
Practical Experience Report:
The Performance of Paxos in the Cloud

Parisa Jalili Marandi
University of Lugano

Switzerland

Samuel Benz
University of Lugano

Switzerland

Fernando Pedone
University of Lugano

Switzerland

Ken Birman
Cornell University

USA

Abstract—This experience report presents the results of an
extensive performance evaluation conducted using four open-
source implementations of Paxos deployed in Amazon’s EC2.
Paxos is a fundamental algorithm for building fault-tolerant
services, at the core of state-machine replication. Implementations
of Paxos are currently used in many prototypes and production
systems in both academia and industry. Although all protocols
surveyed in the paper implement Paxos, they are optimized in a
number of different ways, resulting in very different behavior,
as we show in the paper. We have considered a variety of
configurations and failure-free and faulty executions. In addition
to reporting our findings, we propose and assess additional
optimizations to existing implementations.

I. INTRODUCTION

In this experience report we present the results of an
extensive performance evaluation we conducted with open-
source implementations of Paxos [1] deployed in Amazon’s
EC2, a public cloud-computing environment.1 Our study is
motivated by the fact that many online services deployed in the
cloud require both high availability and sustained performance.
High availability is achieved by means of replication, using
techniques such as state-machine replication [2] and primary-
backup replication [3]. At the core of these techniques lies
an agreement protocol (e.g., [1], [4]). A large variety of
such agreement protocols exist in the literature that solve the
problem under many different system assumptions [5]. Among
these protocols Paxos has received much attention in recent
years both from the industry (e.g., [6], [7]) and the academia
(e.g., [8], [9], [10]). Paxos has many desirable properties:
It is safe under asynchronous assumptions, live under weak
synchronous assumptions, and resiliency-optimal, that is, it
requires a majority of non-faulty processes (i.e., acceptors) to
ensure progress. Consequently, many distributed systems rely
on Paxos for high availability (e.g., Chubby [11], Spanner [12],
Autopilot [13]).

Several recent papers have reported on the performance
of Paxos implementations, mostly under “normal conditions”
(e.g., [8], [9], [14], [15]), that is, deployments with homoge-
nous nodes, balanced communication links, and the absence of
failures. While differences in the implementations impact over-
all performance, these reports typically show steady behavior
in the normal case. Yet, anecdotal evidence tells that under
less favorable conditions (e.g., after the failure of a node),
Paxos may lose its sustained performance. Intuitively, this is
explained by the fact that by relying on a quorum of acceptors
for progress, Paxos may proceed at the pace of the quorum of

1http://aws.amazon.com/ec2/

faster acceptors, leaving slower acceptors lagging behind with
an ever-increasing backlog of requests. Paxos implementations
generally read and process messages in arrival order, hence
even if the messages in question relate to protocol actions
that long since have been completed, they will be read and
processed just as if they are associated with pending decisions.
All of this will take time, hence should a fast acceptor fail
and a slow one be needed to form a quorum, the system may
experience a performance hiccup, corresponding to the time it
takes for the slower acceptor to catch up. Bursty behavior is
undesirable because it can cascade into the application, within
which end-user requests may be piling up and replicas falling
behind.

We set out to understand to what extent existing imple-
mentations genuinely suffer from this phenomenon and if
so, under what conditions. To this end we evaluated four
open-source implementations of Paxos, S-Paxos, OpenReplica,
Ring Paxos, and Libpaxos under different message sizes in
four configurations: (a) a homogeneous set of nodes in the
same availability zone (i.e., datacenter); (b) two heterogeneous
configurations with nodes in the same availability zone; and
(c) homogeneous nodes distributed across different availability
zones. In each case we considered executions with and without
participant failures. These configurations represent the deploy-
ment of many current online services in the cloud. Placing
replicas on a set of nodes with similar hardware characteristics
(configuration (a)) is probably the most common configura-
tion used in experimental evaluations. Heterogeneous settings
(configuration (b)) may arise involuntarily (e.g., if applications
run in a virtual machine whose physical node turns out to be
shared among other applications) or voluntarily: a designer
might choose to deploy Paxos in this manner, perhaps to
reduce the perceived risk of correlated failures, or to reduce
cost, for example by paying for 3 powerful nodes and 1 or
2 weaker backup nodes (e.g., Cheap Paxos [16] is a variation
of Paxos that exploits this alternative). In addition to these
two configurations, the participants of a service can be geo-
graphically distributed (configuration (c)) to improve locality
and availability. Locality reduces user-perceived latency and is
achieved by moving the data closer to the users. Availability
improves as the service can be configured to tolerate the crash
of a few nodes within a datacenter or the crash of multiple
sites.

By evaluating the four open-source Paxos libraries under
these configurations we show that standard Paxos implemen-
tations sometimes have unexpected behavior and long delays,
although the phenomenon varies and depends on the details

ar
X

iv
:1

40
4.

67
19

v1
 [

cs
.D

C
]

 2
7

A
pr

 2
01

4

of the implementations: some protocols are more prone to
problematic behavior; others are more robust but at the price
of reduced performance. Our experience with the open-source
libraries show that selecting the right implementation depends
on the demands of the clients of the Paxos protocol and
the environment in which a Paxos implementation will be
deployed.

The remainder of this paper is organized as follows. In
Section II we briefly review Paxos. In Section III we describe
the libraries used in our performance evaluation with emphasis
on their flow control mechanisms, and propose optimizations
to one of them. In Section IV we detail our experimental setup
and present the results. In Section V we discuss the main
lessons we have learnt while interacting with these libraries
and we conclude the paper in Section VI.

