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ABSTRACT
We present MoSQL, a MySQL storage engine using a trans-
actional distributed key-value store system for atomicity, iso-
lation and durability and a B+Tree for indexing purposes.
Despite its popularity, MySQL is still without a general-
purpose storage engine providing high availability, serializ-
ability, and elasticity. In addition to detailing MoSQL’s de-
sign and implementation, we assess its performance with a
number of benchmarks which show that MoSQL scales to a
fairly large number of nodes on-the-fly, that is, additional
nodes can be added to a running instance of the system.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems

Keywords
Elasticity, Scalability, High Availability, RDBMS, MySQL

1. INTRODUCTION
Relational database management systems (RDBMS) have

had remarkable staying power in real-world applications de-
spite many alternative approaches showing promise (e.g.,
XML-based storage, object databases). In recent years,
however, the realities of scaling database systems to Internet
proportions have made customized solutions more practi-
cal than general-purpose one-size-fits-all RDBMSs [31]. De-
spite the disadvantages of using a general-purpose RDBMS
in comparison to more specific solutions, we expect that a
significant number of legacy applications will remain in the
years ahead and thus the need to improve the scalability,
performance, and fault-tolerance of RDBMSs is acute.

MySQL is an open-source RDBMS at the core of many
multi-tier applications based on the “LAMP software stack”
(i.e., Linux, Apache, MySQL and PHP). Although the LAMP
stack initially thrived in environments where the cost, com-
plexity, and capabilities of enterprise-grade frameworks and
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RDBMSs were prohibitive or unnecessary, MySQL has also
been deployed in large and complex environments (e.g.,
Wikipedia, Google, Facebook, Twitter). Yet, despite its
popularity, MySQL is essentially a standalone database server.
Multi-server deployments are possible but provide weaker
system guarantees than single-server configurations (e.g.,
weak isolation levels, absence of distributed transactions).
This is clearly detrimental to the many applications based
on MySQL that have evolved into large and mature systems
with originally unexpected scalability, fault tolerance, and
performance requirements.

The continuing migration of services and applications to
the web has exposed RDBMSs to workloads that are larger,
growing faster, and behaving more unpredictably. This trend
typically results in over-provisioning in the difficult-to-scale
database tier to ensure responsiveness for all expected ranges
of client load, while costly and disruptive system upgrades
to meet growing scalability requirements remain a reality.
Elastic storage holds the promise of saving over-provisioning
costs while maintaining high performance and low latency,
especially for highly variable or cyclical workloads [2].

MoSQL, the distributed storage engine we have designed
and implemented, provides near-linear scalability with addi-
tional nodes and strongly consistent, serializable transaction
isolation. MoSQL stores data across several storage nodes,
with each storage node containing a subset of the dataset
in memory only. Although each node is responsible for a
portion of the database, it provides upper layers the ab-
straction of a single-partition system: database entries not
stored locally on a storage node are fetched from the re-
mote nodes responsible for storing them; for performance,
remotely fetched entries are locally cached. This mecha-
nism is far more efficient than the one used by standalone
databases, which fetch missing items in the cache from an
on-disk copy of the database.

MoSQL’s storage nodes offer simplified concurrency con-
trol and single-threaded execution; parallelism can be ex-
ploited by deploying multiple node instances on a single
physical server. Update transactions proceed optimistically:
there is no global synchronization of update transactions
across nodes during execution (i.e., no distributed locks and
deadlocks [14]). At commit time, update transactions are
certified; the certifier decides which transactions must be
aborted in order to keep the database in a consistent state.
Read-only transactions always see a consistent snapshot of
the database and need not be certified. This mechanism en-
ables high performance in large databases where contention
for the same data is infrequent.



We have implemented all the features described in the
paper and conducted a performance evaluation of MoSQL
using the TPC-C benchmark. We show that MoSQL is capa-
ble of scaling TPC-C throughput sublinearly to 16 physical
servers. With two physical servers, MoSQL is able to sur-
pass the throughput of a single-server instance of MySQL us-
ing the standard transactional storage engine InnoDB, while
still maintaining elastic capability and fault tolerance. We
also demonstrate the elastic capabilities of MoSQL: we add
clients to a running system until a given latency threshold
is passed and then add nodes to the storage tier and launch
a new MySQL node and redistribute the clients.

