Collision-fast Atomic Broadcast

Rodrigo Schmidt
Facebook, USA
Email: rodrigo@fb.com

Abstract—Atomic Broadcast, an important abstraction in
dependable distributed computing, is usually implemented by
solving infinitely many instances of the well-known consensus
problem. Some asynchronous consensus algorithms achieve the
optimal latency of two (message) steps but cannot guarantee this
latency even in good runs, those with timely message delivery and
no crashes. This is due to collisions, a result of concurrent pro-
posals. Collision-fast consensus algorithms, which decide within
two steps in good runs, exist under certain conditions. Their
direct application to solving atomic broadcast, though, does not
guarantee delivery in two steps for all messages unless a single
failure is tolerated. We show a simple way to build a fault-tolerant
collision-fast Atomic Broadcast algorithm based on a variation of
the consensus problem we call M-Consensus. Our solution to M-
Consensus extends the Paxos protocol to allow multiple processes,
instead of the single leader, to have their proposals learned in two
steps.

I. INTRODUCTION

Atomic broadcast is a fundamental abstraction, at the core
of state-machine replication [1], [2]. In an atomic broadcast-
based implementation of state-machine replication, clients
broadcast commands to the replicas, which deliver and deter-
ministically execute the agreed sequence of commands in the
same total order. Naturally, the performance of the replicated
system hinges on the performance of atomic broadcast. This
paper targets a class of atomic broadcast algorithms that can
deliver messages within two communication steps. It advances
the state-of-the-art by presenting an algorithm that achieves
this bound under weaker conditions than existing algorithms.

Atomic broadcast is often solved by means of a totally
ordered succession of consensus instances (e.g., [3], [4]). In
each consensus instance, one or more proposers can propose
a value. Consensus ensures that the decision, a value among
the proposed ones, is learned by all nonfaulty learners. To
broadcast a message m, a process p proposes m in the
first consensus instance in which p has not proposed or
learned any value yet—to know whether their proposal was
the value decided or not, proposers must also be learners. The
delivery order of atomic broadcast is given by the order of the
consensus instances: the i*" instance’s decision gives the i
element in the delivered sequence. If its proposed message is
not decided, the process must propose it again in a different
instance.

In consensus algorithms that rely on a coordinator, propos-
als are first sent to the coordinator, which chooses one proposal
and tries to get it decided in the first instance it has not used
yet. In such algorithms, a message can be learned in three

The authors would like to thank PROPP, grant 4/2012-053 for financially
supporting this work.

Lasaro Camargos
Federal University of Uberlandia, Brazil
Email: lasaro@facom.ufu.br

Fernando Pedone
University of Lugano, Switzerland
Email: fernando.pedone@usi.ch

message steps in the general case and in two message steps if
proposed by the coordinator. There are consensus algorithms
that bypass the coordinator in order to achieve the latency of
two message steps for multiple proposers. Getting a proposal
decided in two message steps with multiple proposers, how-
ever, requires larger quorums (e.g., Fast Paxos [5]). Moreover,
the absence of a coordinator may result in collisions, which
happen when two concurrent proposals are issued but none is
decided after two message steps; solving a collision requires
extra message steps.

In [6], Lamport presented two conditions under which
asynchronous consensus protocols may decide in two-
communication steps even in the presence of collisions, along
with collision-fast protocols that explore these conditions.
The first condition restricts fault tolerance to a single failure
and is solved by a simple variant of Paxos. The second
condition forces all but one of the collision-fast proposers,
those whose proposals may be decided in two steps, to also
play the role of an acceptor (i.e., a process involved in the
consensus decision). The presented protocols still have the
problem that only one value, among the proposed ones, is
decided per consensus instance; proposed values not in the
decision must be proposed again in a different instance. In
order for multiple broadcast messages to be delivered within
two message steps, a consensus decision must happen in a
single communication step. The conditions under which such
a hyper-fast learning can happen [6] are restrictive though: a
single failure is tolerated, every learner is an acceptor or the
learner plus the single hyper-fast-proposer form a quorum.

To circumvent the limitations discussed above, we reduce
atomic broadcast to M-Consensus, a variation of consensus
where processes decide on a bounded composite of proposed
values, not on a single value. Collision-fast Paxos, our solution
to M-Consensus, tolerates as many failures as original Paxos
but allows multiple proposers, not only the coordinator, to
have their proposal learned in two message steps. Collision-
fast Paxos can be used to implement atomic broadcast with a
succession of M-Consensus instances, as done in the standard
reduction to consensus. Since multiple messages may be part
of each Collision-Fast Paxos’ decision, multiple messages can
be delivered after each instance, in two steps.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Sections III and IV, we
describe M-Consensus and Collision-Fast Paxos, respectively.
In Section V, we show how to implement atomic broadcast
with Collision-Fast Paxos. We discuss related work in Sec-
tion VI and conclude in Section VII. TLA™ specifications and
correctness proofs for all of our algorithms are available in the
companion technical report [7].