II. BACKGROUND

Paxos assumes a distributed system model in which pro-
cesses communicate by exchanging messages. Processes may
fail by crashing but never perform incorrect actions. Although
there are variations of Paxos that tolerate arbitrary process
behavior (e.g., [17], [18]), such failures are not the focus of
this paper.

Paxos distinguishes the roles of proposer, acceptor, and
learner, where a process can play one or more roles simul-
taneously. Each instance of Paxos proceeds in two phases: In
Phase 1, the leader or coordinator (e.g., a process among the
acceptors or proposers) selects a unique round number c-rnd
and asks the acceptors to promise that in the given instance
they will reject any requests (Phase 1 or 2) with round number
less than c-rnd. Phase 1 is completed when a majority-quorum
Qa of acceptors confirms the promise to the leader. Notice that
since Phase 1 is independent of the value proposed it can be
pre-executed by the leader [1]. If any acceptor already accepted
a value for the current instance, it will return this value to the
leader, together with the round number received when the value
was accepted (v-rnd).

Once a leader completes Phase 1 successfully, it can
proceed to Phase 2. In Phase 2, the leader selects a value
according to the following rule: if no acceptor in Qa accepted
a value, the leader can select any value. If however any of
the acceptors returned a value in Phase 1, the leader is forced
to execute Phase 2 with the value that has the highest round
number v-rnd associated to it. In Phase 2 the leader sends a
message containing a round number (the same used in Phase
1). Upon receiving such a request, the acceptors acknowledge
it, unless they have already acknowledged another message
(Phase 1 or 2) with a higher round number. Acceptors update
their c-rnd and v-rnd variables with the round number in the
message. When a quorum of acceptors accepts the same round
number (Phase 2 acknowledgement), consensus terminates: the
value is permanently bound to the instance, and nothing will
change this decision. Thus, learners can deliver the value.
Learners learn this decision either by monitoring the acceptors
or by receiving a decision message from the leader.

As long as a nonfaulty leader is eventually selected and
there is a majority quorum of nonfaulty acceptors and at
least one nonfaulty proposer, every consensus instance will
eventually decide on a value. A failed leader is detected by

the other nodes, which select a new leader. If the leader does
not receive a response to its Phase 1 message it can re-send
it, possibly with a bigger round number. The same is true for
Phase 2, although if the leader wants to execute Phase 2 with
a higher round number, it has to complete Phase 1 with that
round number. Eventually the leader will receive a response
or will suspect the failure of an acceptor.

III. OPEN-SOURCE PAXOS LIBRARIES

In our evaluation, we worked with four open-source Paxos
implementations. Recall that Paxos requires a majority-quorum
for progress (i.e., it remains operational despite the failure of f
acceptors out of 2f+1). As soon as a participant (e.g., leader)
receives a majority of Phase 2B messages for a value in an
instance, the participant knows the instance is decided. We call
this quorum the participant’s first majority-quorum. Different
participants may have distinct first majority-quorums, but if an
acceptor is “slow”, then it is unlikely to participate in any first
majority-quorum. In fact, one can expect that a first majority-
quorum will likely contain “fast” acceptors only.

An acceptor can be slow for many reasons. For example,
perhaps the slow acceptor cannot keep up with the fast
acceptors because it is running on a node with less processing
power than the fast acceptors or its CPU is shared among
several processes. It could also be that its communication links
are subject to higher latencies than the other nodes’ links.
Whatever the reason, the notions of slow and fast acceptors
are important because Paxos is quorum-based, moving from
one instance to the other as soon as a majority of acceptors is
prepared to do so. In the following, we argue that in principle
such a distinction between acceptors may have performance
implications, notably in the case of failures. In the subsequent
section, we assess this phenomenon experimentally.

A. S-Paxos

S-Paxos [15] is implemented in Java.2 It is composed of
a set of replicas, each one playing the combined roles of
proposer, acceptor and learner. One of the replicas is elected
the leader. The key idea in S-Paxos is to load-balance request
reception and dissemination among all the replicas. A client
selects an arbitrary replica and submits its requests to it. After
receiving a request, a replica forwards it (or possibly a batch
of requests) to all the other replicas. A replica that receives a
forwarded request sends an acknowledgement to all the other
replicas. When a replica receives f + 1 acknowledgements, it
declares the request stable. This is needed because in S-Paxos
ordering is performed on request ids. As in classic Paxos,
the leader is responsible for ordering requests. A participant
considers an instance decided after receiving f + 1 Phase 2B
messages from the acceptors. All the replicas execute all
the requests but only the replica who receives the request
responds to the client. S-Paxos strives to balance CPU and
network resources, but many messages must be exchanged
before a request can be ordered. Due to the high number of
messages exchanged, S-Paxos is CPU-intensive and benefits
from deployment on powerful multi-core machines.

S-Paxos uses blocking I/O for the communications among
replicas. As mentioned earlier, a replica forwards batches of

2https://github.com/nfsantos/S-Paxos

requests to all the other replicas. If a replica is slow in handling
its incoming traffic, another replica will block upon sending
new messages to the slow replica since communication is based
on TCP. Thus, faster acceptors cannot transfer more batches to
the slow replica and we expect the performance of the system
to follow the speed of the slowest replica. Moreover, since
S-Paxos is designed around the idea of distributing the load
among acceptors, reducing the number of acceptors (e.g., due
to failures) may result in reduced performance.