The rest of this paper is structured as follows. Section 2
details MoSQL’s design. Sections 3 and 4 discuss isolation
and performance considerations. Section 5 presents an ex-
perimental evaluation of MoSQL’s prototype. Section 6 re-
views related work and Section 7 concludes the paper.

2. SYSTEM DESIGN

2.1 Model and definitions
We consider an environment composed of a set

C = {c1, c2, ...} of client nodes and a set S = {s1, ..., sn} of
database server nodes. Nodes communicate through mes-
sage passing and do not have access to a shared memory.
We assume the crash-stop failure model (e.g., no Byzantine
failures). A node, either client or server, that does not crash
is correct, otherwise it is faulty.

The environment is asynchronous: there is no bound on
message delays and on relative processing speeds. How-
ever, we assume that some system components can be made
fault tolerant using state-machine replication, which requires
commands to be executed by every replica (agreement) in
the same order (total order) [17, 25]. Since ordered deliv-
ery of commands cannot be implemented in a purely asyn-
chronous environment [6, 12], we assume it is ensured by an
“ordering oracle” [17].

The isolation property is serializability : every concurrent
execution of committed transactions is equivalent to a se-
rial execution involving the same transactions [4]. Serializ-
ability prevents anomalous behaviors, namely, dirty reads,
unrepeatable reads, lost updates and phantoms [15].

2.2 Overview
The architecture of MoSQL decouples some of the com-

ponents typically bundled together in monolithic databases.
In particular, concurrency control and logging management
are separate from data storage and access methods. In this
sense our approach is similar to the model proposed in [19]
and expands upon the work in [33] and [26]. Figure 1 shows
the architecture of MoSQL.

In brief, MoSQL is composed of three main components:

• MySQL servers handle client requests by parsing
SQL statements and executing them against the stor-
age engine. MySQL allows third-party storage engines
through its pluggable storage engine API. This allows
us to plug in our calls to our distributed storage nodes.

• Storage nodes handle MySQL requests and keep track
of the transactional state. Each storage node keeps
a subset of the dataset and indexes in-memory only.
Storage nodes act as a distributed store in that read
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Figure 1: MoSQL global architecture.

requests are either served from local memory or from
the memory of a remote storage node. This is effec-
tive since retrieving rows from a remote storage node
is usually faster than retrieving rows from local disk.

• The Certifier is a replicated state machine that logs
transactions on disk, ensures serializable transaction
executions, and synchronizes system events (i.e., recov-
ery, storage node additions and removals). At storage
nodes, transactions proceed without synchronization.
At commit time, storage nodes submit transactions to
the certifier, which ensures serializable execution.

Any number of MySQL instances can be connected to
any number of storage nodes. Depending on the workload,
it may be advantageous to assign multiple storage nodes per
MySQL instance, or vice-versa. We typically deploy one
MySQL process together with a small number of storage
nodes per physical machine, depending on how many cores
are available in the machines.

In the following sections, we detail each one of MoSQL
components.

2.3 Storage nodes
Storage nodes are divided into three distinct layers, where

each layer builds upon the abstraction offered by the layer
below. The bottom layer implements a distributed stor-
age abstraction. Each storage node is assigned a subset of
entries, and the storage layer provides operations to read
and write such entries. This layer abstracts away the fact
that entries are distributed among storage nodes: if a read
operation accesses an entry that is not stored locally, the
operation is turned into a remote read request sent to the
node responsible for storing that entry. The transactional
layer uses read and write operations provided by the storage
layer to keep track of the state of active transactions. Some
metadata is kept for each transaction, such as its snapshot
timestamp (described later), and the set of entries it has
read and written, i.e., the transaction’s readset and write-
set. This metadata is later used for certifying transactions.
Finally, the B+Tree layer adds indexing capabilities and ex-



poses the typical operations of a B+Tree index for searching,
scanning and adding entries.

Storage nodes are “elastic” and can be added or removed
while MoSQL is running. We distinguish two reasons for
adding storage nodes: (1) to improve performance and ac-
commodate sudden workload spikes; or (2) to increase ag-
gregate system main memory. For the latter case, increasing
the capacity of storage nodes requires adding one or more
machines to the system and redistributing the dataset so
that new storage nodes take ownership of a portion of entries
to even out the load. Reconfigurations should be relatively
rare and only necessary when the system reaches a certain
threshold of memory utilization.