II. MODEL AND DEFINITIONS

We assume an asynchronous crash-recovery model in
which agents (i.e., processes, or threads in a process) commu-
nicate by exchanging messages with no bounds on the time it
takes for messages to be transmitted or actions to be executed.
Messages can be lost or duplicated but not corrupted, and if
repeatedly sent by a nonfaulty agent to a nonfaulty agent, then
they are eventually delivered. Agents can fail by stopping only
and never perform incorrect actions; an agent is considered to
be nonfaulty iff it never fails. Agents are assumed to have
a local stable storage to keep their state in between failures
so that finite periods of absence are not distinguishable from
excessive slowness. Although agents may recover, they are not
obliged to do so once they have failed.

A. Atomic Broadcast

Given two sets of agents, namely proposers and learners,
atomic broadcast consists in ensuring that messages broadcast
by proposers are eventually delivered by learners in the same
order. As in [8], we phrase the problem as the agreement on
an ever-growing sequence of broadcast messages, of which
learners learn increasing prefixes. We represent a sequence s
of length n as (vi, va, ..., v,), where v; is the sequence’s i
element. We say that sequence s is a prefix of sequence t,
noted as s C ¢, iff the length of s is less than or equal to the
length of ¢ and, for all ¢ from 1 to the length of s, s[i] = t[i];
s and t are equal iff s C ¢ and ¢ C s. The empty sequence ()
has length zero and is a prefix of all sequences.

Atomic broadcast’s safety properties can be defined as
follows, where delivered|[l] refers to the sequence of messages
delivered by learner [, initially ().

Nontriviality
For any learner [, delivered[l] contains only
broadcast messages and no duplicates.
Stability
For any learner [, if delivered[l] = s at some time,
then s C delivered[l] at all later times.
Consistency
For any pair of learners [1 and [2, either
delivered[l1] T delivered[l2] or delivered[l2] T
delivered|l1].

We define liveness in terms of another set of agents: the
acceptors. Let a quorum be any finite set of acceptors large
enough to ensure liveness. Liveness of atomic broadcast is
defined as follows.

Liveness
For any proposer p and learner [, if p,l and a
quorum of acceptors are nonfaulty and p broad-
casts a message m, then eventually delivered[l]
contains m.

B. Algorithms

An event is an action performed at some agent either
spontaneously or triggered by the reception of a message.
Each event e performed by agent eq4cn¢ sends exactly one
message epsq, receivable by any agent, including itself. Events
are totally ordered at the agents performing them, that is, each

event e performed by agent e,gen; 1S uniquely identified by the
positive integer ey, indicating that e was the enum !t event
performed by e,4ent. For an event e triggered by the reception
of a message, we let e,.,q equal the triple (m, a, i), where m
is the received message, a is the agent that sent it, and ¢ the
index ey, of m’s sending event e.

A scenario is the set of events performed in some single
(partial) execution of an algorithm. For every event in a
scenario, all other events that could have causally influenced
it must also be in the scenario. More formally, for any set
S of events, let <g be the transitive closure of the relation
— on S such that e — f iff either (i) eqgent = fagent
and e,y < faum or (ii) f is a message-receiving event and
frevd = (€msgs €agents Enum). A scenario obtained by removing
the last events of a scenario S, according to the precedence
relation <g, is called a prefix of S.

Definition 1 (Scenario [6]): A scenario S is a set of
events such that:

e for any agent a, the set of events in S performed by
a consists of k, events numbered from 1 through %,
for some natural number £, ;

e for every message-receiving event e € S, there
exists d €S, d # e such that ey g =
<dmsg7 dagenta dnum>; and

e =g is a partial order on S.

Definition 2 (Prefix [6]): A subset S of a scenario T is a
prefix of T, written S C T, iff for any events d in T and e
in S,if d <7 e then d is in S.

An algorithm is the set of non-empty scenarios it allows.
An asynchronous algorithm is defined as follows, where
Agents(S) is the set of agents that performed events in S.

Definition 3 (Asynchronous Algorithm [6]): An
asynchronous algorithm Alg is a set of scenarios such
that:

e every prefix of a scenario in Alg is in Alg; and

e if T and U are scenarios of Alg and S is a prefix
of both T and U such that Agents(T \ S) and
Agents(U \ S) are disjoint sets, then T U U is a
scenario of Alg.

We define a source of a scenario S as an event e € S that
is minimal in the ordering <g, and we let the depth of an
event be the number of message steps that precede the event.

Definition 4 (Event Depth [6]): The depth of an event e
in a scenario S equals O if e is a source of §, otherwise it
equals the maximum of

(i) the depths of all events d with dygent = €ggent and
dnum < €num, and

(i) if e is an event that receives a message sent by event
b, then 1 plus the depth of b.

We now define what a collision-fast atomic broadcast
protocol is. For simplicity, our definition considers only normal
scenarios in which messages are broadcast in the source events.
As a result, an algorithm might be collision-fast according to

this simplified definition even if it does not ensure the same
delivery latency for non-source broadcasts. Nonetheless, our
algorithm ensures the same delivery latency for all messages
broadcast in normal runs.

