
Rethinking State-Machine Replication for Parallelism

Parisa Jalili Marandi, Carlos Eduardo Bezerra, Fernando Pedone

University of Lugano, Switzerland

Abstract—State-machine replication, a fundamental approach
to designing fault-tolerant services, requires commands to be
executed in the same order by all replicas. Moreover, command
execution must be deterministic: each replica must produce the
same output upon executing the same sequence of commands.
These requirements usually result in single-threaded replicas,
which hinders service performance. This paper introduces Par-
allel State-Machine Replication (P-SMR), a new approach to
parallelism in state-machine replication. P-SMR scales better
than previous proposals since no component plays a centralizing
role in the execution of independent commands—those that can
be executed concurrently, as defined by the service. The paper
introduces P-SMR, describes a “commodified architecture" to
implement it, and compares its performance to other proposals
using a key-value store and a networked file system.

I. INTRODUCTION

State-machine replication (SMR) is a fundamental ap-
proach to designing fault-tolerant services [1], [2]. By replicat-
ing the servers, the service remains available for clients even
if some replicas fail. Once servers are replicated, consistency
among the replicas must be ensured. State-machine replication
achieves strong consistency by regulating how client com-
mands are propagated to and executed by the replicas: (i) every
nonfaulty replica must receive every command; (ii) replicas
must agree on the order of received and executed commands;
and (iii) the execution of commands must be deterministic (i.e.,
a command’s changes to the state and results depend only on
the replica’s state and on the command itself).

State-machine replication is a technique to improve the
availability of a service, not its performance. In fact, in some
cases a single-server implementation of a service will likely
outperform its replicated counterpart since the single server
can benefit from concurrency while the replicated servers will
be typically sequential. Executing commands sequentially is
a serious performance limitation in modern processors, which
are essentially parallel (i.e., equipped with multiple processing
units, interconnected through multiple network interfaces).
Nevertheless, rendering state-machine replication parallel is
challenging.

In state-machine replication, upon executing the same
sequence of commands replicas evolve through the same
sequence of states and produce the same responses. It has been
observed, however, that replicas do not need to pass through
the same state sequence to produce the same responses [2].
This is the case of commands that access disjoint variables: if
commands do not contend for shared variables, replicas can
execute them in parallel (i.e., concurrently). Some previous
works have build on this observation to introduce parallelism
in state-machine replication [3], [4]. In brief (we provide more
details in subsequent sections), in these systems the key idea
is to deliver commands across replicas in total order but allow
the commands to execute concurrently when possible.

In this paper, we seek solutions that not only allow par-
allelism in state-machine replication but also scale with the
hardware resources available at processors (e.g., processing
units, network interfaces). The last requirement has two impor-
tant consequences. First, we should avoid solutions that rely
on a single component or on a fixed set of components, an
obvious potential performance bottleneck. Second, we must
accommodate parallelism in the execution of commands and
in the ordering of these commands. Failing to address these
issues will result in limited performance improvements as
more services run at “main-memory speed" and are deployed
on processors equipped with an ever-increasing number of
processing units.

Parallel State-Machine Replication (P-SMR), the approach
we present in this paper, fulfills the requirements above: it
introduces parallelism in the execution of commands and in
the protocol used to order these commands; additionally, in
the most common cases performance scales with replicas’
hardware resources. Similarly to previous proposals, P-SMR
exploits service semantics to determine when commands can
execute concurrently and when serial execution is needed. This
is captured by the notion of dependency between commands:
two commands are deemed dependent if they cannot execute
concurrently. P-SMR is optimized for independent commands,
when concurrency is possible. Services whose state is mostly
read (e.g., name services) or can be partitioned so that most
commands fall in one partition or another but rarely in both
(e.g., file systems) can benefit from P-SMR.

This paper makes the following contributions: First, it
introduces a novel approach to parallel state-machine repli-
cation (P-SMR) that scales performance with the number of
processing units in a replica when commands are independent.
Second, it describes a “commodified architecture" for state-
machine replication and shows how replicated services built
based on this architecture can seamlessly use P-SMR. Third,
it shows how P-SMR can be used to boost the performance
of two highly available services, a key-value store and a
networked file system. Fourth, it details a prototype of P-
SMR, assesses its performance, and compares it to other state-
machine replication approaches.

The remainder of the paper is structured as follows.
Section II describes our system model and assumptions. In
Section III, we present an architecture for state-machine repli-
cation and motivate the need for P-SMR. In Section IV, we
introduce Parallel State-Machine Replication. Section V illus-
trates how P-SMR can be used with two services. Section VI
discusses the implementation of our highly available services
using different strategies. Section VII contains a performance
evaluation of these systems. Section VIII surveys related work
and Section IX concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume a distributed system composed of intercon-
nected processes. There is an unbounded set C = {c1,c2, ...} of
client processes and a bounded set S = {s1,s2, ...,sn} of server
processes. The system is asynchronous: there is no bound on
message delays and on relative process speeds. We assume
the crash failure model and exclude malicious and arbitrary
process behavior (e.g., no Byzantine failures). Processes are
either correct, if they never fail, or faulty, otherwise. We
assume f faulty servers, out of n = f + 1 servers. Processes
communicate by message passing, using either one-to-one
or one-to-many communication. One-to-one communication
is through primitives send(m) and receive(m), where m is a
message. If sender and receiver are correct, then every message
sent is eventually received. One-to-many communication is
based on atomic multicast. Atomic multicast is defined by
the primitives multicast(γ,m) and deliver(m), where γ ⊆ S is
a group of destinations. Let relation < be defined such that
m < m′ iff there is a process that delivers m before m′. Atomic
multicast ensures that (i) if a server delivers m, then all correct
servers in γ deliver m (agreement); and (ii) relation < is acyclic
(order). The order property implies that if s and r deliver
messages m and m′, then they deliver them in the same order.