Reconfiguration can be disruptive, so we use volatile stor-
age nodes to handle spikes in the workload. When spawned,
a volatile storage node starts with an empty storage and
does not take ownership of entries. As transactions are ex-
ecuted, volatile storage nodes will turn read requests into
remote requests (using the same mechanism we mentioned
above) and cache the results of the remote requests locally.
We demonstrate and evaluate the effects of adding volatile
storage nodes in Section 5.

The storage layer of a node implements a multiversion
store with operations to read specific versions and write new
versions of entries. Entries are partitioned among storage
nodes based on their key. A node is the owner of all entries
assigned to it as a result of the partitioning scheme. We
use consistent hashing in our prototype as the partitioning
scheme, but other schemes could be used. Consistent hash-
ing has the advantage of reducing the number of entries that
must be moved between nodes as a result of a membership
change (i.e., adding or removing a node) [11]. In addition
to its assigned entries, storage nodes can cache any other
entries, as long as space is available. An entry is typically
cached after it is accessed remotely. Cached entries allow
a storage node to exploit access locality, and thereby im-
prove performance. Volatile storage nodes are a particular
instance of this design in that they cache entries without
taking ownership of them.

The transaction layer is responsible for transaction ex-
ecution. For each new transaction, it creates a transaction
record, containing the transaction’s unique identifier, read-
set, writeset, and snapshot timestamp. The transactional
layer exposes a BerkeleyDB-like key-value interface [21] sup-
porting the following core operations: transaction get(k),
transaction put(k, v), transaction commit() and
transaction rollback().

When a transaction t executes its first transaction get
operation, t’s snapshot timestamp is assigned the current
value of the node’s transaction counter. All further transac-
tion get operations of t will be consistent with t’s snapshot
timestamp. This guarantees that read-only transactions al-
ways see a consistent view of the database and do not need
to be certified. The transaction counter of a node is incre-
mented each time a transaction is locally committed.

The B+Tree layer has support for variable key and value
sizes, multi-part table keys (i.e., keys composed of multiple
fields), recursive search, and sequential reads along the leaf
nodes. However, in place of system calls such as fread(),
fwrite() and fsync() to read, write and flush data to local
disk storage, as with a traditional implementation, we have
calls to the transaction get(), transaction put() and transac-
tion commit() APIs provided by our transaction layer. Our

B+Tree supports the typical B+Tree operations, including
search(k), insert(k,v), update(k,v) and delete(k).

In order to make it possible to index arbitrary types of
data with different collation strategies, our B+Tree layer
permits the user to define a specific number of fields that will
be indexed, along with a pointer to a comparator function
that determines whether one field is smaller than, equal to,
or greater than the other.

New B+Tree node structures are assigned a unique key
and persisted in our storage layer using the MessagePack
serialization library.1 Optionally, B+Tree nodes can be com-
pressed after serialization. Multiple B+Trees can be stored
within the same storage node, and multiple active client ses-
sions are supported. These features enable the use of a sin-
gle storage node to store multiple indexes on multiple tables
with the API enabling seamless switching among them.

2.4 Certifier
The certifier has three main tasks: (a) checking whether

the items read by a committing update transaction are up-
to-date when the transaction requests to commit; (b) logging
committed transactions and system events (e.g., member-
ship events) to disk; and (c) propagating new entries cre-
ated by committed transactions to all nodes. The certifier
is replicated for fault-tolerance using state-machine replica-
tion [16, 25] and Paxos [17, 20].

To certify a transaction t, the certifier checks whether the
readset of t intersects the writeset of transactions that com-
mitted after t executed its first transaction get() operation.
We use Bloom filters to efficiently implement the intersec-
tion between two sets. The intersection of two Bloom filters
is empty if the result of and-ing their bitmaps is zero. Bloom
filters offer two advantages: (1) finding their intersection is
linear in the size of their bitmap; and (2) the information
stored in Bloom filters is compressed, thus reducing memory
requirements. However, Bloom filters have the disadvantage
of false positives, resulting in a tunable number of transac-
tions unnecessarily aborted.