Definition 5 (Normal Scenario [6]): A scenario S is nor-
mal iff:

e the only sources of S are (atomic) broadcast events;

e the message sent by any single event is not received
twice by the same agent;

e every non-source event is a message receiving event
(i.e., every non-source event is triggered by the receipt
of a message);

e if d1 and d2 are events in S with d1,gent = d24gent
and d1 <g d2, and e2 is an event in S that receives
the message sent by d2, then there exists an event el
in S with elggent = €244ent and el <g €2 such that
el receives the message sent by d1; and,

e if d and e are events in .S and e receives the messages
sent by d, then egepn, equals 1 plus dgepe, in S.

Our definition of collision-fast atomic broadcast states that
the messages initially broadcast are delivered in two message
steps. In order to measure that, we use the definition below.

Definition 6 (Complete to Depth [6]): An agent a is com-
plete to depth § in a scenario S iff either § = 0 or every agent
in Agents(S) is complete to depth § — 1 and «a receives every
message sent by an event in S with depth less than 6.

We consider an atomic broadcast algorithm to be collision-
fast iff there is a set M of agents and a set P of at least two
proposers such that all messages initially broadcast by any
subset O of the proposers in P are delivered by a learner [
when [is complete to depth 2 in a normal scenario in which
no agent in M U O U {l} crashes.

Definition 7 (Collision-fast Algorithm): An asynchronous
atomic broadcast algorithm Alg is collision-fast iff there is
a set M of agents and a set P of proposers with at least two

proposers such that, for every nonempty subset {p1,...,px}
of P with p; all distinct:
e for any broadcastable messages my, ..., my there is

a scenario {ej,...,ex} in Alg such that each e; is a
source event in which p; broadcasts m;; and,

e for every learner / and every normal scenario S of Alg
with Agents(S) = {l, p1,...,pr} U M that contains
{e1,..., e} as a prefix, if [is complete to depth 2 in
S, then delivered[l] contains my, ..., my.

III. M-CONSENSUS

In the M-Consensus problem, where M stands for mapping,
agents must agree on an increasing mapping from proposers
to either proposed values or to the special value Nil. Before
formalizing the problem, we define the value mapping data
structure, v-mapping for short, it depends upon.

A. Value Mapping Sets

Let f(d) be the result of function f for its domain element
d. We represent the set of all functions with domain D and
range R by [D — R], and the domain of a function f by
Dom(f). Moreover, we assume the existence of a special
function L such that Dom(L) = {}.

A value mapping set is a data structure defined in terms of
sets Domain and Value. A v-mapping is a function that maps
some elements of Domain to either a value in Value or Nil,
where Nil is a special value not in Value. Formally, ValMap =
U{[D — R] : D C Domain N R = Value U {Nil}}.
Since {} C Domain for any set Domain, L is in every v-
mapping set. Hereinafter, we consistently use uppercase letters
for values in Value U {Nil} and lowercase letters for v-
mappings in ValMap.

We call a pair (d,V), where d € Domain and
V € Value U {Nil}, a single mapping, or s-mapping for
short, and define the append operation v e (d, V), where
v is a v-mapping and (d,v) is an s-mapping, to equal
v-mapping f such that (i) Dom(f) = Dom(v) U {d
and (i) V¢ € Dom(f) IF ¢ € Dom(v) THEN f(q) =
v(q) ELSE f(q) = V. Informally, v (d, V') extends v with
the s-mapping (d, V) iff d is not in the domain of v. The
append operator defines a partial order relation on a v-mapping
set. We say that v-mapping v is a prefix of v-mapping w, and
w is an extension of v (v C w), iff w can be generated from
v by a series of append operations.

Given a set T C ValMap, we say that v-mapping v is
a lower bound of T iff v C w for all w in T. A greatest
lower bound (glb) of T is a lower bound v of T such that
w C v for every lower bound w of T, and we represent it
by M7T. Similarly, we say that v is an upper bound of 7T iff
w C v for all win T. A least upper bound (lub) of T is
an upper bound v of T such that v C w for every upper
bound w of T, and we represent it by LIT. For simplicity of
notation, we use v M w and v U w to represent M{v, w} and
L{v, w}, respectively. There is always a unique glb for a set
T of v-mappings. The existence of a lub, however, depends
on whether the set T is compatible, but if it exists, then it is
unique. Two v-mappings v and w are defined to be compatible
iff there exists a v-mapping « such that v C u and w C u. A
set S of v-mappings is compatible iff its elements are pairwise
compatible. Compatibility can be easily checked since two v-
mappings are compatible iff the elements in the intersection
of their domains are mapped to the same values.

We say that a value mapping is complete iff its domain
equals Domain. Hence, a complete v-mapping does not have
any strict extension, since no append operation applied to it
can result in a different v-mapping. The complete v-mapping
that maps every element in Domain to Nil and, therefore, is
independent of the set Value is called the trivial v-mapping. A
v-mapping is nontrivial iff it is different from the trivial one.