Atomic multicast is typically available to applications as
a library (see Figure 1) and implemented using one-to-one
communication and additional system assumptions [5], [6] (see
Section VI). The replication protocols we consider in the paper
use atomic multicast as a “black box" and do not explicitly use
these assumptions.

III. BACKGROUND AND MOTIVATION

State-machine replication renders a service fault-tolerant
by replicating the server and coordinating the execution of
client commands among the replicas [1], [2]. The service is
defined by a state machine and consists of state variables that
encode the state machine’s state and a set of commands that
change the state (i.e., the input). The execution of a command
may (i) read state variables, (ii) modify state variables, and
(iii) produce a response for the command (i.e., the output).
Commands are deterministic: the changes to the state and
response of a command are a function of the state variables
the command reads and the command itself.

State-machine replication provides clients with the abstrac-
tion of a highly available service while hiding the existence of
multiple replicas. This last aspect is captured by linearizability,
a consistency criterion: a system is linearizable if there is
a way to reorder the client commands in a sequence that
(i) respects the semantics of the commands, as defined in
their sequential specifications, and (ii) respects the real-time
ordering of commands across all clients [7]. In traditional
state-machine replication (SMR), linearizability is achieved
by having each replica execute commands sequentially in
the same order. Since commands are deterministic, replicas
will produce the same state changes and response after the
execution of the same command.

A “commodified architecture" for state-machine replication
can be organized as follows (see Figure 1). Clients and servers
interact in a way similar to remote procedure invocations [8].
Clients access the service by invoking service commands (with

Server

Server Proxy

Multicast library
(order+agreement)

Client

Client Proxy

Replica 0 Replica 1

Server

Server Proxy

Multicast library
(order+agreement)

. . .

. . .

Multicast library
(order+agreement)

Fig. 1. A simple state-machine replication architecture.

the appropriate parameters). Client proxies intercept client
invocations, turn them into requests that include a command
identifier and the marshaled parameters, and multicast the
requests to the replicas. Requests are delivered by the server
proxies, which re-assemble invocations and issue them against
the local server replica. Each server executes one command
at a time. Similarly to remote procedure calls, the client and
client proxy (respectively, server and server proxy) can be
implemented as a single process, sharing a common address
space. The command’s response follows the reverse path to the
client using one-to-one communication. Even though the client
proxy may receive the response for a command from multiple
servers, all responses are the same and the proxy returns only
one response to the client.

It has been observed that replicas can execute “independent
commands" concurrently without violating consistency [2].
Two commands are independent if they either access dif-
ferent variables or only read variables commonly accessed;
conversely, two commands are dependent if they access one
common variable v and at least one of the commands changes
the value of v. For example, two read commands are in-
dependent, while a read and an update command on the
same variable are dependent. A few approaches have been
suggested in the literature to execute independent commands
concurrently with the goal of improving performance [3],
[4]. Although these approaches differ in how they achieve
concurrency, they totally order commands and each replica
delivers commands sequentially as a single stream. Since the
execution of independent commands is concurrent but delivery
(and possibly scheduling) is sequential, hereafter, we refer to
these approaches as semi-parallel state-machine replication
(sP-SMR).

This paper proposes to parallelize both the execution and
the delivery of commands, an approach we refer to as paral-
lel state-machine replication (P-SMR) (see Table I). P-SMR
uses multiple multicast groups to partially order commands
across replicas, where each group leads to a different stream
of commands delivered at the replica. P-SMR improves on
traditional state-machine replication by allowing independent
commands to execute concurrently. It has two advantages over
semi-parallel state-machine replication. First, since a replica
can handle multiple streams of commands, multicast can be
implemented more efficiently. This happens because each
command stream is independent of the other, and can use
different threads within a node or even involve different sets
of nodes per stream. For example, our multicast library uses
one Paxos [6] instance per stream, and each stream can have
a different set of acceptor nodes (see Section VI-A). More-
over, command streams can be mapped to multiple network

interfaces, commonly available in modern servers. Hence,
communication at a server is not limited by the bandwidth
of a single network interface, but by the aggregate bandwidth
of the server’s interfaces. Second, commands are delivered by
the worker threads directly, instead of having a single thread
that first delivers the commands and then assigns them to the
workers, thereby reducing overhead.

Command... SMR sP-SMR P-SMR

...delivery sequential sequential parallel

...execution sequential parallel parallel

TABLE I. DEGREES OF PARALLELISM IN STATE-MACHINE

REPLICATION.

IV. PARALLEL STATE-MACHINE REPLICATION

In this section, we present P-SMR’s design principles
(Section IV-A), consider architectural issues (Section IV-B),
detail the protocol (Section IV-C), consider its advantages and
limitations (Section IV-D), and show that it is linearizable and
deadlock-free (Section IV-E).

A. Design rationale

P-SMR’s design is guided by two principles:

• Optimize performance for the common case. P-SMR
targets workloads dominated by independent com-
mands. This is the case of services subject mostly to
read commands (e.g., name services) or whose state
can be partitioned so that most commands access vari-
ables in one partition and rarely in multiple partitions
(e.g., file systems).

• Keep replication transparent. In the architecture pre-
sented in Section III, replication is transparent for
clients: details related to communicating with multiple
replicas are hidden from the clients and handled by
the client proxies and the multicast library. Similarly
to SMR, P-SMR should not expose replication details
to the client application.

B. Client and server organization

P-SMR builds on the architecture depicted in Figure 1.
Client and server proxies are created based on (a) the signature
of each service command, including the command’s identifier
and a description of the command’s input and output param-
eters with their types; and (b) the command dependencies
(C-Dep), specifying which commands depend on each other.
Therefore, in addition to providing the server’s code, the
service designer must also provide the command signatures
and the C-Dep. Although the C-Dep can be automatically
generated from the signatures and the server’s code, in our
prototype C-Deps were created manually.

