

Proxy

ProxyProxy

AgreementAgreementAgreementAgreementAgreementAgreementAgreementAgreement

Proxy

Agreement

Scheduler

Replica

Application

Agreement

Replica

Service
Execution

Replica

Proxy

(b) Sequential SMR (d) SDPE (f) PDPE

Agreement

Service
Execution

Service
Execution

Server

(a) non-replicated

Application

Proxy

Application

Proxy

Application

Proxy

Proxy Proxy

Proxy

Proxy

Service
Execution

Replica

(c) Pipelined SMR

Agreement

Service
Execution

Application

Proxy

Proxy

Application

Agreement and
Verification

Proxy

(e) EV

Mixer

Replica

Service
Execution

Proxy

RequestResponse

Client Client Client Client Client Client

Fig. 1. Architecture differences among (a) non-replicated service, (b) sequential state-machine-replication, (c) pipelined state-machine replication, (d) sequential
delivery-parallel execution (SDPE), (e) execute-verify, and (f) parallel delivery-parallel execution. Agreement layer and replicas are fault-tolerant.

z and assume commands Cx, Cy , Cz , Cxy , where the indices
indicate the objects accessed and modified by the commands.
Commands Cx, Cy , and Cz access disjoint objects. Thus, they
are independent and can be executed in parallel at each replica.
Command Cxy depends on commands Cx and Cy and must
be serialized with Cx and Cy . Cxy can be executed in parallel
with Cz however.

To benefit from command inter-dependencies to parallelize
execution, some proposals add a deterministic scheduler (also
known as parallelizer) to the replicas [3]. The scheduler
delivers all the commands ordered through the agreement layer,
examines command dependencies, and distributes them among
a pool of worker threads for execution (see Figure 1 (d)). To
distribute the commands among threads, besides considering
dependencies, the scheduler can also balance the load among
threads. Threads that are less occupied can be given more
commands to execute if their execution does not conflict with
the commands that are being executed by other threads.

Although thanks to the scheduler the execution is par-
allelized, the scheduler delivers and dispatches commands
sequentially, which restrains the overall performance from
scaling. For this reason, we identify these techniques as
Sequential Delivery-Parallel Execution (SDPE). Adapting a
sequential policy for delivery has its roots in the requirements
of SMR where replicas deliver one and only one stream of
ordered commands. Synchronization between the scheduler
and the worker threads for dispatching commands is yet
another performance overhead of this model.

E. Execute-Verify (EV)

One of the shortcomings of the SDPE model is the
agreement layer, where only one stream of ordered requests
is generated. Eve addresses this issue by first executing the
requests on replicas and then verifying the correctness of the
states through a verification stage, hence named as Execute-
Verify (EV) (see Figure 1 (e)). Eve distinguishes one of the

replicas as the primary to which clients send their requests.
The primary replica organizes the requests into batches and
assigns to each batch a unique sequence number. The primary
then transmits the batched requests to the other replicas.
All the replicas, including the primary, are equipped with a
deterministic mixer. Using the application semantics, the mixer
converts a batch of requests to a set of parallel batches such
that all the requests in a parallel batch can be executed in
parallel. Once the execution of a parallel batch terminates,
replicas calculate a token based on their current state and
send their token to the verification stage. The verification
stage investigates the equality of the tokens. If the tokens are
equal, replicas commit the requests and respond to the clients.
Otherwise, replicas must roll back the execution and re-execute
the requests in the order determined by the primary as it was
batching the requests. The verification stage also adds to Eve
the advantage of detecting concurrency bugs.

Similar to the scheduler in the SDPE model, the mixer in
Eve may restrict the execution performance since the content
of all the requests must be scrutinized by the mixer before
they can be executed. Moreover, the primary replica might
be overwhelmed by the amount of requests it receives. The
verification stage is another synchronization point that besides
the mixer and the primary replica can threaten the scalability
of this approach.