B. OpenReplica

OpenReplica is an open-source library implemented in
Python3 that enables automatic replication of user-provided
objects [19]. OpenReplica is composed of a set of replicas and
a set of acceptors. Replicas are the processes that replicate an
object; in Paxos’s parlance, they play the “learner” role. One of
the replicas is also the leader in Paxos. In OpenReplica clients
send their requests to a client proxy who batches the requests.
The client proxy then connects to the pool of replicas to send
the batched requests and OpenReplica ensures that the requests
are forwarded to the leader to be ordered. Replicas deliver
and execute the sequence of requests in the order dictated by
instance identifiers. After executing a request replicas respond
to the clients.

The leader in OpenReplica uses non-blocking I/O to com-
municate with the acceptors. If the transmission of a message
to an acceptor cannot happen immediately (e.g., because the
communication buffer associated with the acceptor is full), the
leader is notified and retries the transmission until it succeeds.
If an acceptor is slower than the others, its buffers will fill up
faster and communications with it will cause retransmissions
at the leader. This affects performance because the leader will
work harder and some portion of its I/O bandwidth will be
lost to retransmissions. If during the time it takes for the slow
acceptor to catch up a fast acceptor crashes, we can expect a
further reduction in performance since a majority-quorum of
acceptors will not be available immediately given that the slow
acceptor is needed to form a majority-quorum.

C. Ring Paxos

Ring Paxos is an open-source Paxos library implemented
in Java.4 (There is also a C implementation of Ring Paxos5

that relies on ip-multicast; we use the Java version, based
entirely on unicast communication.) Ring Paxos disseminates
processes on a logical uni-directional ring to make a balanced
usage of the available bandwidth [20]. A process in Ring
Paxos can play the roles of the acceptor, proposer, learner, and
coordinator. One of the acceptors is elected as the leader. Ring
Paxos handles leader election and the ring’s configuration via
Zookeeper.6 Clients submit their requests to those processes in
the ring that assume the role of proposers. Proposers batch the
requests and forward them along the ring. The leader initiates
Paxos for the batches of requests that it assembles and the
batches it receives from other processes in the ring. Acceptors
create Phase 2B messages and send them to their successors.

3https://pypi.python.org/pypi/concoord
4https://github.com/sambenz/URingPaxos
5http://sourceforge.net/projects/libpaxos/files/RingPaxos/
6http://zookeeper.apache.org/

Processes that are not acceptors simply forward Phase 2B
messages they receive to their successors. The final decision is
made by the acceptor that receives f + 1 Phase 2B messages.
The decision circulates in the ring until all processes receive
it. The learners deliver instances following instance identifiers.

Processes in the ring communicate using TCP; learners
send replies to the clients through UDP. All communications
is based on non-blocking I/O. Both clients and processes in
the ring can batch messages. In a ring, a slow process can
negatively affect the overall performance as it may become
a system’s bottleneck. We expect the ring to operate at the
speed of the slowest acceptor. If an acceptor leaves the ring,
Ring Paxos will reconfigure the ring and during reconfiguration
performance may suffer.

D. Libpaxos

Libpaxos is implemented in C.7 It distinguishes proposers,
acceptors, and learners, where proposers are also learners.
Libpaxos does not handle leader election. Applications must
decide how to ensure the existence of a single leader (e.g., one
option is to use Zookeeper). To submit requests, clients connect
directly to the proposers. Acceptors send their Phase 2B
messages, including the agreed value, to the proposers and to
the learners. Upon receiving f+1 Phase 2B messages from the
acceptors, the learners and the proposers declare an instance
as decided. The learners deliver instances following instance
identifiers.

Processes in Libpaxos communicate using non-blocking
buffered I/O provided by the libevent library.8 Libpaxos does
not explicitly batch the requests; batching is implemented
by the buffered communication provided by libevent. Besides
sending Phase 2B messages, an acceptor also sends values to
the learners and proposers, therefore, the acceptor’s outgoing
traffic is higher than its incoming traffic. A slow acceptor may
become overwhelmed by a high volume of incoming messages,
in which case messages will pile up at the sender’s side, or
by a high rate of outgoing messages, in which case messages
will pile up at acceptor’s side.

In either case, until a slow acceptor becomes overwhelmed,
performance in Libpaxos will be driven by the faster acceptors.
If a fast acceptor crashes and a slow acceptor is needed to
form a majority quorum, the system may experience periods
of inactivity until the slow acceptor processes its backlog of
requests.

E. Libpaxos+

Motivated by our observations on the behavior of Libpaxos,
presented in the next section, we created Libpaxos+, an exten-
sion to the original protocol. The key idea is for proposers to
selectively involve acceptors in Paxos’s Phase 2 based on how
the acceptors performed in previous instances. If an acceptor
was not in the first majority-quorum of past instances, then it
might be a slow acceptor and should be spared in the next few
instances. Libpaxos+ thus attempts to reduce the backlog of
slow acceptors in order to allow them to catch up, so that they

7https://bitbucket.org/sciascid/libpaxos
8http://libevent.org

Configuration Type Environment Leader∗ A1 A2 A3 Learner†

(a) Homogeneous LAN Small
(b) Heterogeneous LAN Small Micro Small
(c) Heterogeneous LAN Large Small Micro Small
(d) Homogeneous‡ WAN Small

TABLE I. CONFIGURATIONS USED IN THE EVALUATIONS. (LEGEND: ∗THE LEADER IN S-PAXOS AND RING PAXOS IS ALSO ACCEPTOR A1 AND THE
LEADER IN OPENREPLICA IS ALSO THE REPLICA. †THE CONCEPT OF AN INDEPENDENT LEARNER ONLY EXISTS IN LIBPAXOS AND RING PAXOS. ‡
ALTHOUGH MACHINES IN THIS CONFIGURATION ARE HOMOGENOUS, THE ACCEPTOR IN THE REMOTE DATACENTER, A3, IS CONNECTED TO OTHER

PROCESSES WITH A LOWER BANDWIDTH.)

can achieve better response times later in instances in which
they participate.