At the client side, command signatures are used by the
client proxy to create a request from the client invocations and
return a response to the client. At the server side, command
signatures are used by the server proxy to turn delivered re-
quests into local server invocations and assemble the response
of commands. In both cases, the process is analogous to the one
used in the commodified state-machine replication architecture
presented in Section III.

C-Dep is used to automatically compute the Command-to-
Groups (C-G) function, used by the client proxy to determine
the multicast groups a request must be multicast to and by
the server proxy to coordinate the local execution of depen-
dent commands—more details in the next section. Similarly
to SMR, a client application in P-SMR will be oblivious
to replication. Moreover, since coordination among worker
threads, in the case of dependent commands, is handled by the
server proxy, a server designed for state-machine replication
will work unchanged in P-SMR.

C. Protocol design

P-SMR takes as input the command dependencies (C-
Dep) of a service and the desired multiprogramming level
(MPL) at the replicas to define how independent commands
can be executed concurrently and dependent commands are
synchronized. The multiprogramming level is a parameter of
the system that defines the number of worker threads at the
servers. It can be set, for example, based on the number of
processing units (i.e., cores) at the servers. In a configuration
where MPL is set to k, we identify worker threads as t1, ..., tk.
P-SMR organizes threads in k multicast groups such that the
i-th thread of each replica, ti, belongs to group gi.

Basic principle. A client proxy executes command C by
multicasting a request with C to a set of destination groups,
computed by the C-G function (see Algorithm 1). Worker
threads at the server proxy deliver commands and invoke
their execution against the local server. The execution of a
worker thread alternates between two modes: The thread is in
parallel mode when it delivers a command multicast to a single
group and in synchronous mode when it delivers a command
multicast to multiple groups. In parallel mode, upon delivering
C, thread ti executes C, sends C’s response to the client and
waits for the next command. In synchronous mode, threads
that deliver C, hereafter identified as τC, synchronize using
barriers: threads in τC send a signal to one designated thread
ti ∈ τC (signal (a) in Figure 2) and wait for a signal from ti;
after ti receives the signals it executes C, sends C’s response to
the client, and signals threads in τC to continue with the next
command (signal (b) in Figure 2). Note that two commands
in P-SMR will be ordered consistently across replicas if they
are multicast to the same group or they are dependent.

Defining command dependencies. In our prototype, C-Dep
can encode two levels of dependency information: commands
that depend on each other regardless their parameters (i.e.,
regardless the objects the command accesses) and commands
that depend on each other according to their parameters (e.g.,
two updates on the same object). C-Dep includes all such
interdependencies; if no entry exists in C-Dep asserting the
dependency of two commands, they are independent. For
example, a straightforward C-Dep can simply distinguish com-
mands that read the service’s state, those that can be executed
concurrently, from commands that modify the service’s state,
those that must be synchronized. In Section V we show how
our scheme can represent more complex interdependencies
using two general services, a key-value store and a networked
file system.

Mapping commands to destinations. The client proxy deter-
mines the destination groups of a command using a Command-
to-Group (C-G) function that maps the command id and its

Algorithm 1: Parallel State-Machine Replication (P-SMR)

1: A client proxy c executes a call to command C with
identifier cid and input and output parameters as follows:

2: γ← C-G(cid, input) {γ is the set of groups involved in C}

3: multicast(γ, [cid, input])
4: wait for first response
5: output← response
6: return

7: Thread ti at a server proxy executes a command as follows:
8: upon deliver([cid, input]), multicast by c
9: γ← C-G(cid, input)

10: if γ is a singleton then
11: // Thread ti is in parallel mode
12: execute cid with input parameters
13: send response to c
14: else
15: // Thread ti is in synchronous mode
16: e← min{ j : g j ∈ γ} {pick a thread deterministically}

17: if i = e then
18: for each j 6= i such that g j ∈ γ
19: wait for signal from t j

20: execute cid with input parameters
21: send response to c
22: for each j 6= i such that g j ∈ γ
23: signal t j {let thread t j resume its execution}

24: else
25: signal te
26: wait for signal from te {thread ti pauses its execution}

input parameters to a set of multicast groups. C-G is part of
the client proxy; it is created based on the multiprogramming
level and the service’s C-Dep. Computing C-G requires solving
an optimization problem that seeks to maximize concurrency
among independent commands while keeping dependent com-
mands synchronized. Concurrent execution of independent
commands is achieved by assigning the commands to differ-
ent groups; proper synchronization of dependent commands
amounts to assigning at least one common group to any two
dependent commands.

The amount of concurrency in a service depends on the
interdependencies among the service’s commands. A C-Dep
that tightly captures interdependencies will likely result in
more concurrency at the replicas. For example, consider a
service with get_state(in: int x, out: char[] v) and
set_state(in: int x, char[]v) commands, where x is
an object identifier and v an object value. A simple C-Dep
would state that set_state depends on any other command,
regardless the object accessed. Defining such a C-Dep requires
inspecting commands get_state and set_state and con-
cluding that the first reads the service’s state and the second
modifies the service’s state. A C-G for this C-Dep could assign
a get_state command to a single group and a set_state

command to all groups, as shown next, where get_state is
assigned to a random group between 1 and k (recall that k is
the multiprogramming level):

function C-G(cid)
switch (cid)

case get_state: return(random(1..k))
case set_state: return(ALL_GROUPS)

A more complex C-Dep identifies that set_state depends
only on other commands on the same object x. In this case, a

C-G could assign commands on the same object to the same
group and commands on different objets to different groups:

function C-G(cid,x)
return((x mod k)+1)

The result is that commands assigned to different groups
can execute concurrently, even if they both modify the state of
objects. Moreover, additional information, if available, can be
used when computing the C-G function. For example, objects
that are commonly accessed could be assigned to different
groups, allowing increased concurrency.