F. Parallel Delivery-Parallel Execution (PEPD)

Motivated by the shortcomings of the previous models, P-
SMR proposes to parallelize command delivery in addition to
command execution [5]; hereafter we refer to this model as
Parallel Delivery-Parallel Execution (PDPE). P-SMR has no
scheduler and several threads on replicas concurrently deliver
and execute multiple disjoint streams of ordered commands.
To preserve correctness, commands in each stream must be
independent from the commands in any other stream. To ensure
independency among the concurrently delivered streams, un-

PDPE
Sequential SMR Pipelined SMR SDPE EV P-SMR opt-PSMR

Single coordination point Yes Yes Yes Yes No
Scalability None Limited Limited Limited Unlimited
Order on commands Total Total Total Total Partial
Load balancing None None Yes Yes Approximative
Application semantics No No Yes Yes Yes
Dependency tracking No No Server-side Server-side Client-side
Execution strategy Conservative Conservative Conservative Optimistic Conservative Optimistic
Rollback No No No Yes No Possibly

TABLE I. A COMPARISON AMONG APPROACHES TO PARALLELIZING STATE-MACHINE REPLICATION.

like previous approaches in which command dependencies are
determined at the replicas, in P-SMR command dependencies
are determined by the clients, before commands are ordered.
Commands in P-SMR are ordered by an atomic multicast li-
brary and clients multicast independent commands to different
multicast groups. P-SMR implements a fully parallel model
in which independent commands are ordered, delivered, and
executed in parallel. Dependent commands are ordered through
dedicated multicast groups and executed sequentially, as we
explain next (see Figure 1 (f)).

In P-SMR clients submit commands to the client proxies,
which determine the destination groups of commands based
on command dependencies. To guarantee concurrent execution
of independent commands, client proxies assign independent
commands to different multicast groups and to guarantee
sequential execution of dependent commands, client proxies
assign at least one common group to every two dependent
commands. The amount of concurrency in a service depends
on the interdependencies among the service’s commands. P-
SMR organizes server threads into K multicast groups such
that the i-th thread of each replica, ti, belongs to group gi. A
thread ti executes the commands broadcast to gi concurrent
to thread tj who executes the commands broadcast to gj . The
two threads, however, must synchronize their execution if a
command is multicast to both gi and gj . To synchronize, one
of the threads, chosen deterministically among the two threads,
ti, waits for a notification from the other thread, tj . tj notifies
ti and waits for a notification from ti to resume its execution.
Once ti executes the common command it notifies thread tj .

G. Summary

Table I shows the main differences among the techniques
we have discussed in this section. The table also contains opt-
PSMR, the approach we introduce in Section IV.

Both SDPE and EV have centralized entities that can limit
scalability: the scheduler and the agreement layer in SPDE;
the mixer, the primary replica, and the verification layer in EV.
PDPE does not include central roles in its design. Moreover,
differently from other approaches, PDPE orders requests using
an atomic multicast, as opposed to an atomic broadcast.

The parallelizer in SDPE and the mixer in EV also perform
load balancing on the server side. Although in a limited
way, clients in PDPE can try to distribute the load evenly
among server threads (e.g., by multicasting read commands
to different groups).

SPDE, EV, and PDPE rely on tracking command depen-
dencies to parallelize execution on replicas. In SDPE and
EV, command dependencies are checked on the server side.
In PDPE, however, it is the clients that track dependencies
and submit commands to the appropriate multicast groups.
Determining command dependencies in P-SMR is conservative
and can lead to false positives. In opt-PSMR, commands are
handled optimistically by the client proxies and on the server
side appropriate actions are taken to avoid inconsistencies.

Due to their optimistic nature, EV and opt-PSMR may be
subject to rollbacks. In opt-PSMR, however, depending on the
application, execution rollbacks might not be necessary as we
show in the next section.

IV. OPTIMISTIC P-SMR (OPT-PSMR)

In this section, we motivate the need for opt-SMR, describe
the novel technique in detail, and argue about its correctness.

A. Motivation for opt-PSMR

Consider a B+-tree service that stores key-value entries
where keys are integers and values are strings, and the
following operations are supported: read(in: int k,
out: char[] v), update(in: int k, char[]
v), delete(in: int k), insert(in: int k,
char[] v), where k is a key, v is a value, and in and
out specify the input and output parameters of a command
respectively.

P-SMR assumes a configurable multiprogramming level
(i.e., the number of threads at each replica). Assume there are
K threads per replica and the same number of groups so that
the i-th thread at each replica is part of the i-th group. Clients
(actually client proxies) map commands to groups using the
following strategy. Commands to read and update key k are
mapped onto a single group g (e.g., using range partitioning,
g = (b kK/M c)+1, where M is the value of the largest key
in the key space).

As a consequence, commands assigned to different groups
can execute concurrently on replicas, even if they all are
update operations. Commands on the same key are multicast
to the same group g and executed sequentially by the thread
associated with g. Unlike read and update operations,
insert and delete may cause structural changes in the
tree (i.e., splits and merges). Structural changes can spread to
many nodes of the tree and interfere with the execution of
other operations. Since it is impossible for a client to predict

these changes, to preserve correctness, clients conservatively
assume that insert and delete are dependent on all the
other operations and multicasts them to all the groups. All
threads in a replica deliver insert and delete commands.
Upon delivering such a command, threads coordinate so that
a single thread executes the command.