B. Problem definition

M-Consensus considers the v-mapping set with Domain
equal to the set of proposers and Value equal to the set of
proposable values. Proposers propose values and learners learn
v-mappings that can differ but must always be compatible,

can only be extended, and must eventually equal the same
complete nontrivial v-mapping. A v-mapping is proposed iff
all elements of its domain are mapped either to Nil or to a
proposed value. The properties of M-Consensus are defined as
follows, where learned[l] represents the v-mapping currently
learned by learner [, initially L.

Nontriviality
For any learner [, learned|l] is always a nontrivial
proposed v-mapping.

Stability
For any learner [, if learned[l] = v at some time,
then v C learned|[l] at all later times.

Consistency
The set of learned v-mappings is always compat-
ible and has a nontrivial lub.

Liveness
For any proposer p and learner [, if p,[and a
quorum of acceptors are nonfaulty and p proposes
a value, then eventually learned[l] is complete.

With respect to solvability, M-Consensus is equivalent to
consensus. An algorithm that solves consensus can solve M-
Consensus by having learners learn a mapping in which one
proposer is mapped to the decided value and all the others are
mapped to Nil. An algorithm that solves M-Consensus trivially
solves consensus by totally ordering the set of proposers and
picking up the value mapped to the first proposer not mapped
to Nil as the decision. The advantage of M-Consensus over
classical consensus is that it allows two (or more) concurrent
proposals to appear in the decision, mapped to different
proposers, avoiding the collision of proposals.

IV. COLLISION-FAST PAXOS
A. Basic Algorithm

We first present an algorithm that does not ensure liveness;
we address liveness in the next section. The algorithm is struc-
tured in rounds, ordered by relation <. Unless stated otherwise
(Section IV-B), rounds correspond to the natural numbers. We
assign to every round r a single coordinator—a different sort
of agent, besides proposers, acceptors, and learners—and a
subset of the proposers we call the collision-fast proposers.
The collision-fast proposers of r are the only proposers that
can have their proposals learned in two communication steps
in r. As we explain later, making all proposers collision-fast
for all rounds would restrict the algorithm’s resilience.

At round r, a collision-fast proposer p fast-proposes an
s-mapping (p, V) at most once. It does so when it has a
value to be proposed or when it notices that another collision-
fast proposer of round r has fast proposed a non-Nil value, a
situation in which p fast-proposes (p, Nil). If the fast proposal
contains a mapping with a proposed value, it is sent to the
acceptors and other collision-fast proposers; otherwise it is sent
directly to the learners. An acceptor may accept multiple v-
mappings, as long as the newly accepted v-mapping extends
the previous one. The v-mappings accepted by the acceptors
are generated from the non- Nil s-mappings fast-proposed and,
therefore, always map at least one proposer to a non-Ni/ value.
We say that a v-mapping v is chosen at round r iff there exists
a (possibly empty) subset P of the collision-fast proposers of
r such that the two conditions below hold:

e every proposer p € P has fast-proposed s-mapping
(p, Nil) and

e there exists a quorum () of acceptors such that every
acceptor a € () has accepted a v-mapping w such that
v is a prefix of w extended with (p, Nil) for every
proposer p € P.

More intuitively, a v-mapping is chosen at round r if it is a
prefix of every v-mapping accepted by some quorum () of
acceptors at r.

Chosen v-mappings are guaranteed to be compatible and a
learner can extend learned[l] by setting it to the lub between
learned[l] and any chosen v-mapping. If at least one collision-
fast proposer fast-proposes a value, no process crashes, and
messages are received, learners learn a complete nontrivial
v-mapping within two message steps. However, new rounds
might have to be started due to failures. To ensure consistency
in this case, v-mappings chosen in some round must be
compatible with v-mappings chosen in other rounds. The
algorithm keeps the invariant that if a v-mapping is or might
yet be chosen at some round r then any v-mapping accepted
at a higher-numbered round extends the possibly chosen one.
This is guaranteed by the actions taken to start a new round:
A new round’s coordinator queries a quorum of acceptors to
discover if some v-mapping has been or might be chosen at
a lower-numbered round. If this is the case, the coordinator
extends such a v-mapping with Nil mappings to make it
complete and sends it to the acceptors for it to be accepted
and chosen directly. If no v-mapping has been or might be
chosen at a lower-numbered round, the collision-fast proposers
of the current round are notified that they can fast-propose for
that round (collision-fast proposers wait for this confirmation
before fast-proposing at a round).

For the coordinator to be able to identify if some value
has been or might be chosen at a lower-numbered round
by querying a quorum of acceptors, we need the following
assumption. A simple way to ensure Assumption 1 is to define
quorums as any majority of the acceptors.

Assumption 1 (Quorum Requirement): If () and R are
quorums, then Q@ N R # (.

In fact, any general algorithm for asynchronous consensus
(and, therefore, M-Consensus) must satisfy a similar require-
ment, as shown by the Accepting Lemma in [6].