D. Advantages and limitations

In the following, we compare P-SMR to different ap-
proaches to state-machine replication according to three as-
pects: performance, transparency, and load balancing.

Performance. While P-SMR and sP-SMR improve the per-
formance of state-machine replication by allowing independent
commands to execute concurrently, P-SMR has two advantages
with respect to sP-SMR. First, P-SMR offloads scheduling
decisions from the replicas, avoiding a bottleneck-prone sched-
uler, which must deliver a single stream of commands and
assign them to the worker threads for execution. This is
important in time-critical services running at main-memory
speed and in modern servers equipped with an ever-increasing
number of processing units. Second, since replicas in P-SMR
can handle multiple parallel streams of commands, they can
make better use of local hardware resources (e.g., command
streams can be distributed among multiple network interfaces)
and allow efficient multicast implementations, with different
sets of nodes responsible for ordering different streams of
commands (see Section VI-A for more details).

Transparency. Both P-SMR and sP-SMR require more
information about a service than state-machine replication. In
both P-SMR and sP-SMR, commands that depend on each
other must be identified (the C-Dep structure), although some
implementations of sP-SMR [3] can cope with mistakes in
C-Dep (see Section VIII). State-machine replication does not
need C-Dep since commands are executed sequentially. In
both P-SMR and sP-SMR, however, the client application is
oblivious to these details, which must be identified by the
service designer or automatically inferred from the server’s
code. In P-SMR, the client proxy uses the C-G function, de-
rived from C-Dep, to identify the set of groups each command
must be multicast to; in sP-SMR, the scheduler uses C-Dep to
schedule independent commands concurrently and dependent
commands sequentially. Additionally, in P-SMR client and
server proxies must agree on the multiprogramming level used
at the servers.

Load balancing. In P-SMR commands are assigned to
working threads statically using the C-G function, which is
computed based on the desired multiprogramming level and the
command dependencies; in sP-SMR, commands are assigned
to working threads dynamically by the scheduler. Conse-
quently, load balancing in P-SMR is more limited than in sP-
SMR. For example, in the service described in Section IV-C, if
heavily accessed objects are assigned to the same group, then
one worker thread will end up executing more commands than
the other worker threads. If heavily accessed objects are known

t1

t2

t3

s

c2

c1
 Cx

 Cy

 Cx

 Cy

Independent commands Cx and Cy

execute concurrently

Dependent commands Cx and Cy

execute sequentially

Parallel execution mode Synchronous execution mode

Legend:

Multicast of a command

Response from execution

Signal between threads

Command execution

Cx, Cy Service commands

c1, c2 Client application/proxy

t1, t2, t3 Threads at server s

(a)

(a)

(b)

(b)

Fig. 2. Two execution modes in P-SMR, parallel (left) and synchronous (middle). For clarity, we show the execution of clients c1 and c2 against a single server
replica s with three worker threads, t1, t2 and t3. Signals (a) and (b) are explained in Section IV-C.

in advance, this information can be used when computing
the C-G function so that such objects are assigned to distinct
groups. Accommodating dynamic changes in access patterns,
however, would require recomputing C-G. In Section VII we
assess the performance of P-SMR under skewed workloads
and compare the results to other approaches.

E. Correctness

We show that P-SMR is linearizable and deadlock-free.

P-SMR is linearizable. From the definition of linearizability
(see Section III), we show that there is a permutation π of
commands in E that respects (i) the real-time ordering of
commands across all clients, and (ii) the semantics of the
commands. Let Cx and Cy be two commands in E submitted
by clients cx and cy, respectively.

There are two cases to consider.

Case (a): Cx and Cy are independent. Thus, either Cx and
Cy access disjoint sets of variables or only read variables com-
monly accessed. Consequently, the execution of one command
does not affect the execution of the other and they can be
placed in any relative order in π. We arrange Cx and Cy in π so
that their relative order respects their real-time dependencies,
if any.

Case (b): Cx and Cy are dependent. Assume Cx and Cy

are multicast to groups in γx and γy, respectively. From the
fact that Cx and Cy depend on each other, γxy = γx∩ γy 6= /0. In
every correct server s, Cx (resp. Cy) is delivered by all threads
in groups in γx (resp. γy) and executed by one thread, say tx
(resp. ty). From the order property of atomic multicast, every
thread in groups in γxy delivers Cx and Cy in the same relative
order. Without lack of generality, assume Cx is delivered before
Cy.

We first claim that tx executes Cx before ty executes Cy

and the execution satisfies the sequential semantics of the
commands. To see why, notice that tx only executes Cx after ti
delivers Cx and every other thread in groups in γx delivers Cx

and signal ti. Every thread t 6= ti in a group in γx then waits until
ti executes Ci to proceed with the next command. Thus, ty will
only receive a signal from threads in groups in γxy and execute

Cy after tx has executed Cx. Consequently, the two commands
execute in sequence, which satisfies their semantics.

We now claim that the delivery order satisfies any real-
time constraints among Cx and Cy. Without lack of generality,
assume Cx finishes before Cy starts, that is, Cx precedes Cy in
real time. Thus, before Cy is multicast by a client, Cx has
completed (i.e,. its client has received Cx’s response). The
claim follows from the fact that before Cx is executed, it must
be multicast, and thus Cx is delivered before Cy.

From the claims above, we can arrange Cx and Cy in π
according to their delivery order so that the execution of each
command satisfies its semantics.

P-SMR is deadlock-free. For a contradiction, assume a
deadlock where thread x1 waits for x2, ...,xl waits for x1. Let
p(x) (resp. n(x)) be the thread that precedes (resp. succeeds)
x in the deadlock chain. Thread x waits for n(x) if (1) there
is a command Cx,n(x) multicast to groups that contain x and

n(x); (2) x delivered Cx,n(x); and (3) x needs a signal from

n(x) (a) before x executes Cx,n(x) or (b) after n(x) executes
Cx,n(x).