0

500

1000

1500

2000

2500

3000

0 10 25 50 75 100

T
hr

ou
gh

pu
t (

K
cp

s)

Percentage of dependent commands

P-SMR SMR �

Fig. 2. Throughput of P-SMR and SMR with a workload composed of
dependent and independent commands; for details of the experiment see
Section V.

The sequential mode of a multithreaded replica in P-SMR
is more expensive than the (sequential) execution mode of
a single-threaded replica in traditional SMR. To switch to
sequential mode, all the threads in P-SMR communicate and
pause their execution so that only one of the threads executes
dependent commands. In SMR, the single-threaded replica
simply delivers and executes a stream of commands, with-
out need of any synchronization operations. Synchronization
among threads has a negative impact on P-SMR’s performance.
Sequential execution of dependent commands is a must for
preserving consistency and thus, the performance overhead
incurred by the replica’s sequential execution mode is inherent
to P-SMR.

Figure 2 compares the performance of P-SMR and SMR
for the B+-tree example. As the percentage of insert
and delete operations in the workload increases (x-axis),
the throughput of P-SMR reduces and gradually falls below
the performance of SMR (for details of the experiment see
Section V). With 100% of dependent commands, threads in
P-SMR must coordinate for every delivered operation. The
difference in performance between SMR and P-SMR with
100% of dependent operations can be understood as the cost
of synchronizing threads. The break-even point of SMR and
P-SMR is when slightly fewer than half of commands are
dependent. With few dependent commands in the workload, P-
SMR largely outperforms SMR, since the execution is mostly
concurrent.

In light of the tradeoff shown in Figure 2, service designers
should strive to reduce command interdependencies (e.g.,
avoiding false sharing in the service data structures). Although
interdependencies cannot be always avoided, what really limits
P-SMR’s performance is that clients cannot accurately tell
when interdependencies happen since they do not have the

service’s state. Therefore, clients conservatively identify some
commands as dependent to prevent potential inconsistencies
that can arise due to their concurrent execution at the replicas.
In the B+-tree example, insert and delete operations are
among such commands. Clients multicast these commands to
all the groups and therefore all the threads on the replicas
deliver them and collaboratively enter the sequential mode.
Not all the insert and delete operations, however, result
in changes in the tree’s structure. This subset of commands
that are categorized as dependent but could be executed in
parallel are false positives. In fact, we can expect the number of
structural changes to decrease as the tree grows. Based on this
observation, in the next section we propose a new technique
to increase the concurrency of P-SMR in the presence of
dependent commands.

B. Overview of opt-PSMR

Inspired by the inefficiency of P-SMR at executing depen-
dent commands, and based on our observation in Section IV-A,
in this section we propose an optimistic technique to increase
concurrency of P-SMR.

Considering the impact that service state can have on
the command interdependencies, we differentiate between two
types of interdependencies: we refer to command interde-
pendencies as static, if they are determined irrespective to
the service state, and as dynamic, if they are determined
with respect to the service state. Static interdependencies are
known before runtime, that is, they can be assessed upon
inspecting the command’s code and parameters. For example,
two updates on the same entry are statically dependent. Dy-
namic interdependencies can only be known when commands
are executed, based on the state of the replica. Two insert
operations on different keys are dynamically dependent if they
lead to structural changes in the tree.

We recall from Section III-F that in P-SMR commands
are mapped to multicast groups by the client proxies. Since
client proxies do not have access to the service state, which
resides on the servers, client proxies cannot exploit dynamic
dependencies among commands. Client proxies handle dy-
namic dependencies by conservatively declaring the involved
commands as dependent. In opt-PSMR, clients handle dy-
namic dependencies by optimistically declaring the involved
commands as independent. Dynamic dependencies are tracked
at the servers. Upon detecting a dynamic dependency among
commands, the replica multicasts the command again, as a
dependent command. Note that dynamic dependency tracking
must be deterministic at replicas.

We define CC-G (conservative command-to-group) and
OC-G (optimistic command-to-group) functions, for mapping
the commands to multicast groups. CC-G is conservative
mapping used by P-SMR: it declares two commands depen-
dent if they have static dependencies or could possibly have
dynamic dependencies. OC-G is built on static dependencies
only; commands that may have dynamic dependencies only
are deemed independent.