Algorithm 1 presents Collision-fast Paxos in detail. For
brevity, we define a @ S, where S is a set, as the cumulative
application of e to the elements of S (in any order). For
example, a o {z,y,z} =aezeyez

The algorithm is presented as a set of actions, executed
only if all the pre-conditions are satisfied. On normal runs,
actions follow the flow depicted in Figure 1.

B. Ensuring Liveness

We now extend Algorithm 1 to ensure progress in case
messages are lost, coordinators or collision-fast proposers
crash, and coordinators keep on starting new rounds. We
assume that if agents a and b do not crash and a keeps sending
message m to b, then b eventually receives m. Moreover, we
assume weak fairness on the actions an agent may take: no

Algorithm 1 Collision-fast Paxos

Pr: proposers set;

A: acceptors set;

L: learners set;

CF(3): round ’s collision-fast proposers set;
C'(4): round %’s coordinator.

prnd[p], crnd[c], rnd[a]: current round of proposer p, coordinator ¢, and acceptor a, respectively, initially O.
pval[p]: value p has fast-proposed at prnd[p] or none if p has not fast-proposed at prnd[p], initially none.
cval[c]: initial v-mapping for c¢rnd|c], if ¢ has queried an acceptor quorum or none otherwise; initially L for coordinator of round 0 and none for others.

vrnd[a]: round at which @ has accepted its latest value.

vval[a]: v-mapping a has accepted at vrnd[a] or none if no value accepted at vrnd[al; initially none.

learned|[l]: v-mapping currently learned by learner [; initially L.
11 Propose(p, V) 2

2: pre-condition:

3 p € Pr

4 action:

5 send (“propose”, V) to ¢f € CF(prnd[p])

6. Phasela(c,r) 2
7: pre-conditions:

8 c=C(r)

9 crnd[c] < T

10: actions:

1 crnd[c] 7

12! cval[c] « none

130 send (“la”,r) to A

4. Phaselb(a,r) 2
1s: pre-conditions:

16: ac A

17 rnd[a] < r

18 received (“1a”, r) from C(r)

19: actions:

20: rnd|a] < r

210 send (“1b”, a, r, vrnd[a], vval[a]) to C(r)

2: Phase2Start(c, r) 2
23: pre-conditions:
24 c=C(r)

25 cernd[c] =7
26: cval[c] = none
27: 3@ : Q is a quorum: Va € @ received (“1b”, a, r, vrnd, vval)
280 actions:
29: LET msgs = [m = (“1b”, a, r, vrnd, vval):
received m from a € Q)
300 LET k = Maz([vend : (“1b”, a, r, vrnd, vval) € msgs |)
31 LET S = [wval : (“1b”, a, 7, k, vval) € m ,vval # none]
3 IF S = () THEN
33 cval|c] + L
340 send (“2S”, 1, cval[c]) to P
352 ELSE
368 cvallc] + US o [{p, Nil) : p € Pr]
37 send (“2S”,r, cvalc]) to PU A

3s: Phase2Prepare(p,) 2
39 pre-conditions:
40: p € Pr

a1 prnd(p] <r

a: received (“2S”, ¢, T, v)

43: actions:

44: prnd[p] < r

a5t IF v = L THEN pual[p] - none ELSE puval[p] + v(p)

4. Phase2a(p,r, V) 2
470 pre-conditions:
48 p € CF(r)

49 prnd[p] = r
50: pual[p] = none
s1: either V # Nil and received (“propose”, p, V)

52 or V = Nil and)
received (“2a”, 7, (q, W)), ¢ € CF(r), W # Nil

53 actions:

54 pval[p] < V

558 if V # Nil then send (“2a”,p,r,(p, V)) to AU CF(r)
s6: else send (“2a”,p,r, (p, V)) to L

s Phase2b(a, r) 2
s8¢ LET Condl = (received (“2S”, 7, v), v # L and
vrnd|a] < r) or vval[a] = none
so: LET Cond2 = received (“2a”,r,(p, V)), V # Nil
60: pre-conditions:
61 a€A
62 rndla] < r
63: either Cond1 or Cond2
641 actions:

65 rnd[a] < vrnd[a] < 7

66 IF Condl THEN vval[a] < v

o7: ELSE IF Cond2 and (vrnd[a] < r or vval[a] = none)

68 THEN vval[a] < L e (p, V)e [(p, Nil) : p € Pr\ CF(r)]
69: ELSE wval[a] < vval[a] ® (p, V)

700 send (“2b”, a, 7, vvalla]) to L

71: Learn(l) 2

72: pre-conditions:

73 l € learners

74: 3@, Q is a quorum: Va € Q received (“2b”, a,r,_)

75: actions:

76: LET P C CF(r) : Vp € P received (“2a”, p, r, (p, Nil))
7 Q2bVals = [v : received (“2b”, a,r,v) from a € Q]
78 w =MQE2bVals e [(p, Nil) : p € P]

79: learned[l] = learned[l] U w

action remains enabled forever without being executed. We
tacitly assume that an action is enabled only if its agent is not
crashed.