We now claim that x delivers Cx,n(x) before Cp(x),x, that is,
Cx,n(x) < Cp(x),x. To see why, assume x delivers Cp(x),x before
Cx,n(x). From the algorithm, when x delivers Cx,n(x) it has

(a) sent a signal to p(x), if p(x) was to execute Cp(x),x or

(b) received a signal from p(x), if x was to execute Cp(x),x. In

both cases, p(x) cannot wait for x, as assumed in our deadlock
chain.

From the claim above, Cxl ,x1
<Cxl−1,xl

< ... <Cxl ,x1
, which

contradicts the atomic multicast order property.

V. SERVICES

In this section, we show how highly available services
replicated using state-machine replication can use P-SMR. We
consider two services, a key-value store and a networked file
system.

A. Key-value store

The key-value store implements commands to read and
modify an in-memory database, as presented below. An insert

includes key k and value v in the database and possibly returns
an error code (e.g., out of memory). A delete removes k from
the database or returns an error code if the entry does not
exist. A read returns the value of k and an update replaces
the current value of k with v. In both cases, an error code is
returned if the key does not exist.

• insert(in:int k, char[] v, out:int err)

• delete(in:int k, out:int err)

• read(in:int k, out:char[] v, int err)

• update(in:int k, char[] v, out:int err)

The main key-value store’s data structure is a B+-tree.
While a read does not result in any changes in the tree,
an update changes a single entry, the one corresponding to
the provided key (if present). Inserts and deletes may mod-
ify multiple entries, depending on the structure of the tree
when the command is executed (i.e., requiring partitioning
and joining tree cells). Therefore, we establish the following
dependencies between commands: inserts and deletes depend
on all commands; an update on key k depends on other updates
on k, on reads on k, and on inserts and deletes.

B. Networked File System

The Networked File System (NetFS) implements a subset
of all FUSE1 calls (commands), enough to manipulate files
and directories, as described next. Each command takes a set
of parameters as input, including a complete file path name,
and returns a sequence of bytes or possibly an error code. For
simplicity, NetFS does not support soft and hard links.

Some file system calls change the structure of the file
system tree (i.e., what files and directories each directory
contains). Besides, each file descriptor seen by a client when
opening a file is mapped to a local file descriptor at each
NetFS server. Such mapping is done with a hash table accessed
by all threads, which must then synchronize. Therefore, the
following NetFS calls depend on all calls: create, mknod,
mkdir, unlink, rmdir, open, utimens, release, opendir,
releasedir. Calls to access, lstat, read, write and
readdir depend on all calls mentioned above and on each
other if they use the same file path.

VI. IMPLEMENTATION

In this section, we describe the implementation and con-
figuration of P-SMR and the other approaches assessed in the
evaluation.

A. Atomic multicast

The multicast library implements the abstraction of groups
by composing multiple parallel instances of Paxos; each
multicast group is mapped to one or more Paxos instances.
A message can be addressed to a single group only, not
to multiple groups. In our P-SMR prototype, each thread ti
belongs to two groups: one group, gi, to which no other thread
in the server belongs, and one group gall , to which every thread
in each server belongs. Threads deliver messages from multiple
streams and use a deterministic merge mechanism to ensure

1http://fuse.sourceforge.net/

ordered delivery [9]. This is enough to implement both C-
G functions presented in Section IV-C. Commands multicast
to a group are batched by the group’s coordinator (i.e., the
coordinator in the corresponding Paxos instance) and order
is established on batches of commands. Each batch has a
maximum size of 8 Kbytes. The system was configured so
that each Paxos instance uses 3 acceptors and can tolerate the
failure of one acceptor.

B. Key-value store

The key-value store implements a B+-tree where each entry
has an 8-byte integer key, used as the tree index, and an 8-
byte value. The servers implement all commands described
in Section V-A. In order to generate enough load to reach
maximum performance, each client maintains a window of
outstanding requests that can contain up to 50 commands. The
tree is initialized with 10 million keys on each replica and
unless specified otherwise, clients select the keys uniformly.

In addition to P-SMR, we implemented a semi-parallel
state-machine replication approach (sP-SMR), traditional state-
machine replication (SMR), and a non-replicated architecture
with a single multi-threaded server directly connected to the
clients (no-rep). In no-rep and sP-SMR a scheduler at the
server is responsible for scheduling incoming commands for
execution at worker threads. We also compare the approaches
above to Berkeley DB version 5.3 (BDB), deployed as a
client-server architecture. We configured BDB to use the
in-memory B-tree access method with transactions disabled
and multithreading and locking enabled. Differently from P-
SMR, sP-SMR and no-rep, BDB uses locks to synchronize
the concurrent execution of commands. As a result, there is
no scheduler interposed between clients and server threads:
each server thread receives requests through a separate socket,
executes them, and responds to clients. Except for the no-rep
and BDB experiments, in which there is only one replica, the
key-value store is fully replicated on two servers.

C. Networked File System

After NetFS is mounted at a client node, client calls are
intercepted by FUSE and redirected to a local file system
proxy, which multicasts them as requests to remote servers.
This design differs from the architecture presented in Sec-
tion III in which each client has its own proxy. In NetFS,
all clients at a node share the same client proxy. Since file
system calls are intercepted by FUSE, client applications do
not need to be linked with the client proxy to use NetFS. At
the server, incoming requests are received by the server proxy
and executed against a local in-memory file system.