A client proxy in opt-PSMR calls the OC-G function to de-
termine the groups to which commands will be optimistically
multicast. Whenever a worker thread tk on a server proxy si
delivers an optimistically multicast command C, tk performs

a safety check on C against the current state of the service.
A safety check is application specific and should be provided
by the application developer or automatically computed from
the service code. During the safety check, tk seeks to figure
the consequences of C’s execution on the state. Depending
on the application, the changes of a command’s execution on
the state can either be identified without actually executing the
command or during the execution of the command. Two cases
can happen as the result of safety check:

Fail. If the safety check identifies that the modifications of C to
the service state are detrimental to the concurrent execution of
other threads, tk fails C and calls the CC-G function to identify
the set of new groups to which the failed command must be
sent. In this case, we say that the optimistic assumption has
failed. If the safety check can be performed without executing
C, the replica’s state remains intact and a rollback is not
needed. Otherwise, if the safety check requires executing C,
then a fail must rollback C’s effects to the replica.

Pass. If the safety check decides that C’s execution will not
interfere with the concurrent execution of other commands we
say that the optimistic assumption has succeeded. In this case
if C was not executed during the safety check, tk executes
it. Otherwise, tk continues with the rest of the delivered
commands.

Since a failed command passes through the agreement
layer twice and it might require rollbacks, the cost of failed
commands is reflected on the latency and possibly the CPU
usage of the replicas, specially if rollbacks are needed. Thus
the optimistic assumption is of practical interest if for a given
execution, the ratio of fails is lower than the ratio of passes.

We illustrate opt-PSMR with the B+-tree example. In P-
SMR as a client proxy is not aware of the state changes caused
by the insert and delete operations, it conservatively
categorizes them as dependent and multicasts them to all
the multicast groups. A client proxy in opt-PSMR, however,
selects the multicast groups of these operations based on
the keys they access, similarly to the read and update
operations. The optimistic assumption in this example is that
the consequences of insert and delete operations will at
most affect the node that contains the accessed key. Basically,
the CC-G and OC-G functions can be defined as follows, where
K is the number of threads on replicas and M is the value of
the largest key in the key space:

function CC-G(cid, x)
if cid ∈ {read,update} : return(bxK/Mc)
else return(ALL GROUPS)

function OC-G(cid, x)
return(bxK/Mc)

If a thread tk on a server proxy delivers an insert or
delete operation that is multicast optimistically, it issues
a safety check against the current state of the tree. If tk
figures that the execution of the insert or delete will
cause changes that will propagate to other nodes of the tree,
it will fail the command and call the CC-G function and con-
servatively retry the command. Otherwise tk can successfully
execute the command. We note that in the B+-tree example,
the potential changes of a command’s execution on the tree’s

structure can be determined without actually executing it.
Therefore rollbacks are never needed.

Algorithm 1: Optimistic P-SMR (opt-PSMR)
1: A client proxy c executes a call to command C with

identifier cid and input and output parameters as follows:
2: γ ← OC-G(cid, input) {γ is the set of groups involved in C}
3: multicast(γ, [γ, opt , c, cid, input])
4: wait for first response
5: output ← response
6: return

7: Thread tk at a server proxy si executes a command as follows:
8: upon deliver([γ,mode, c, cid, input]) for the first time
9: if γ is a singleton then

10: if mode = opt then {is C in optimistic mode?}
11: if safety check(cid, input) fails then
12: γ ← CC-G(cid, input)
13: multicast(γ, [γ, csv , c, cid, input])
14: // Thread tk is in parallel mode
15: execute cid with input parameters
16: send response to c
17: else
18: // Thread tk is in synchronous mode
19: e← min{j : gj ∈ γ} {pick a thread deterministically}
20: if k = e then
21: for each j 6= k such that gj ∈ γ
22: wait for signal from tj
23: execute cid with input parameters
24: send response to c
25: for each j 6= k such that gj ∈ γ
26: signal tj {let thread tj resume its execution}
27: else
28: signal te
29: wait for signal from te {thread tk pauses its execution}