Besides storing the state needed for transaction certifica-
tion, each certifier replica also stores the log of committed
transactions, which allows a storage node to recover from a
certifier replica. The replicas store the log on stable stor-
age. To avoid scanning a large portion of the log to find the
last version of a key, certifier replicas maintain hints to the
location of the last version of a key in the log.

The certifier also helps nodes to be added online. To join
a running MoSQL instance, a node announces itself to the
certifier. When the certifier receives this request it forwards
it to all nodes. This mechanism globally serializes the mem-
bership change request with other system events.

2.5 Storage engine
MoSQL effectively turns MySQL into a middleware for

interpretation and execution of SQL statements. Existing
applications need not make any significant changes in order
to use MoSQL, they only need to make use of a client con-
nection pool software to distribute connections to available
MySQL servers, or “MySQL instances” in our parlance.

MoSQL implements five core interface methods correspond-
ing to the typical database operations for persisting, scan-
ning, deleting and retrieving data in a table: index read(),

1http://msgpack.org/
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Figure 2: B+Tree example for employee relation.

index next(), write row(), update row() and delete row().2

Parsing and optimization of SQL statements are handled by
higher layers within MySQL and are not part of the scope of
our implementation (see Section 4). Depending on the work-
load and characteristics of the row data, the storage engine
is capable of storing the packed representation of the row
data inside the B+Tree node itself, or storing the primary
key value in the primary key index and using this value to
retrieve the row data from the storage layer through a trans-
action get() operation. Our storage layer currently imposes
approximately a 100-byte overhead per key stored. For ta-
bles with “skinny” rows, this can result in a substantial over-
head, and it is far more sensible to store both primary key
and row data inside the B+Tree node itself. Conversely,
for tables with wide rows, storage of the row data inside
the B+Tree node will greatly increase the size of the nodes
and potentially waste much bandwidth when transferring
B+Tree nodes.

Secondary indexes are also supported with the secondary
key stored in the key part of the B+Tree, and a primary
key pointer stored in the value part that can then be used
to retrieve the pointed-to row data from the storage layer.

3. ISOLATION CONSIDERATIONS
In MoSQL, serializable transaction isolation is provided

by the transaction layer, the B+Tree layer, and the certifier
combined. Dirty reads and unrepeatable reads are avoided
by the transaction layer: read requests return committed
items which correspond to a consistent database snapshot.
Lost updates are checked during certification, using trans-
action readsets and writesets, collected during the execu-
tion of transactions by the transaction layer. Phantoms [15]
are checked during certification with information about the
B+Tree, as we now explain.

For our discussion to follow, we consider operations done
against a relation employee with attributes id and name.
Figure 2 shows an example of the primary key index for this
table. Notice that table entries are not stored within the
B+Tree structure in this example. Each square corresponds
to a key-value pair stored in our storage layer.

Suppose transactions t1 and t2, as defined in Figure 3,
execute concurrently. Both see a consistent view of the
database as of their respective start times, each being as-
signed a snapshot timestamp when they perform their first
transaction get() operation. Transaction t1 and t2 both read
table entries (e) and (f) (see Figure 2) and each transaction
adds a new table entry, with key 91 and 93, respectively. As
a result, if during certification the certifier considers only ta-
ble entries to detect conflicts, both transactions will commit,
despite the fact that the execution is not serializable (i.e., in

2http://forge.mysql.com/wiki/MySQL_Internals_
Custom_Engine

SELECT * FROM employee 

      WHERE id BETWEEN 90 AND 100;

 INSERT INTO employee 

       VALUES (93,’Jane Doe’);

SELECT * FROM employee 

    WHERE id BETWEEN 90 AND 100;

 INSERT INTO employee 

           VALUES (91,’John Doe’);

t
1

t
2

Figure 3: MoSQL phantom anomaly involving trans-
actions t1 and t2.