In P-SMR we created eight path ranges, each one assigned
to a separate thread at the server, which corresponds to the
number of cores available in each server node. The file system
proxy at a client uses atomic multicast to submit requests
to servers, according to the command and file path. Nine
multicast groups are used, eight of them for per-path requests,
and one for serialized requests. In addition to P-SMR, we also
implemented SMR and sP-SMR. sP-SMR uses eight worker
threads and also relies on atomic multicast to order commands.
A single scheduler thread delivers all requests and, if they
are independent, enqueues them for execution by one of the

workers. In the case of a request requiring sequential execution,
the scheduler waits for the worker threads to finish their
ongoing work and then assigns the request to one worker
thread. In all cases, a request is compressed by the client and
uncompressed by the worker thread that executes the request,
which after executing the command compresses the response
and sends it back to the client. All implementations use lz4
compression algorithm.2

VII. EVALUATION

In the following, we describe the experimental setup (Sec-
tion VII-A) and detail our findings (Sections VII-B–VII-G).

A. Experimental setup

We ran all the tests on a cluster with two types of nodes:
(a) HP SE1102 nodes equipped with two quad-core Intel Xeon
L5420 processors running at 2.5 GHz and 8 GB of main
memory, and (b) Dell SC1435 nodes equipped with two dual-
core AMD Opteron processors running at 2.0 GHz and 4 GB of
main memory. The HP nodes are connected to an HP ProCurve
Switch 2910al-48G gigabit network switch, and the Dell nodes
are connected to an HP ProCurve 2900-48G gigabit network
switch. Each node is equipped with two network interfaces.
The switches are interconnected via a 20 Gbps link. The nodes
ran CentOS Linux 6.2 64-bit with kernel 2.6.32. Clients were
deployed on the Dell nodes; Paxos’s acceptors and servers were
deployed on the HP nodes.

B. Performance of independent commands

Benchmark setup: In this experiment we evaluate the key-
value store with a workload composed of read commands only.
The values we report correspond to the peak throughput of
each technique and are obtained with 8 threads for P-SMR,
2 threads for sP-SMR and no-rep, 1 thread for SMR, and 6
threads for BDB. In the case of norep and sP-SMR the number
of threads excludes the scheduler.

Results: The throughput of P-SMR is about 3.15 and 2.75
times higher than SMR and sP-SMR, respectively (Figure 3).
The scheduler in sP-SMR and no-rep becomes CPU-bound and
caps performance. The throughput of SMR is limited by what
a single thread can achieve, whereas no-rep is multithreaded
and achieves higher throughput. The throughput of no-rep
is slightly higher than sP-SMR as no-rep does not rely on
atomic multicast. BDB has the lowest throughput due to high
overhead with locking, reflected in the CPU usage. Latency of
P-SMR is the highest at peak throughput. Although not shown
in the figure, under similar throughput P-SMR has latency
comparable to the other techniques. no-rep’s latency is slightly
higher than SMR due to the overhead of the scheduler. Latency
of sP-SMR is affected by both the overhead of ordering and
scheduling and is higher than the latency of no-rep and SMR.

C. Performance of dependent commands

Benchmark setup: In this experiment we determine the
maximum throughput of the key-value store service when
commands are inserts and deletes. The values are obtained
with 4 threads for BDB and with 1 thread for all the other

2http://code.google.com/p/lz4/

techniques. In case of norep and sP-SMR the number of
threads excludes the scheduler. These are the configurations
that correspond to the peak throughput of each technique;
for the performance of dependent commands under different
number of threads we refer the reader to Section VII-D.

Results: SMR is not subject to synchronization overhead
which allows it to reach the highest throughput (Figure 4).
Moreover, throughput in SMR remains constant at about 842K
cps, both with independent and dependent commands; in BDB
the throughput decreases from 140K cps to 105 K cps. P-
SMR’s latency is higher than SMR’s and sP-SMR’s. The long
tail in the CDF graphs suggest that P-SMR’s latency is subject
to more variation than SMR’s and sP-SMR’s.

D. Scalability

Benchmark setup: We measure the maximum throughput
of the key-value store service while the number of threads
changes from one to eight when commands are independent
and then dependent. In sP-SMR, the number of threads reflects
the worker threads excluding the scheduler.

Results: With independent commands only, the throughput
of all the techniques, except for BDB, compare equally with
one thread (Figure 5). As threads are added, the throughput
of all the techniques, except for P-SMR, decreases. For sP-
SMR and no-rep this happens due to scheduling overhead
at the scheduler. P-SMR has better scalability than the other
techniques (see bottom left graph). With dependent-only com-
mands, in all the approaches, except for BDB, throughput
decreases with the number of worker threads due to the
overhead of synchronization. The throughput of BDB increases
up to 4 threads and then it decreases due to locking overhead.

E. Performance of mixed workloads

Benchmark setup: We measure the maximum throughput
of the key-value store service with workloads composed of
inserts, deletes, and reads. The x-axis shows the percentage
of dependent commands (inserts and deletes) with respect to
all the commands in the workload. P-SMR uses 8 workers in
this experiment. We compare the performance of P-SMR to
SMR, the only approach that is not subject to synchronization
overhead and therefore has the highest performance under
dependent commands. The average latency corresponds to the
maximum throughput.

Results: SMR’s throughput remains constant with the
workload mix (Figure 6). This is expected since most of the
cost to execute read, insert and delete operations is related
to traversing the tree (statistics gathering starts after the tree
is initialized; thus, few inserts and deletes involve changes
in multiple levels of the tree). P-SMR’s throughput is above
SMR’s up to about 10% of dependent commands. The re-
duction in performance is due to synchronization overhead.
P-SMR’s latency decreases as the percentage of dependent
commands increases. The decrease in latency corresponds to
a reduction in throughput.