The FLP result [9] and the equivalence between consensus
and M-Consensus imply that these assumptions are not enough
to ensure liveness for M-Consensus. We circumvent FLP by
eventually electing a distinguished coordinator—the leader—
responsible for starting new rounds. We require that every
coordinator be reponsible for infinitely many higher-numbered

rounds, which can be done by having round numbers defined
as tuples (n,c) where n is a natural number and c is its
coordinator identifier; thus, round numbers can be compared
lexicographically.

When the leader starts a round and picks L as its initial
value, the round will only succeed in getting a complete
v-mapping chosen and learned if all its collision-fast pro-
posers remain up. This is inherent to collision-fast consensus
algorithms like ours as the Collision-fast Learning theorem

Coordinator Phasela hase2Start

Acceptor \Phaselb/fP
CF Proposer

Proposer

Learner

Phase2Prepa re7Phase2a;\

Propose

Nearn

Fig. 1. The flow of actions on good runs; the dashed lines show the two-communication steps to deliver a message. The coordinator starts the round by executing
action Phasela. Acceptors respond to the messages sent in Phasela on Phaselb. On action Phase2Sart, based on the responses gotten, the coordinator sends a
2S message to collision-fast proposers. On Phase2Prepare, collision-fast proposers get ready to actually propose some value. Regular proposers send proposal
requests on phase Propose; if the proposal is from the collision-fast proposer itself, the propose message delivered with no delay. On Phase2a, collision-fast
proposers send their proposals to the acceptors. Acceptors accept the proposals and let learners know on Phase2b. Learners perceive the decision of a value on

phase Learn.

implies [6]. In Collision-fast Paxos, the set of collision-fast
proposers depends on the round. Consequently, the failure
of any collision-fast proposer does not prevent learners to
learn a decision in two communication steps. When the leader
suspects the crash of a collision-fast proposer of the current
round, it starts a new round that does not include the failed
proposer in the set of collision-fast proposers. We assume that
a coordinator c that believes itself to be the leader keeps a set
activep[c] with all the proposers it believes to be currently up.
We assume this set can take any valid value but, in order to
ensure liveness, it must eventually satisfy some conditions we
show later in this section.

For progress, we need to make a number of small changes
to the algorithm we presented in Section I'V-A:

e We add “c believes itself to be the leader”
as a pre-condition to actions Phasela(c,r) and
Phase2Start(c,).

e If an acceptor a receives a “la”, “2S”, or “2a”
message for round 7 such that r < rnd[a] and the
coordinators of r and rnd[a] differ, then a sends a
special message to the coordinator of 7 to inform that
round rnd[a] was initiated.

e The same sort of special message is sent if a proposer
p receives a “2S5” message for round 7 such that r <
prnd[p] and the coordinators of r and prnd[p] differ.

e Coordinator ¢ executes action Phasela(c,r) only if
either it receives a special message informing of round
j (r > j > crndlc]) was initiated, or the set of
collision fast-proposers of crnd[c] is not a subset of
activep|c] but the set of collision-fast proposers of r
is.

These changes do not affect safety because they do not
change the algorithm’s variables and make pre-conditions more
restrictive only. Besides these changes, we also require that
agents keep resending some of their messages in order to
overcome transient communication failures.

We define LA(p, l, ¢, @) for any proposer p, learner [, co-
ordinator ¢, and quorum @ of acceptors, to be the conjunction
of the following conditions:

e {p,l,c} U Q are not crashed,

e p has proposed a value,

e ¢ is the only coordinator that believes itself to be the
leader,

e All proposers in activep|c] are not crashed,

e For every round r > c¢rnd|c|, ¢ is the coordinator of
a round s > r whose collision-fast proposers are all
in activep|c], and

e activep|c] is a subset of all its future values.

If LA(p,!, ¢, @) holds for some proposer p, coordinator c,
and quorum (), from some point in time on, then eventually
! learns a complete v-mapping. If every coordinator is itself
the only collision-fast proposer for infinitely higher-numbered
rounds that it coordinates, then Collision-fast Paxos could
ensure liveness in the same situations where Paxos would. In
fact, a round in which the only collision-fast proposer is the
round coordinator itself implements a standard Paxos round.

As we mentioned before, the set of collision-fast proposers
is defined per round, so that failed proposers can be excluded
from the set to allow collision-fast termination even after
failures. For that, we extend round numbers with the round’s
set of collision-fast proposers, defining round numbers as
tuples of the form (n,c, ¢f), where n is a natural number,
¢ is the round’s coordinator, and cf is the sorted list of the
round’s collision-fast proposers. It is clear from this definition
that a lexicographical comparison induces a total order on the
round numbers (¢f may be ignored in the comparison without
prejudice to the scheme). To ensure the uniqueness of the
special round Zero, it is defined a priori as (0, ¢, ¢f), for
some coordinator ¢ and list ¢f. This scheme grants to each
coordinator an infinite number of rounds for every possible
set of collision-fast proposers.

V. ATOMIC BROADCAST

To implement atomic broadcast, we use infinitely many M-
Consensus instances, each one uniquely identified by a natural
number. Atomic broadcast proposers act both as proposers and
learners in each of the M-Consensus instances. Algorithm 2
presents Collision-fast Atomic Broadcast in detail.