C. Algorithm in detail

Algorithm 1 presents opt-PSMR in detail, for the case in
which rollbacks are not needed (see Section V). To execute
command C, invoked by an application client (line 1 in
Algorithm 1), the client proxy determines all groups γ involved
in C using the OC-G function (line 2) and multicasts C and
its input parameters to groups in γ (line 3). The client proxy
then waits for the first response from the replicas (line 4),
assigns the response received to the output parameters of C
(line 5), and returns to the application (line 6). Upon delivering
C (line 8) for the first time, if C was multicast to a single
group (line 9), thread tk tests whether C is in optimistic mode
(line 10) and whether it fails the safety check (line 11), in
which case tk calls CC-G to conservatively determine the set
of groups involved in C (line 12) and multicasts C to the
groups specified by CC-G in conservative mode (line 13). If
C is in conservative mode, tk executes C in parallel mode
(line 15) and sends the response to client (line 16). If C was
multicast to multiple groups (line 18), then ti continues in
synchronous mode and determines the thread, te, among C’s
destinations, that will execute C (line 19). If tk is in charge
of executing C (lines 21–26), it waits for a signal from every
other thread in C’s destination set (lines 21–22), executes C
(line 23), sends the response to the client (line 24), and then
signals all other threads in C’s destination set to continue their
execution (lines 25–26). If tk is not in charge of C, it signals
thread te (line 28) and waits for C to complete (line 29).

 0

 2

 4

 6

 8

Fa
il

ra
te

 (
%

)

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400

Fa
ils

 (
K

cp
s)

Throughput (Kcps)

 0

 5

 10

 15

 20

 25

 30

0 200 400 600 800 1000 1200 1400

L
at

en
cy

 (
m

se
c)

Throughput (Kcps)

Avg

Passed

Failed

Fig. 3. The impact of failed commands on the latency of opt-PSMR with a dependent-only workload. The following metrics are shown: fail rate and number
of failed commands versus the throughput measured in Kilo commands per second (Kcps) (left graphs); latency in milliseconds for failed, passed, and all the
commands (right graph).

D. Correctness

In this section we argue that opt-PSMR is linearizable.
From the definition of linearizability (see Section II), there
must be a permutation π of commands in E that respects
(i) the real-time ordering of commands across all clients, and
(ii) the semantics of the commands. Our argument below relies
on the fact that P-SMR is itself linearizable [5]. opt-PSMR
differs from P-SMR for commands for which the output of
CC-G and OC-G functions differ. Here we argue that opt-
PSMR is linearizable for this subset of commands. Let Cx

and Cy be two commands in E submitted by clients cx and
cy , respectively, where at least for one of the commands the
outputs of CC-G and OC-G functions differ. There are two
cases to consider.

Case (a): For both commands Cx and Cy , the output of CC-G
and OC-G differ.

Before executing any of these commands a replica will
perform the safety check. We assume thread tx performs
the safety check for command Cx and thread ty performs
the safety check for command Cy . Three cases are possible:
(1) the safety check for both commands passes, (2) the safety
check for only one of the commands passes (without loss
of generality we assume this command is Cx), or (3) the
safety check for both the commands fail. In case (1), the
commands are independent and the correctness of this case
directly follows from the correctness of P-SMR at executing
independent commands [5]. In case (2), only command Cy is
executed and according to the replicas’ logic, command Cx

is not executed and must be multicast again with the output
of the CC-G function and treated as a dependent command.
The correctness of this case follows from the correctness of P-
SMR when executing dependent commands. In case (3), none
of the commands are executed, and therefore the state of the
replica is not changed. These commands are then multicast
again with the output of the CC-G function and similar to case
(2); correctness follows from P-SMR’s correctness at executing
dependent commands.

Case (b): For only one of the commands, either Cx or Cy , the
outputs of CC-G and OC-G functions differ.

Without loss of generality, we assume the outputs of
the CC-G and OC-G functions differ for command Cx. The
replicas will perform the safety check for command Cx only
and will directly execute command Cy . If the safety check for
command Cx passes, commands Cx and Cy are independent
and the correctness of this case follows directly from the
correctness of P-SMR with independent commands. If the
safety check fails, command Cx is multicast again as a
dependent command. The correctness of this case follows from
the correctness of P-SMR at executing dependent commands.

V. EVALUATION

In this section, we describe the environment in which we
conducted our experiments, comment on the implementation,
explain the experimental setup and the rationale behind the ex-
periments, and then report on our findings on the performance
of opt-PSMR and how it relates to other techniques.

A. Hardware setup

We ran all the tests on a cluster with two types of nodes:
(a) HP SE1102 nodes equipped with two quad-core Intel Xeon
L5420 processors running at 2.5 GHz and 8 GB of main
memory, and (b) Dell SC1435 nodes equipped with two dual-
core AMD Opteron processors running at 2.0 GHz and 4 GB of
main memory. The HP nodes are connected to an HP ProCurve
Switch 2910al-48G gigabit network switch, and the Dell nodes
are connected to an HP ProCurve 2900-48G gigabit network
switch. Each node is equipped with two network interfaces.
The switches are interconnected via a 20 Gbps link. The nodes
ran CentOS Linux 6.2 64-bit with kernel 2.6.32. Clients were
deployed on the Dell nodes; Paxos’s acceptors and servers were
deployed on the HP nodes.