F. Performance of skewed workloads

Benchmark setup: The workload is composed of 50%
updates and 50% reads against the key-value store. We evaluate

 0
 100
 200
 300
 400
 500
 600
 700
 800

no-rep SMR sP-SMR P-SMR BDB

C
P

U
 (

%
)

0

500

1000

1500

2000

2500

3000

no-rep SMR sP-SMR P-SMR BDBT
h
ro

u
g
h
p
u
t

(K
cp

s)

0.68 X
1 X

0.72 X

3.15 X

0.16 X

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Latency (msec)

SMR
sP-SMR
P-SMR

 0
 1
 2
 3
 4
 5
 6
 7
 8

no-rep SMR sP-SMR P-SMR BDBA
v
g
 l

at
en

cy
 (

m
se

c)

Fig. 3. Performance of independent commands; throughput in Kilo commands executed per second (Kcps) (top-left); CPU usage (bottom-left); average latency
in milli seconds (top-right); CDF of latency (bottom-right).

 0

 100

 200

 300

 400

 500

 600

no-rep SMR sP-SMR P-SMR BDB

C
P

U
 (

%
)

0

250

500

750

1000

no-rep SMR sP-SMR P-SMR BDBT
h

ro
u

g
h

p
u

t
(K

cp
s)

0.22 X

1 X

0.2 X

0.5 X

0.1 X

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Latency (msec)

SMR
sP-SMR
P-SMR

 0
 1
 2
 3
 4
 5
 6
 7
 8

no-rep SMR sP-SMR P-SMR BDBA
v

g
 l

at
en

cy
 (

m
se

c)

Fig. 4. Performance of dependent commands; throughput in Kilo commands executed per second (Kcps) (top-left); CPU usage (bottom-left); average latency
in milliseconds (top-right); CDF of latency (bottom-right).

the scalability of each approach with a uniform key selection
distribution and a Zipfian distribution (with exponent value
of one). In skewed distributions, communication is expected
to be unevenly balanced across multicast groups. In sP-SMR,
the number of threads reflects the number of worker threads
excluding the scheduler. Besides absolute values for the maxi-
mum throughput we also show the normalized throughput of an
individual thread. Perfect scalability means that the throughput
of each thread remains constant as worker threads are added.

Results: With a uniform selection of keys, commands
are evenly distributed across groups and P-SMR’s throughput
increases up to the capacity of each available core (Figure 7).
With a Zipfian distribution, however, P-SMR’s throughput is
bounded by the most-loaded multicast group (point with 8
threads). sP-SMR is not bounded by a single multicast group
as is P-SMR, but by the load the scheduler can handle until it
becomes CPU-bound. Increasing the number of worker threads
after two threads has a negative impact on sP-SMR’s perfor-
mance since the scheduler spends more time synchronizing
with worker threads. Also notice that with 1 and 2 threads
the throughput of sP-SMR with a uniform workload is lower
than its throughput with a Zipfian distribution. In the Zipfian
distribution some keys are accessed more often than the others,
and thus, there are higher chances that these keys are cached

at the processor. According to the normalized per thread
throughput, P-SMR scales better with the number of cores than
sP-SMR under both uniform and Zipfian distributions.

G. NetFS performance

Benchmark setup: We have performed two separate ex-
periments, one with read commands only and one with write
commands only. All calls to read and write the same file are
dependent, while reading and writing different files can be
done in parallel. A read request has a small input parameter
(i.e., the data to be read) and a large response (i.e., bytes read).
A write request contains the buffer to be written as input and
a small response. Each request reads (or writes) 1024 bytes
from (to) a file.

Results: SMR reaches peak throughput of approximately
100 Kcps (reads) and 110 Kcps (writes), whereas sP-SMR
caps throughput at approximately 116 Kcps for both reads and
writes, an improvement of about 1.2x and 1.1x, respectively
(Figure 8). The small improvement is explained by the use
of CPU, where the scheduler becomes a bottleneck before
fully using the remaining cores. In P-SMR, read and write
commands reach peak throughput of 309 Kcps and 327 Kcps,
respectively, an improvement of 3.1x and 3x. Both P-SMR and

0

500

1000

1500

2000

2500

3000

0 1 2 4 6 8T
h
ro

u
g
h
p
u
t

(K
cp

s)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

P
er

-t
h
re

ad
n
o
rm

al
iz

ed
 t

h
r.

Number of threads

0

150

300

450

600

0 1 2 4 6 8T
h
ro

u
g
h
p
u
t

(K
cp

s)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

P
er

-t
h
re

ad
n
o
rm

al
iz

ed
 t

h
r.

Number of threads

no-rep

sP-SMR

P-SMR

BDB

Fig. 5. The effect of the number of threads on the performance independent commands (left) and dependent commands (right); maximum throughput in Kilo
commands executed per second (Kcps) (top graphs); normalized per-thread throughput (bottom graphs).

0

500

1000

1500

 0.001 0.01 0.1 1 10

T
h
ro

u
g
h
p
u
t

(K
cp

s)

P-SMR SMR

 0

 2

 4

 6

 8

 10

 0.001 0.01 0.1 1 10

L
at

en
cy

 (
m

se
c)

Percentage of dependent commands

Fig. 6. Performance of mixed workloads (both independent and
dependent commands); throughput measured in Kilo commands executed
per second (Kcps) (top); the average latency measured in milliseconds
(bottom); x-axis is in log scale.

0

500

1000

1500

2000

2500

3000

0 1 2 4 6 8

T
h
ro

u
g
h
p
u
t

(K
cp

s)

 P-SMR: uniform

 Zipfian

 sP-SMR: uniform

 Zipfian

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 4 6 8

P
er

-t
h
re

ad
n
o
rm

al
iz

ed
 t

h
r.

Number of threads

Fig. 7. The effect of the number of threads on the performance of a
skewed workload; maximum throughput in Kilo commands executed per
second (Kcps) (top); normalized per-thread throughput (bottom).

sP-SMR outperform SMR. Servers had to decompress requests
and compress replies. As compression with lz4 takes longer
than decompression, read requests took longer to execute than
write requests. This is the reason for the latency difference
between reads and writes.