To broadcast m, a collision-fast proposer p proposes m in
the smallest instance of M-Consensus % in which it has neither
proposed nor learned anything yet. When a proposer that is

not collision-fast for its current round wants to atomically
broadcast a message m, it forwards m to one of the collision-
fast proposers of the current round. Since proposers are also
learners, they eventually learn the decision of ¢ and can check
whether m is in the decision. If not, p re-proposes m in the
next free M-Consensus instance.

Assuming a previously agreed total order of proposers,
learner [builds sequence delivered|[l] by considering each M-
Consensus instance in order and then, for each proposer p,
also in order, checking if p has something mapped to it on that
instance. If so, [appends the mapped value to delivered|l] iff
it is different from Nil and not yet contained by delivered|l]. If
p has nothing mapped to, [must wait until the current instance
is complete.

In the normal case, if a collision-fast proposer p fast-
proposes a message, then a v-mapping containing such a
message is learned in two message steps (see Section IV-A). If
there are no concurrent (non-Nil) fast-proposals for the same
instance, this v-mapping will be complete. Otherwise, a learner
complete to depth 2 plus the depth of p’s fast proposal will
learn a complete v-mapping containing all fast proposals, since
all are learned in two steps. Because a message to be broadcast
by a collision-fast proposer never waits to be fast-proposed
in some instance and a collision-fast proposer leaves no gaps
between instances, this atomic broadcast algorithm is collision-
fast.

Algorithm 2 Collision-fast Atomic Broadcast
I: the set of all Collision-fast Paxos instances used
CFP(i)!A: the action,or variable A of Collision-fast Paxos instance 4
i1 Propose(p, V) =
2 Vi € I, CFP(i)! Propose(p, V)

NewPhasela(i, c,r) 2
pre-conditions:
c=C(r)
erndfc] < T
¢ believes itself to be the leader
¢ heard of a round r > j > crnd[c| for some instance or
CF(crnd[c]) ¢ active[c]
9: actions:
100 CFP(i)!Phasela(c,)
11: Phasela(c,) 2
12 Vi € I, CFP(i)!NewPhasela(i, c, 1)
13: Phaselb(a,r) 2
4. Vi€ I, CFP(i)!Phaselb(a,r)
1s: Phase2Start(c, r) =
6. Vi € I, CFP(i)!Phase2Start(c, r)

17 Phase2Prepare(p,) =
8. Vi € I, CFP(i)! Phase2Prepare(p,)

190 Phase2a(p,r, V) 2

200 pre-condition:

21 p has not yet proposed V'

2: action:

23 LET ¢ = Min([j : CFP(j)!pval[p] = none))
24 CFP(i)!Phase2a(p,r, V)

35t Phase2b(i, a,T) =
2%: CFP(i)!Phase2b(a,r)

2. Learn(i, 1) =
28 CFP(i)!Learn(l)

R R T N

VI. RELATED WORK

Interactive Consistency [10] is related to M-Consensus
in that the proposals of many proposers are included in the
decision. More specifically, in interactive consistency each
proposer p; proposes a value v; and the algorithm must decide
on a vector D such that D[i] = wv; if p; does not crash
and D[i] € {v;, L} otherwise. (This property is equivalent to
Validity in IC [11].) Since in M-Consensus not all proposed
values must be included in the decision, even if no process
crashes, M-Consensus is weaker than IC. This explains why
M-Consensus can be solved with unreliable failure detec-
tors [3] while IC requires a perfect one [12].

The Non-Blocking Weak Atomic Commitment (NB-WAC)
is also related to M-Consensus in that different votes are
taken into account to decide on a transaction outcome and
failure suspicions may cause votes to be “overrulled” [13].
The similarities are more plainly viewed if the Paxos Commit
algorithm used to solve the problem, since it uses a Paxos
consensus instance to decide on each vote [14]. Even though
NB-WAC is used to decide on either Commit or Abort, the
Paxos Commit could easily be changed to decide on some
other function of the votes, such as a sequence of the votes,
the order in which they should be delivered in an atomic
broadcast protocol, similarly to our use of Collision-fast Paxos.
Differently from our protocol, however, such a Paxos Commit
based atomic broadcast protocol would not be collision fast.

Mencius [15] uses a simplified consensus protocol, solved
by a modified version of Paxos, namely Coordinated Paxos. In
their protocol, only the coordinator is free to propose a value,
including a no-op value; other processes may only propose
no-op. This way, whenever the coordinator of a Coordinated
Paxos instance proposes no-op, it is guaranteed that no-op
will be the decision, and therefore any agent that sees such
a proposal may learn the decision in one communication step.
Multiple instances are used in parallel, to agree on a set of
messages to deliver, in a way similar to what is done by
our CFPaxos. In fact, in the absence of failures and failure
suspicions, both algorithms have a similar message exchange
pattern. Under failures or failure suspicions, CFPaxos requires
that the coordinator start a new round, while in Mencius
other proposer may propose no-op on behalf of the suspected
node. In CFPaxos, if the coordinator fails, a new one must be
selected, but the new coordinator can choose a different set
of collision-fast proposers for the next round of all CFPaxos
instances and, consequently, keep the execution collision-fast.
In Mencius, if one of the coordinator fails, the others must
keep voting no-op in its instances. Hence, even though the
authors provide a method to speed up the no-op voting, strictly
speaking, the algorithm is not collision-fast.