We modify a proposer so that its execution is divided into
steps, where a step is a sequence of Paxos instances. In the first
instances in the step, the proposer sends Phase 2A messages to
all acceptors and records the number of instances each acceptor
is included in the first majority-quorum. In the following
instances in the step, the proposer sends Phase 2A messages
to a majority-quorum only, composed of those acceptors who
appeared most often in the initial instances. A step finishes
when a pre-determined number of instances are executed or the
proposer suspects the crash of an acceptor among the selected
ones to participate in the instance.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental setup, explain
our methodology for the experiments, report on the peak
performance of each library under various conditions, and
analyze each library under failures.

A. Experimental setup

Hardware setup. All the experiments are performed in Ama-
zon’s EC2 infrastructure with a mix of small, micro, and large
instances, as detailed next. In all the experiments each process
runs on a separate Amazon EC2 instance. In the following,
one EC2 compute unit provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, vCPU
represents the number of virtual CPUs for the instance.

• Micro: up to 2 ECUs (EC2 Compute Unit), 1 vCPUs,
0.613 GBytes memory, very low network capacity.

• Small: 1 ECUs, 1 vCPUs, 1.7 GBytes memory, 1x 160
GBytes of storage, low network capacity.

• Large: 4 ECUs, 2 vCPUs, 7.5 GBytes memory, 2x 420
GBytes of storage, moderate network capacity.

All servers run Ubuntu Server 12.04.2-64 bit and the socket
buffer sizes are equal to 16 MBytes.

Configurations. We measure the performance of S-Paxos,
OpenReplica, Ring Paxos, and Libpaxos in four different
configurations (see Table I). In S-Paxos and Ring Paxos one
of the acceptors plays the role of the leader and thus in Table I
the leader represents acceptor A1 for S-Paxos and Ring Paxos.
For each configuration, all the libraries are evaluated with three
request sizes: 200 Bytes, 4 KBytes, and 100 KBytes. All the
libraries are in-memory in our experiments. Ring Paxos relies
on Zookeeper for ring’s configuration. Session timeout for the
Zookeeper is set to 3 seconds in all the experiments.

In the experiments performed in a LAN, all the instances
are deployed in the US-West-2c region. In the experiments
performed in a WAN, processes are distributed among three
availability zones: In the experiments with Libpaxos and Open-
Replica the leader, A2, the learner, and clients are located in
US-West-2c, A1 is located in US-West-2b, and A3 is located in
US-East-1b. In the experiments with S-Paxos and Ring Paxos
the leader (A1), the learner (in Ring Paxos), and the clients are
located in US-West-2c, A2 is located in US-West-2b, and A3
is located in US-East-1b. moreover, in all the experiments with
Ring Paxos, a stand alone version of Zookeeper is deployed
on a micro instance located in US-East-1c. As a reference,
the RTT value is 1.5 ms (millisecond) in US-West-2c, 3.9 ms
between US-West-2b and US-West-2c, 82 ms between US-
West-2c and US-East-1b, and 90 ms between US-West-2b and
US-East-1b.

Architectural differences. Figure 1 illustrates the inter-
process communication patterns and architectural differences
of the four libraries while preserving their specific terminology
(for the details see Section III). Notice that the terms leader,
proposer, and coordinator convey the same concept and so
do the terms replica and learner. In Ring Paxos, however,
proposer refers to any node that receives requests from clients
and forwards them to other processes. In all the experiments,
there are three acceptors in all the libraries and f is equal to
one. In S-Paxos and Ring Paxos, the leader (or the coordinator)
role is assumed by one of the acceptors (acceptor A1). In
OpenReplica and Libpaxos, however, a separate process is
elected as the leader (or proposer).9

In the experiments with OpenReplica, each client process
has a client proxy (as a separate module in the client process)
that batches the requests of the client and sends them to the
leader. The client waits for the responses before submitting
new requests. Similarly to OpenReplica in Ring Paxos a client
has a module for batching the requests. The client proxy
batches the requests and sends them to an acceptor that also
plays the role of proposer. The size of a batch is 12 KBytes in
all the experiments. Batching in Ring Paxos has been disabled
throughout the experiments. In the experiments with S-Paxos,
a client sends a request to a randomly chosen replica and waits
for its response before sending a new request. A replica batches
requests before disseminating them to the other replicas. In
our experiments this batch size is 1KByte. Also note that
the batch sizes in these two libraries are chosen to get the
best performance. In the experiments with Libpaxos, to ensure
progress we have configured a single proposer. Clients send
a request to the proposer and wait for the request’s response
from the learner before sending a new request.

9We emphasize that the differences in the deployments are due to the unique
properties of the libraries rather than the choices made by the authors.

(b) OpenReplica

Client

Client
Proxy

A1

A2

A3

Leader/Replica
A1/

Coordinator

A2

A3

Learner

Client

(c) Ring Paxos

A1
A2

A3

Proposer/
Learner

Learner

Client

(d) Libpaxos

A1/
Leader/
Learner

A3/
Learner

A2/
LearnerClient

(a) S-Paxos

Client
Proxy

Client-Learner communication
Paxos communication

Fig. 1. The communication pattern and architectural differences among the four libraries as deployed in the experiments; f is equal to one; the picture preserves
the terminology of the libraries; dashed lines show the communications between the learner/replica and the clients; in all the libraries the learner/replica sends
the responds back to the client; in S-Paxos and OpenReplica clients send their requests to the nodes that also assume the learner/replica role.