VIII. RELATED WORK

General-purpose approaches. Allowing multiple threads
to execute commands concurrently may result in state and
output inconsistencies if dependent commands are scheduled
differently in two or more replicas. In [10], [11], [12], [13] the
authors propose different approaches to enforcing deterministic
multithreaded execution of commands. These solutions impose
performance overheads and may require re-development of the
service using new abstractions. Another solution is to allow
one of the multithreaded replicas to execute commands non-
deterministically and log the execution path, which will be later
replayed by the rest of the replicas. Logging and replaying
have been mainly developed for debugging and security rather
than fault tolerance [14], [15], [16], [17], [18], [19], [20].
These approaches typically have high overhead due to logging
and may suffer from inaccurate replay, leading to differences
among original and secondary copies.

0

50

100

150

200

250

300

350

Reads WritesT
h

ro
u

g
h

p
u

t
(K

cp
s)

 0
 1
 2
 3
 4
 5
 6
 7
 8

Reads WritesA
v

g
 l

at
en

cy
 (

m
se

c)

1 X 1.07 X

3.13 X

1 X 1.04 X

2.97 X

SMR
sP-SMR
P-SMR

Fig. 8. Performance of read and write commands in NetFS; maximum
throughput in Kilo commands executed per second (Kcps) (top); average
latency in milli seconds (bottom).

State-machine replication-specific approaches. Having
replicas execute commands sequentially by a single thread
does not imply that the whole replica’s logic must be single-

threaded. In [21], the authors propose a staged architecture to
exploit the processing power of multi-core servers. A replica is
organized as a collection of modules connected through shared
message queues. Although staging improves the throughput
of state-machine replication, there is always only one thread
sequentially executing the commands. In [4], one thread at
each replica delivers all commands in order and schedules them
for execution against worker threads (i.e., sP-SMR model).
The scheduling of commands is deterministic and guarantees
that only independent commands are executed concurrently;
dependent commands are serialized and executed according
to the order established upon delivery. Eve [3] is another
instance in the sP-SMR category in which replicas agree on the
internal state and output after the execution of each command
rather than on their execution path. Eve employes an execute-
verify model by relying on speculative execution. On each
replica, multiple threads can execute commands concurrently.
After commands are executed, replicas verify whether they
resulted in the same state changes and output. In case of
inconsistencies replicas have to rollback the commands and
sequentially re-execute them in a unique agreed-upon order.
Since replicas verify whether commands resulted in the same
state changes and output, Eve can tolerate mistakes when
determining command dependencies. Although P-SMR also
exploits service semantics to introduce multithreaded execution
in state-machine replication, it does not rely on a single thread
to deliver and schedule commands [4] and to verify and
possibly rollback the execution of commands [3].

Using semantics to improve performance. Other works
have proposed the use of application semantics to improve
the performance of state-machine replication (e.g., [22], [23],
[24]). These are based on the assumption that if two commands
commute (e.g., incrementing a counter), then different replicas
can execute them in different order and still reach the same
final state. These works aim at reducing the delay to deliver
a command by avoiding an expensive ordering protocol when
possible.

IX. CONCLUSIONS

State-machine replication is a fundamental approach to
designing highly available services. Hence, it comes as no
surprise that a number of approaches have been proposed to
allow multithreaded state-machine replication. Some of these
approaches take advantage of application semantics to execute
independent commands concurrently and serialize dependent
commands. Parallel State-Machine Replication also uses ap-
plication semantics, but differently from previous proposals,
it does not rely on a single component to deliver and ex-
ecute commands. We assessed P-SMR experimentally under
several conditions and found that it outperforms classical state-
machine replication by a factor of more than 3 and other
approaches by a factor of more than 2.

ACKNOWLEDGEMENTS

We wish to thank Nicolas Schiper, Robbert van Renesse,
and the anonymous reviewers for their help and suggestions
to improve the paper. This work was supported in part by
the Zeno Karl Schindler Foundation and the Swiss National
Science Foundation under grant number 146404.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[3] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin, “Eve: Execute-verify replication for multi-core servers,” in
OSDI, 2012.

[4] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in DSN, 2004.

[5] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[6] L. Lamport, “The part-time parliament,” ACM Transactions on Com-

puter Systems, vol. 16, pp. 133–169, May 1998.

[7] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simu-

lations, and Advanced Topics. Wiley-Interscience, 2004.

[8] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, 1984.

[9] P. J. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in DSN,
2012.

[10] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-enforced
deterministic parallelism,” in OSDI, 2010.

[11] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble, “Deterministic process
groups in dos,” in OSDI, 2010.

[12] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, “DMP: deterministic
shared memory multiprocessing,” in ASPLOS, 2009.

[13] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proc. VLDB Endow., vol. 3, pp. 70–80, Sept. 2010.

[14] G. Altekar and I. Stoica, “ODR: output-deterministic replay for multi-
core debugging,” in SOSP, 2009.

[15] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in VEE, 2008.

[16] P. Montesinos, L. Ceze, and J. Torrellas, “Delorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently,” in ISCA, 2008.

[17] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu,
“PRES: probabilistic replay with execution sketching on multiproces-
sors,” in SOSP, 2009.

[18] M. Ronsse and K. De Bosschere, “Recplay: a fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, pp. 133–152,
May 1999.

[19] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “DoublePlay: parallelizing sequential logging
and replay,” SIGPLAN Not., vol. 47, pp. 15–26, Mar. 2011.

[20] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder" for enabling
full-system multiprocessor deterministic replay,” in ISCA, 2003.

[21] N. Santos and A. Schiper, “Achieving high-throughput state machine
replication in multi-core systems,” tech. rep., EPFL, 2011.

[22] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Thrifty generic broadcast,” in DISC, 2000.

[23] F. Pedone and A. Schiper, “Generic broadcast,” in DISC, 1999.

[24] L. Lamport, “Generalized consensus and paxos,” Tech. Rep. MSR-TR-
2005-33, Microsoft Research (MSR), Mar. 2005.