B. Implementation

We use a B+-tree service to evaluate and compare the
SMR, P-SMR, and opt-PSMR techniques. Each entry includes
an 8-byte integer key, used as the tree index, and an 8-byte
value. The service supports all the commands described in
Section IV-A. There are two replicas and the tree is initialized
with 10 million keys on each replica.

0

500

1000

1500

2000

2500

3000

0 10 25 50 75 100

T
hr

ou
gh

pu
t (

K
cp

s)

Percentage of dependent commands

P-SMR

 SMR

 opt-PSMR

 0

 2

 4

 6

 8

Fa
il

ra
te

 (
%

)

 0

 3

 6

 9

 12

0 10 25 50 75 100

L
at

en
cy

 (
m

se
c)

Percentage of dependent commands

Fig. 4. The impact of dependent commands on the performance of SMR, P-SMR, opt-PSMR; x-axis shows the percentage of dependent commands in
the workload; the following metrics are shown: maximum throughput in Kilo commands executed per second (Kcps) (left); average latency in milli seconds
(bottom-right); the percentage of failed commands (top-right).

We implemented atomic multicast using Multi-Ring
Paxos [18]. Multicast groups in Multi-Ring Paxos are mapped
to one or more Ring Paxos instances [19]. In Multi-Ring Paxos,
a message can be addressed to a single group only, not to
multiple groups. To implement P-SMR and opt-PSMR, each
server thread ti in our prototypes belongs to two groups: one
group, gi, to which no other thread in the server belongs, and
one group gall, to which every thread in each server belongs.

The safety check function of opt-PSMR for the B+-tree
is implemented as follows. The key space is range parti-
tioned among the threads. Whenever a thread ti receives an
insert(k) or delete(k) operation that is optimistically
multicast, it first locates the leaf node α in the B+-tree where
the key will be inserted in or deleted from. Node α’s parent
in the tree points to α so that any key within range β1..β2
will be directed to α. The safety check passes if the following
conditions hold: (a) the insertion or deletion of the key will
not cause structural changes in the tree (e.g., the leaf node has
space for the insert or will not result in a merged in the case
of a delete); (b) the largest key in the partition assigned to
thread t(i−1) is smaller than β1; and (c) the smallest key in
the partition assigned to thread t(i+1) is greater than β2. Note
that conditions (b) and (c) check that no thread other than ti
will be accessing node α during the insertion (or deletion).

C. Experimental setup

In all the experiments clients select the keys uniformly.
Each experiment (i.e., a point in the graphs) is performed
for 60 seconds out of which the first and last 5 seconds are
discarded. We perform three sets of experiments:

• The first experiment measures the cost of failed
commands in opt-PSMR (see Section V-D). Failed
commands pass through the agreement layer twice and
are expected to negatively impact latency.

• The initial objective behind opt-PSMR is to overcome
the inefficiency of P-SMR at executing dependent
commands. In this experiment we vary the percentage
of dependent commands in the workload and seek to

see whether opt-PSMR achieves its goal in optimizing
P-SMR (see Section V-E).

• With a workload composed of dependent commands
only, as the number of threads in P-SMR increases the
performance reduces. In this experiment we compare
the performance of opt-PSMR versus P-SMR while
varying the number of threads (see Section V-F).

D. The Impact of failed commands on performance

Figure 3 shows the effect of failed commands on the
latency of opt-PSMR. There are 8 threads on each replica and
the workload is composed of insert and delete operations
only. Therefore, all the commands are optimistically multicast.
Differently from the algorithm, in our implementation when a
command fails, a replica notifies the corresponding client to
resubmit the command. Thus, failed commands traverse the
path between the client and the server twice. In the algorithm,
as presented in Section IV-C, the replicas multicast failed
requests themselves without informing the clients.

The top left graph shows the fail rate versus the through-
put. As the throughput increases the fail rate decreases. The
reason for the decrease is that although the number of failed
commands increases (bottom left graph), this growth is not
proportional to the increase in throughput. The right graph
shows three curves for latency: the average latency for all the
commands, average latency for failed commands, and average
latency for passed commands. As expected, the latency of
failed commands is approximately twice the latency of passed
commands. Since the number of failed commands is much
lower than the number of passed commands, the impact of
fails on the average latency is negligible.