B. Methodology

The goal of our performance assessment is twofold: first,
we measure the peak performance of S-Paxos, OpenReplica,
Ring Paxos, and Libpaxos in a set of configurations as il-
lustrated in Table I (see Section IV-C for details). Second,
we select a subset of these configurations to take a closer
look at the flow control mechanisms of the libraries (see
Sections IV-D, IV-E, IV-F, IV-G). Since libraries are different
in their implementation and communication strategies, the
configurations we choose vary across libraries. Table II enlists
the set of the chosen configurations. We note that space
limitations and the large variety of possible configurations
force us to focus on a few cases. These results were selected
from a much larger set of experiments we have performed and
were chosen to clearly reveal each library’s behavior.

Library [Conf. ,Size]

S-Paxos [(b),4] [(d),4]

OpenReplica [(c),100] [(d),4]

Ring Paxos [(b),100] [(d),4]

Libpaxos [(b),4] [(d),4]

TABLE II. CONFIGURATIONS IN WHICH WE EVALUATE THE FLOW
CONTROL MECHANISM OF THE OPEN-SOURCE LIBRARIES.

C. Peak performance

Figure 2 displays the results for peak performance. The
graphs in this figure measure the following performance met-
rics from top to bottom: delivery throughput in megabits per
second, delivery throughput in number of decided instances per
second, and CPU usage at the leader. Note that the number of
requests delivered per second is directly proportional to the
delivery throughput in megabits per second. Each experiment
is performed for a period of 100 seconds and the first and
last 10 seconds are discarded. S-Paxos, Ring Paxos, and
OpenReplica are multithreaded and therefore in some scenarios
(configuration (c)) the CPU usage at the leader is higher than
100%.

The following patterns can be discerned from Figure 2.
When comparing the throughput, unless stated otherwise, the
values of throughput in Mbps are considered (top-most graph).

• For all implementations and configurations, as we
would expect, throughput improves as the request
size increases, although the improvement is more
noticeable from small to medium messages. In most of
the configurations, OpenReplica and Libpaxos show
similar performance, better than S-Paxos and Ring
Paxos’s performance.

• We now assess each protocol when we replace one
of the small acceptors in configuration (a) with a
slower acceptor (see configuration (b) in Table I).
Regardless of request size, performance of Libpaxos
and OpenReplica does not change between configu-
rations (a) and (b) since their execution is driven by
the fastest majority-quorum and in both configurations
there is a majority-quorum that contains two small
acceptors. The throughput of S-Paxos and Ring Paxos
in configuration (b) is lower than in configuration (a)
since S-Paxos and Ring Paxos adapt their performance
to the speed of the slowest member.

• When we placed the leader in configuration (b) in a
more powerful node, configuration (c), we observed
that in all protocols except Ring Paxos the throughput
increased, regardless of the request size. The leader of
Ring Paxos is not CPU-bound in configuration (b) and
therefore replacing the leader by a stronger machine
had no effect in its performance.

• To understand the effects of geographical deployments
on the performance, compare the results in configura-
tions (a) and (d). The performance of Libpaxos and
OpenReplica do not change between the two config-
urations: in both configurations there is a majority-
quorum in the vicinity of the proposer (leader) in the
two libraries. Hence, Libpaxos and OpenReplica are
not limited by the slow links between the proposer
and the acceptor located in a remote region (US-East).
Performance of S-Paxos and Ring Paxos on the other
hand is dictated by the slowest link.

• In most of the configurations and with small requests
the leader in Libpaxos and OpenReplica is CPU-
bound. Except for configuration (c), S-Paxos is always
CPU-intensive. This happens because threads con-
stantly spin while waiting for events (e.g., a message

 1

 10

 100

 1000
T

hr
ou

gh
pu

t (
M

bp
s)

Libpaxos S-Paxos OpenReplica Ring Paxos

10

100

1K

10K

100K

T
hr

ou
gh

pu
t (

in
st

/s
ec

)

0

40

80
100
120

160

200B 4KB 100KB 200B 4KB 100KB 200B 4KB 100KB 200B 4KB 100KB

C
PU

 a
t l

ea
de

r
(%

)

Configuration (a) Configuration (b) Configuration (c) Configuration (d)

Fig. 2. Peak performance of Libpaxos, S-Paxos, Ring Paxos, and OpenReplica in four configurations (see Table I); y-axis in the two top-most graphs is in
log scale; note that S-Paxos, Ring Paxos, and OpenReplica are multithreaded and therefore in some scenarios (configuration (c)) the CPU usage at the leader is
higher than 100% for some of the libraries.

to arrive). Ring Paxos is never CPU-bound.

• Although all the implementations achieve more or less
comparable peak throughput (in Mbps), the number of
instances decided per second varies across them. We
attribute this to differences in their batch sizes and
also the processes in which batching takes place.