 INSERT INTO employee 

       VALUES (130,’Jane Doe’);

 INSERT INTO employee 

           VALUES (60,’John Doe’);

t
3

t
4

Figure 4: Concurrent execution of t3 and t4 may
result in unnecessary aborts.

a serializable execution, the second transaction must see the
value insert by the first transaction). MoSQL avoids this
problem because B+Tree entries are also used in certifica-
tion. Entries (a), (b), and (c) will be in the readset of t1
and t2, and the insert operations of t1 and t2 both change
entry (b), causing it to be in the writeset of both transac-
tions. As a result, t1 and t2 will conflict on (b) and only one
transaction will pass certification.

Our approach to preventing phantoms resembles the idea
of granular locks [15], applied to certification of B+Tree en-
tries, and as such, it is subject to similar tradeoffs. In par-
ticular, it results in some concurrent non-conflicting trans-
actions being aborted, depending on the B+Tree node size,
the specific arrangement of keys, and the execution order.
For example, consider transactions t3 and t4 in Figure 4. To
insert table entry with key 60, t3 reads entries (a) and (b)
and writes (b); t4 reads and writes entries (a) and (d) since
these B+Tree nodes will be split. Thus, if t3 is certified
after t4, then it will be aborted, even though the two trans-
actions do not access any common table entries (although
they access common B+Tree entries).

4. PERFORMANCE CONSIDERATIONS
MoSQL scales throughput by clustering multiple storage

nodes under a single MySQL node or multiple MySQL nodes.
As we discuss in this section, having multiple instances of
MySQL sharing a common underlying storage has impor-
tant implications on performance optimization. In brief, this
stems from the fact that while distributed indexing and stor-
age are provided by the lower layers of our architecture, an
unmodified MySQL optimizer is still used to do query plan-
ning and optimization, and was never intended to be used
in settings with multiple interdependent instances.

One of the key advantages of a general-purpose RDBMS
is the flexibility and expressive power provided by SQL and
the heuristics used by the optimizer to ensure that queries
are efficiently executed. In order to work well, however,
the optimizer requires statistics that reflect the state of the
system.

We illustrate the implications of MoSQL’s design with two
statistics used by the MySQL optimizer that must be pro-
vided by the storage layer: the estimated cardinality of the
table (i.e., number of rows or records) and the records in range(p1,
p2) statistic, a storage engine interface method that returns
the estimated number of records in the storage layer between
predicates p1 and p2.



In our current implementation we do not collect any statis-
tics about the distribution of keys. We use a naive, local
estimate for the cardinality, based on the number of locally
attempted insert statements (deletes and inserts which even-
tually abort do not cause this value to decrease); optionally
we can scale this value to the number of nodes in the system.
When a node has no information about a table, a constant
value is assumed (in our experiments, this constant is 5000).

In order to provide an estimate for the records in range(p1,
p2) statistic, we have assumed a uniform distribution of rows
among the keys and exponentially fewer rows estimated for
predicates involving a greater number of parts of the index,
i.e., for a table with primary key (k1, k2, ..., km) we assume
that the number of rows matching a predicate range using
the first i parts of the index is proportional to Cm−i, where
C is an appropriate constant (10 for our experiments). We
have found this naive approach to be sufficient for the rela-
tively simple TPC-C queries and also to result in good query
plans for most of our complex validation queries operating
against the TPC-C schema.

Moreover, with typical OLTP workloads involving a set
of predefined queries that are prepared, potential optimizer
mistakes due to inaccurate or incomplete statistics can be
mitigated through overrides: in our modified TPC-C client
we make extensive use of the FORCE INDEX extension to
ensure an optimal access plan is used. We note that a similar
issue affects MySQL Cluster.3

Finally, notice that MoSQL is less subject than traditional
databases to the potential problems of poor access plans
since all data is stored in main memory. In order to create
an appropriate query plan, a traditional database optimizer
must take into account, among other things, the speed of
random index lookups, sequential disk read speed, and in-
dex scan speed, since traditional databases must take great
care to avoid expensive disk accesses. With all data stored
in-memory in MoSQL and accessed by key, all accesses effec-
tively become “random” accesses, with the only important
difference between keys that are cached local to a node and
those which must be retrieved remotely from another storage
node.

5. PERFORMANCE EVALUATION
We have evaluated MoSQL on the TPC-C benchmark. All

tests were done on a cluster of servers with 8GB of RAM,
two quad-core, 2.50GHz Intel Xeon L5420 CPUs and HP
500GB 7200 RPM SATA HDDs. Unless otherwise noted,
we have colocated on each physical server a single mysqld
instance and two storage nodes.