E. The impact of dependent commands on performance

Figure 4 shows the maximum performance of SMR, P-
SMR, and opt-PSMR with a workload composed of read,
insert, and delete operations. Replicas of P-SMR and
opt-PSMR contain 8 threads each. In P-SMR insert and

0

250

500

750

1000

1250

0 1 2 4 6 8

T
hr

ou
gh

pu
t (

K
cp

s)

Number of threads

 0

 2

 4

 6

 8

Fa
il

ra
te

(%
)

 0

 3

 6

 9

 12

0 1 2 4 6 8

L
at

en
cy

 (
m

se
c)

Number of threads

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 7 8

pe
r-

th
re

ad
 n

or
m

al
iz

ed
 th

ro
ug

hp
ut

Number of threads

P-SMR

opt-PSMR

 0

 100

 200

 300

 400

 500

0 1 2 4 6 8

C
PU

 (
%

)

Number of threads

Fig. 5. The impact of the number of threads on the performance of P-SMR and opt-PSMR; the following metrics are shown: maximum throughput in Kilo
commands executed per second (Kcps) (top-left); normalized per-thread throughput (bottom-left); fail rate and average latency in milliseconds (top-right); CPU
usage (bottom-right)

delete operations are multicast to all the groups and there-
fore delivered by all the worker threads. In opt-PSMR however,
these operations are optimistically multicast based on the keys
they access. While the x-axis shows the percentage of depen-
dent commands in P-SMR and SMR, it shows the percentage
of optimistically multicast commands in opt-PSMR.

As the percentage of dependent commands in the workload
increases, the throughput of P-SMR decreases and at about
50% falls below SMR’s throughput. opt-PSMR’s throughput
however, remains above SMR’s throughput even with 100% of
dependent commands in the workload (left graph). As the per-
centage of the dependent commands in the workload increases
from 0 to 1, P-SMR suffers a big reduction in throughput. This
is an evidence of P-SMR’s inefficiency at executing dependent
commands even when dependent commands constitute only a
small fraction of the workload. opt-PSMR outperforms P-SMR
by a factor of 2.4 times.

The top graph on the right shows the fail rate in opt-PSMR.
The low fail rate is the reason opt-PSMR outperforms SMR
and P-SMR irrespective to the percentage of the dependent
commands in the workload. Latency is shown in the bottom
right graph. Latency of opt-PSMR is slightly higher than
the latency of SMR and P-SMR, mainly because opt-PSMR

achieves a higher throughput.

F. The impact of the number of threads on performance

Figure 5 shows the scalability of opt-PSMR and P-SMR
with a workload composed of 100% dependent commands. As
the top left graph indicates, by adding more threads to the repli-
cas, the throughput of opt-PSMR increases and the throughput
of P-SMR decreases. Notice that the workload includes only
dependent commands and thus all the threads in P-SMR must
deliver these commands and synchronize to provide exclusive
access of the service to only one of the threads. As more
threads are added to P-SMR, the synchronization overhead
increases and negatively affects the throughput. The low fail
rate of opt-PSMR (top right graph) helps it achieve scalable
performance.

The bottom left graph shows the normalized per-thread
throughput. Although opt-PSMR does not reach perfect scala-
bility due to the failed commands, its scalability is better than
P-SMR’s. The values of the latency in the top right graph show
that opt-PSMR’s gain in throughput does not incur high costs
on latency. The bottom right graph shows the CPU usage of
the techniques. opt-PSMR has higher CPU consumption due
to the higher number of requests executed.

VI. RELATED WORK

In Section III we have provided a thorough discussion
on parallel state-machine replication and reviewed the related
work, in this section we review general-purpose approaches
that can be used to implement parallel replicas and then briefly
overview optimistic approaches that are applied to replication
techniques.

General-purpose approaches. Allowing multiple threads to
execute commands concurrently may result in state and output
inconsistencies if dependent commands are scheduled differ-
ently in two or more replicas. In [20], [21], [22], [23] the
authors propose different approaches to enforcing deterministic
multithreaded execution of commands. These solutions impose
performance overheads and may require re-development of the
service using new abstractions. Another solution is to allow
one of the multithreaded replicas to execute commands non-
deterministically and log the execution path, which will be later
replayed by the rest of the replicas. Logging and replaying
have been mainly developed for debugging and security rather
than fault tolerance [24], [25], [26], [27], [28], [29], [30].
These approaches typically have high overhead due to logging
and may suffer from inaccurate replay, leading to differences
among original and secondary copies.