D. S-Paxos under failures

Figure 3 shows the performance of S-Paxos in configura-
tion (b) with 4 KByte requests, under 70% of peak throughput
and also in configuration (d) with 4 KByte requests over a
period of 150 seconds and at peak throughput. The top graphs
show the delivery throughput in megabits per second and the
bottom graphs show the corresponding latency in milliseconds.
In the experiments, after 50 seconds of the execution one ac-
ceptor is terminated. In S-Paxos the load is distributed among
acceptors and the execution proceeds at the pace of the slowest
or the most distant acceptor. Thus, in both configurations
after the termination of acceptor A3, throughput increases
and latency decreases. This happens because performance is
no longer limited by the slow acceptor. However, after the
termination of acceptor A2, throughput decreases and latency
increases. This is a consequence of the fact that acceptor A2
no longer contributes its share to the performance.

E. OpenReplica under failures

The left-most graphs of figure 4 shows the performance of
OpenReplica at configuration (c) with 100 KByte requests for a
duration of 350 seconds at peak performance. In this execution,
throughput varies between two values. During intervals in
which all the acceptors are responsive, throughput is higher.
Throughput is lower when the leader needs to devote a fraction
of its processing power to retransmit messages to the slow
acceptor (see also Section III). During this period, only the
faster acceptors contribute to performance. We terminated
acceptor A2 after 150 seconds of the execution when the
throughput was at its lower value. As it is seen in the figure,
performance suffers a small reduction at this point. This is
due to the fact that a majority-quorum is not immediately
available, preventing the Paxos protocol from deciding new
values until the quorum is restored. In the right-most graphs
of Figure 4, we executed OpenReplica in configuration (d)
with 4 KByte requests under 70% of peak performance. When
acceptor A2 is terminated, after 150 seconds, throughput drops
and latency increases since every majority quorum includes
acceptors in different regions. With both acceptors A1 and
A2 operational, though, we can see that throughput oscillates.
We also observed that while OpenReplica has bursty behavior
under high load (i.e., peak performance in a LAN with medium
and large values, and 70% of peak performance in a WAN), it
presents stable performance under moderate load.

 0

 150

 300

 450

 600

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 6

 12

 18

 24

 30

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 100

 200

 300

 400

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

Fig. 3. Performance of S-Paxos in configuration (b) with 4 KByte requests at 70% of peak throughput (left-most graphs); and in configuration (d) with 4 KByte
requests at peak performance two experiments are performed (right-most graphs); in each configuration two experiments are performed; at each experiment one
acceptor (A2 or A3) is terminated after 50 seconds.

 0

 40

 80

 120

 160

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Terminate A2

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 100

 200

 300

 400

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Terminate A2

Fig. 4. Performance of OpenReplica in configuration (c) with 100 KByte requests at peak performance (left-most graphs); and in configuration (d) with 4
KByte requests at 70 % of peak performance (right-most graphs); In both the configurations acceptor A2 is terminated after 150 seconds.

F. Ring Paxos under failures

Figure 5 shows the performance of Ring Paxos in configu-
rations (b) (left-most graphs) and configuration (d) (right-most
graphs) over a period of 350 seconds. In all the experiments
after 150 seconds one of the acceptors (A2 or A3) is termi-
nated. After an acceptor is terminated the performance drops
to zero for a period of 2 to 3 seconds during which the ring
is reconfigured. Left-most graphs show the performance of
Ring Paxos in configuration (b) with 100 KByte requests when
the system is operating at its peak performance. When acceptor
A3 is terminated, after 150 seconds, throughput increases. This
is because Ring Paxos operates at the speed of the slowest
acceptor (acceptor A3 in this experiment) and as soon as
it leaves the ring, the protocol is no longer limited to its
speed. This is also the reason why after terminating acceptor
A2 the performance is not affected. Right-most graphs of
Figure 5 show the performance of Ring Paxos in configuration
(d) with 4 KByte messages when the system is operating at
70% of the peak performance. When acceptor A3, in the East
coast is terminated (after 150 seconds), throughput increases
and latency decreases. This is because Ring Paxos is no

longer bound by the slow communication links of acceptor
A3. Similarly to configuration (b) in configuration (d) after
terminating acceptor A2 performance does not improve.

G. Libpaxos and Libpaxos+under failures

In this section we consider the performance of Libpaxos
and Libpaxos+ in configurations (b) (Figure 6) and (d) (Fig-
ure 7) over a period of 150 seconds. In these experiments, the
request size is 4 KBytes and the system operates at 70% of the
peak throughput. Acceptor A2 is terminated after 50 seconds
of the execution. In configuration (b), A2 is a fast acceptor
and in configuration (d) A2 is an acceptor located in the same
region as A1. In both cases, the termination of A2 forces slow
acceptor A3 to be part of a majority-quorum. We report the
following results in the graphs, from top to bottom: the delivery
throughput in megabits per second, the latency as measured
by the clients in milliseconds, the number of instances for
which an acceptor’s Phase 2B is included in that instance’s first
majority-quorum, and the amount of outgoing data buffered in
the OS at acceptor A3. We recall that acceptors in Libpaxos
forward values and Phase 2B messages to the learners and
proposers.

 0

 40

 80

 120

 160

 200

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t (

M
bp

s) Terminate A2 Terminate A3

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

L
at

en
cy

 (
m

se
c)

Time (sec)

Fig. 5. Performance of Ring Paxos in configuration (b) with 100 KByte requests at 100% of the peak performance (left-most) graphs; and in configuration
(d) with 4 KByte requests at 70% of the peak performance (right-most graphs); in each configuration two experiments are performed; in each experiment one
acceptor (A2 or A3) is terminated after 150 seconds.