There exist other atomic broadcast algorithms that can
deliver messages within two steps in some optimistic runs (e.g.,
[16], [17], [18]), but the only protocol we are aware of that is
truly collision-fast is [19]. It tolerates more than a single failure
but, instead of relying on consensus, it extends the timestamp-
based algorithm presented by Lamport in [1]. In contrast to
the approach in [19], ours considers a weaker model, where
processes can crash and recover, and messages can be lost or
duplicated. Moreover, our algorithm allows reconfiguration in
case collision-fast proposers fail so that execution can become

collision-fast again, which is not the case for [19] when failures
happen.

VII. CONCLUSION

In this paper, we have discussed the implementation of
a collision-fast atomic broadcast protocol. Since the tradi-
tional approach to implementing atomic broadcast based on
standard consensus cannot result in a resilient collision-fast
implementation, we have proposed a new agreement problem
called M-Consensus that allows multiple proposals to figure in
the problem’s decision. Our solution to M-Consensus, called
Collision-fast Paxos, is an extension of the Paxos protocol in
which a number of proposers can have their proposals as part
of the final decision in two message steps. Using Collision-fast
Paxos to implement a collision-fast atomic broadcast algorithm
is simple and provides a very efficient fault-tolerant protocol.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558-565, July
1978. [Online]. Available: http://portal.acm.org/citation.cfm?id=359563

[2] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299-319, 1990.

[31 T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” Communications of the ACM,
vol. 43, no. 2, pp. 225-267, 1996. [Online]. Available:
http://www.acm.org/pubs/toc/Abstracts/jacm/226647.html

[4] L. Lamport, “The part-time parliament,” ACM Transactions on
Computer Systems, vol. 16, no. 2, pp. 133-169, 1998. [Online].
Available: http://portal.acm.org/citation.cfm?id=279227.279229

[5] ——, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79-103,
October 2006.
[6] ——, “Lower bounds for asynchronous consensus,” Distributed Com-

puting, vol. 19, no. 2, pp. 104-125, 2006.

[71 R. Schmidt, L. Camargos, and F. Pedone, “On collision-fast
atomic broadcast,” EPFL, Tech. Rep., 2007. [Online]. Available:
http://infoscience.epfl.ch/getfile.py ?recid=100857

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Lamport, “Generalized consensus and paxos,” Microsoft Research,
Tech. Rep. MSR-TR-2005-33, 2004.

M. J. Fischer, N. Lynch, and M. S. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374-382, 1985.

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.
[Online]. Available: http://doi.acm.org/10.1145/322186.322188

M. Raynal, “A short introduction to failure detectors for asynchronous
distributed systems,” SIGACT News, vol. 36, no. 1, pp. 53-70, Mar.
2005. [Online]. Available: http://doi.acm.org/10.1145/1052796.1052806

J.-M. Hélary, M. Hurfin, A. Mostefaoui, M. Raynal, and F. Tronel,
“Computing global functions in asynchronous distributed systems with
perfect failure detectors,” Parallel and Distributed Systems, IEEE Trans-
actions on, vol. 11, no. 9, pp. 897-909, 2000.

R. Guerraoui, “Revisiting the relationship between non-blocking atomic
commitment and consensus,” in Distributed Algorithms. Springer,
1995, pp. 87-100.

J. Gray and L. Lamport, “Consensus on transaction commit,” ACM
Transactions on Database Systems (TODS), vol. 31, no. 1, pp. 133—
160, 2006.

Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient
replicated state machines for wans,” in Proceedings of the 8th USENIX
conference on Operating systems design and implementation. USENIX
Association, 2008, pp. 369-384.

F. Pedone and A. Schiper, “Handling message semantics
with generic broadcast protocols,” Distributed = Computing,
vol. 15, no. 2, pp. 97-107, April 2002. [Online]. Available:

http://dx.doi.org/10.1007/s004460100061

“Optimistic atomic broadcast: a pragmatic viewpoint,”
Theoretical Computer Science, vol. 291, no. 1, pp. 79-101, January
2003. [Online]. Available: http://portal.acm.org/citation.cfm?id=795644

P. Vicente and L. Rodrigues, “An indulgent uniform total order algo-
rithm with optimistic delivery,” in Proc. of the 21th IEEE Symp. on
Reliable Distributed Systems (SRDS’02), Osaka, Japan, Oct. 2002, pp.
92-101.

P. Zielinski, “Low-latency atomic broadcast in the presence of con-
tention.” in Proc. of the 20" Intl. Symposium on Distributed Comput-
ing, DISC’2006, 2006, pp. 505-519.