Optimistic techniques. Optimistic or speculative execution
has been suggested before as a mechanism to reduce the
latency of agreement problems. For example, in [31], [32]
clients are included in the execution of the protocol to reduce
the latency of Byzantine fault-tolerant agreement. In [9],
[10] the authors introduce atomic broadcast with optimistic
delivery in the context of replicated databases. Similar to [11]
the motivation is to overlap the execution of transactions or
commands with the ordering protocol, optimistically assuming
that the outcome of the agreement layer will comply with
the execution order. Our optimistic strategy differs from these
approaches in that it only involves clients and replicas and not
the agreement layer. Moreover for some applications, a safety
check is sufficient to avoid the need for execution rollbacks,
as we showed with a B+-tree example.

VII. CONCLUSION

State-machine replication is a well established replication
technique and has been extensively discussed in the literature.
In this paper, we concentrated on works that deal with adapting
state-machine replication to parallel services. We reviewed
existing proposals and compared their architectures. Our com-
parison showed that among existing techniques, P-SMR has a
more scalable architecture in that unlike other approaches its
design model does not include centralized components. We
built on the scalable design of P-SMR and by identifying
its shortcomings proposed a novel technique based on an
optimistic strategy that was able to significantly boost its
performance.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[3] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in DSN, 2004.

[4] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin, “Eve: Execute-verify replication for multi-core servers,” in
OSDI, 2012.

[5] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” ICDCS, 2014.

[6] F. Pedone and A. Schiper, “Optimistic atomic broadcast,” in DISC,
1998.

[7] L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–
103, 2006.

[8] A. L. P. F. de Sousa, J. O. Pereira, F. Moura, and R. C. Oliveira,
“Optimistic total order in wide area networks,” in SRDS, 2002.

[9] R. Jiménez-Peris, M. Patiño Martı́nez, B. Kemme, and G. Alonso,
“Improving the scalability of fault-tolerant database clusters,” ICDCS,
2002.

[10] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing trans-
actions over optimistic atomic broadcast protocols,” ICDCS, 1999.

[11] P. J. Marandi, M. Primi, and F. Pedone, “High performance state-
machine replication,” DSN, 2011.

[12] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[13] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems, vol. 16, pp. 133–169, May 1998.

[14] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simu-
lations, and Advanced Topics. Wiley-Interscience, 2004.

[15] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, 1984.

[16] A. S. Tanenbaum, Distributed operating systems. Pearson Education
India, 1995.

[17] N. Santos and A. Schiper, “Achieving high-throughput state machine
replication in multi-core systems,” in ICDCS, 2013.

[18] P. J. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in DSN,
2012.

[19] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A
high-throughput atomic broadcast protocol,” in DSN, 2010.

[20] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-enforced
deterministic parallelism,” in OSDI, 2010.

[21] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic process
groups in dos,” in OSDI, 2010.

[22] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic
shared memory multiprocessing,” in ASPLOS, 2009.

[23] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proc. VLDB Endow., vol. 3, pp. 70–80, Sept. 2010.

[24] G. Altekar and I. Stoica, “ODR: output-deterministic replay for multi-
core debugging,” in SOSP, 2009.

[25] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in VEE, 2008.

[26] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently,” in ISCA, 2008.

[27] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu,
“PRES: probabilistic replay with execution sketching on multiproces-
sors,” in SOSP, 2009.

[28] M. Ronsse and K. De Bosschere, “Recplay: a fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, pp. 133–152,
May 1999.

[29] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “DoublePlay: parallelizing sequential logging
and replay,” SIGPLAN Not., vol. 47, pp. 15–26, Mar. 2011.

[30] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder” for enabling
full-system multiprocessor deterministic replay,” in ISCA, 2003.

[31] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” SOSP, 2007.

[32] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and
B. Liskov, “Tolerating latency in replicated state machines through
client speculation,” in NSDI, 2009.

	I Introduction
	II System model and assumptions
	III A Survey on Parallel SMR
	III-A Non-replicated setup
	III-B Sequential SMR
	III-C Pipelined SMR
	III-D Sequential Delivery-Parallel Execution (SDPE)
	III-E Execute-Verify (EV)
	III-F Parallel Delivery-Parallel Execution (PEPD)
	III-G Summary

	IV Optimistic P-SMR (opt-PSMR)
	IV-A Motivation for opt-PSMR
	IV-B Overview of opt-PSMR
	IV-C Algorithm in detail
	IV-D Correctness

	V Evaluation
	V-A Hardware setup
	V-B Implementation
	V-C Experimental setup
	V-D The Impact of failed commands on performance
	V-E The impact of dependent commands on performance
	V-F The impact of the number of threads on performance

	VI Related Work
	VII Conclusion
	References