Before the termination of acceptor A2 in the experiments of
Libpaxos (left-side graphs) in Figure 6, it is mostly acceptors
A1 and A2 that participate in the majority-quorums. It can
be seen in the third graph from the top that in the first 30
seconds of the execution, A3 participates in a few majority-
quorums but then it becomes overwhelmed and data in its send
buffers accumulates (see bottom graph). When acceptor A2 is
terminated (after 50 seconds), the delivery throughput drops to
zero for a duration of 4 seconds, the time it takes slow acceptor
A3 to process its backlog of previous instances. After acceptor
A3 empties its buffers and can participate in the majority-
quorum, the system becomes responsive. With acceptors A1
and A3, throughput is lower and latency is higher than in
the beginning of the execution. In Libpaxos+ (graphs on the
right), after termination of A2, the shift to a new majority-
quorum happens smoothly since A3 was never overwhelmed
with requests. The proposer detects the slower acceptor A3 and
spares it. Thus, when acceptor A2 is terminated, a majority-
quorum is available immediately and the execution continues
smoothly. Notice that the sustainable throughput in Libpaxos+
before and after the termination of A2 is similar to Libpaxos.

In Figure 7 we investigate the behavior of Libpaxos and
Libpaxos+ in a wide-area deployment (configuration (d) in
Table I) with 4 KByte requests. The behavior of Libpaxos
after the termination of faster acceptor A2 in configuration
(d) is similar to configuration (b), except that in a wide-
area deployment it takes longer (18 seconds) for acceptor
A3 to catch up with A1. After the execution resumes (at
time 68), there is an important reduction in throughput and
increase in latency when compared to the execution before the
termination of A2. This is due to the large round-trip time
between US-West and US-East regions. Similarly to Figure 6,
the throughput of Libpaxos+ does not drop to zero after the
termination of acceptor A2.

In both Figures 6 and 7, there is a peak in latency when
normal operation resumes. This happens as the requests that
the clients had sent immediately before the crash are only
decided after acceptor A3 catches up.

V. LESSONS LEARNT

In this section we share the main lessons we have learnt
from our experiments with the four open-source Paxos li-
braries.

Unlike Libpaxos and OpenReplica, S-Paxos and Ring
Paxos allow clients to send their requests to any processes,
which in turn disseminate the requests to other processes. The
advantages of this scheme is that the protocol is not limited by
the resources of only one process (e.g., network and CPU of
the leader). Processes that receive client requests directly can
batch and distribute them to other participants more efficient.
The downside of this strategy is that in global deployments
(e.g., configuration (d)) clients might select a process that is
“far away”. One way to account for this limitation is to enhance
the libraries to include policies for clients to select the process
to which they transmit their requests considering the delay
between the client and the process.

S-Paxos and Ring Paxos operate at the speed of the
slowest participant. Therefore, in heterogeneous configurations
(e.g., configurations (b) and (c)) or when participants are
distributed across multiple data centers (e.g., configuration
(d)), Ring Paxos and S-Paxos are likely outperformed by
the other libraries, which do not require all acceptors to
be equally powerful as the leader or at the vicinity of the
leader. If heterogeneity affects a majority of the participants,
however, all the libraries will operate at the speed of the
slowest member. Notice that leaving out a slow acceptor during
failure-free scenarios has both advantages and disadvantages.
The advantage is that in the absence of failures, the protocol
operates at the speed of the fastest available majority. Libpaxos
and OpenReploca benefit from this. The disadvantage is that
during failures, the protocol might be stuck as it happens
with Libpaxos but not with Ring Paxos and S-Paxos. (Ring
Paxos has to reconfigure the ring, which introduces delays,
but the reduction in performance is not due to the backlog
of messages that gather at the slowest acceptor.) Ideally, a
protocol would operate at the speed of the fastest members in
failure-free scenarios and would not be penalized in case of
failures, something we observed with Libpaxos+.

 0

 4

 8

 12

 16

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)
Terminate A2

 0

 4

 8

 12

 16

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)

Terminate A2

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150

M
aj

or
ity

-q
uo

ru
m A1 A2 A3

100

1K

10K

100K

1M

 0 25 50 75 100 125 150B
uf

fe
re

d
da

ta
 (

B
yt

es
)

Time (sec)

A3

0

1K

2K

3K

4K

0 25 50 75 100 125 150
M

aj
or

ity
-q

uo
ru

m A1 A2 A3

Fig. 6. Performance of Libpaxos (left graphs) and Libpaxos+ (right graphs) with 4 KByte requests at configuration (b) at 70% of peak throughput (see
Table I); acceptor A2 is terminated after 50 seconds; majority-quorum for each acceptor measures the number of instances for which that acceptor is included
in first majority-quorum;y-axis of the bottom-most graphs is in log scale.

While it may tempting for systems running on a tight
budget to run Paxos with a majority of fast acceptors, adding
a few slower ones purely as backups, our study shows that
this strategy may seriously impact failover. Despite this, the
implications of a heterogeneous quorum is often neglected
in practice. We hope this paper will bring to the foreground
the fact that performance differences in acceptors can have
a significant impact on overall performance, especially when
failures occur. We further suspect that the lessons we learnt
apply to other quorum-based protocols, such as ABD [21] and
the initial Isis protocol [22] since they all rely on a majority
for progress.

In summary, we can divide the protocols we surveyed
in two categories: those that make progress by involving all
participants (i.e., Ring Paxos and S-Paxos) and those protocols
that make progress at the pace of a majority of participants
(i.e., Libpaxos, Libpaxos+, and OpenReplica). The rationale of
protocols in the first category is that performance can benefit
from balancing the load among participants and exploiting
the hardware resources of all participants. A consequence of
protocols in the second category is that slow participants do
not hurt overall performance at peak load. This design space
has two important consequences. Protocols in the first group
are likely to suffer less with the failure of a participant, which

is not the case with protocols in the second group: as the
experiments show, Libpaxos’s performance drops to zero and
OpenReplica’s performance becomes bursty after the failure
of a fast participant. The second consequence is related to
the characteristics of the environment. While homogeneous
environments (i.e., nodes with comparable processing power
and communication links with similar capacity) are more
appropriate for protocols in the first group, protocols in the
second group are more appropriate for heterogeneous environ-
ments. Therefore, Ring Paxos and S-Paxos seem to fit better
controlled environments such as private clouds and proprietary
datacenters, while Libpaxos+ seems the most appropriate
for uncontrolled environments, such as Amazon’s EC2, as it
inherits the advantages of Libpaxos and OpenReplica while
leaving out their disadvantages.

VI. CONCLUSION

Paxos is one of the dominant protocols in building fault-
tolerant systems and its performance has a significant impact
on the overall efficiency of the systems built on top of it.
Consequently, it is very important that Paxos implementations
achieve steady performance and deal well with the load
variations common in modern cloud computing settings. Our
experiments reveal the large performance variations that out-

 0

 40

 80

 120

 160

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)
Terminate A2

 0

 40

 80

 120

 160

 0 25 50 75 100 125 150

L
at

en
cy

 (
m

se
c)

Time (sec)

 0

 15

 30

 45

 60

 0 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)

Terminate A2

Fig. 7. Performance of Libpaxos (left graphs) and Libpaxos+ (right graphs) with 4 KByte requests at configuration (d) at 70% of peak throughput (see
Table I); acceptor A2 is terminated after 50 seconds;

of-the-box Paxos implementations may exhibit under even
mild stress. We showed that without taking actions to stabilize
the protocol, widely used Paxos libraries can exhibit sudden
and rather long periods with no protocol decisions occurring
at all. Our experiments also reveal surprising variability in
the rate of decisions: some versions of Paxos are extremely
bursty. Bursty throughput can cascade to create inefficient
application-level performance. Finally, focusing on one Paxos
implementation (Libpaxos), we showed how one can modify
the protocol to preserve correctness and yet reduce the degree
to which such problems arise.

ACKNOWLEDGMENT

We wish to thank Daniele Sciascia (Libpaxos), Deniz
Altinbuken (OpenReplica), and Martin Biely, Nuno Santos,
and Zarko Milosevic (S-Paxos) for promptly answering our
questions about the deployment and tuning of their libraries.
We are especially grateful to Isaac Shef for showing us
performance issues he encountered when working with a fifth
Paxos implementation, and outlining his ideas for overcoming
those problems. This work was funded, in part, by grants from
the US NSF, DARPA, Swiss National Science and Zeno Karl
Schindler Foundations.

REFERENCES

[1] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[3] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, “The primary-
backup approach,” in Distributed systems (2nd Ed.), S. Mullender, Ed.
New York, NY: ACM Press/Addison-Wesley Publishing Co., 1993.

[4] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in DSN, 2011.

[5] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing Surveys,,
vol. 36, no. 4, pp. 372–421, Dec. 2004.

[6] L. Lamport, “Generalized consensus and paxos,” Microsoft Research
(MSR), Tech. Rep. MSR-TR-2005-33, Mar. 2005.

[7] T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in PODC, 2007.

[8] J. Kirsch and Y. Amir, “Paxos for system builders: An overview,” in
LADIS, 2008.

[9] P. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in DSN,
2012.

[10] R. van Renesse, “Paxos made moderately complex,” Cornell University,
Tech. Rep., 2011.

[11] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI, 2006.

[12] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner: Google’s
globally-distributed database,” in OSDI, 2012.

[13] M. Isard, “Autopilot: automatic data center management,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 2, pp. 60–67, Apr. 2007.

[14] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A high-
throughput atomic broadcast protocol,” in DSN, 2010.

[15] M. Biely, Z. Milosevic, N. Santos, and A. Schiper, “S-paxos: Offloading
the leader for high throughput state machine replication,” in SRDS,
2012.

[16] L. Lamport and M. Massa, “Cheap Paxos,” in DSN, 2004.
[17] M. Castro and B. Liskov, “Practical byzantine fault tolerance and

proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, 2002.

[18] H. V. Ramasamy and C. Cachin, “Parsimonious asynchronous
byzantine-fault-tolerant atomic broadcast,” in OPODIS, 2005.

[19] D. Altinbuken and E. G. Sirer, “Commodifying repli-
cated state machines with openreplica,” 2012, avaible at
http://openreplica.org/static/papers/OpenReplica.pdf.

[20] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: High-
throughput atomic broadcast,” arXiv preprint arXiv:1401.6015, 2014.

[21] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” Journal of the ACM (JACM), vol. 42, no. 1,
pp. 124–142, 1995.

[22] K. Birman and R. Cooper, “The Isis project: Real experience with a
fault tolerant programming system,” in ACM SIGOPS workshop, 1990.

	I Introduction
	II Background
	III Open-source Paxos libraries
	III-A S-Paxos
	III-B OpenReplica
	III-C Ring Paxos
	III-D Libpaxos
	III-E Libpaxos+

	IV Experimental evaluation
	IV-A Experimental setup
	IV-B Methodology
	IV-C Peak performance
	IV-D S-Paxos under failures
	IV-E OpenReplica under failures
	IV-F Ring Paxos under failures
	IV-G Libpaxos and Libpaxos+under failures

	V Lessons Learnt
	VI Conclusion
	References