Client connections to MySQL are assigned to underlying
storage nodes in a round robin fashion. For experiments in-
volving InnoDB, we have configured it with a 2GB buffer
pool, serializable transaction isolation and to flush transac-
tions to disk on commit.4 We have used MySQL 5.1.56 as
our base version for the MoSQL storage engine and for tests
involving InnoDB.

3MySQL recommends the use of optimizer overrides in cases
where the lack of an accurate records_in_range statistic
is an issue: http://dev.mysql.com/doc/refman/5.5/en/
mysql-cluster-limitations-performance.html
4innodb flush log at trx commit = 1, inn-
odb buffer pool size = 2G and transaction isolation =
SERIALIZABLE

5.1 TPC-C benchmark
For our TPC-C experiments, we have loaded 10 standard

warehouses per physical node. Our TPC-C client is a mod-
ified version of the MySQL TPC-C benchmark tool made
available by Percona,5 which itself is based on the reference
C-based implementation provided in the TPC-C specifica-
tion. We have modified most of the SQL statements to use
the FORCE INDEX statement to override optimizer decisions
about what index to use, and configured each client thread
to be “sticky” to a particular warehouse or range of ware-
houses for the duration of its execution, so as to improve
cache performance on the underlying data node.

From the nine tables in the TPC-C schema, we config-
ured the item, order_line, orders, new_order and his-

tory tables to store rows inside the B+Tree leaf node; the
warehouse, district, customer, stock tables were con-
figured to store rows in a separate key-value in our storage
layer. None of the tables were configured with compression.

In Figure 5 we show peak throughput for MoSQL from
one to sixteen physical servers; we also show the points rep-
resenting ideal scalability and the performance of InnoDB
on a single server with increasingly large warehouses. Due
to the nature of the transactions in the TPC-C benchmark,
and the increasing size of the database to sixteen nodes,
MoSQL does not achieve perfect scalability. The reason for
this is primarily due to the reduced effectiveness of the cache
as nodes are added: as the database grows in size, and the
share of keys that a single storage node owns decreases, there
is a greater likelihood that keys must be retrieved remotely.

We also include for reference the peak performance of Inn-
oDB with the same sized databases on a single server. As
expected, performance degrades rapidly as the size of the
database surpasses the configured amount of memory for
the buffer pool, increasing the chance that row retrievals
happen from disk. We note that the threshold for where
MoSQL overtakes the throughput of single-server InnoDB is
at approximately 2 nodes (i.e., 20 warehouses). While mem-
ory could be added to the single system to maintain perfor-
mance, at some point, as the size of the database grows
beyond available memory, the benefit of an elastic system
such as MoSQL is clear.

In Figure 6 we show two example runs of the TPC-C
benchmark, one against an 80-warehouse, 8-node system,
and another against a 40-warehouse, 4-node system, to il-
lustrate the problem of cache performance on increasingly
large systems. We show New-Order transaction throughput
and the total number of remote requests performed, system
wide, over time, on a cold-started system (i.e., freshly loaded
from a database backup, no keys cached). As the systems
run, there is a rapid improvement in throughput as keys are
cached locally, but note that the eight-node system remains
consistently under double the throughput of the four-node
system, and that similarly the ratio of remote requests be-
tween the eight and four node configurations stays slightly
above two.

In Figure 5, the 90th-percentile latency of the Stock-Level
transaction from one to sixteen nodes is most reflective of
this problem; the Stock-Level transaction is a heavy, read-
only transaction that can potentially read several hundred
rows from the large order_line table. As the number of
remote calls increases relative to the size of the system, this

5https://code.launchpad.net/~percona-dev/
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transaction shows the greatest degradation in latency.
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5.2 Online node addition
Depending on the workload, MoSQL is capable of provid-

ing improved performance by the addition of volatile storage
nodes to a running system. This effectively allows the sys-
tem to use more CPU for transaction processing and addi-
tional memory for caching, but without changing key own-
ership at the storage node level or increasing the overall
capacity of the system, making them ideal for responding to
temporary spikes in client load.

To illustrate, we have run an example scenario: we load a
60-warehouse TPC-C system into a four-node MoSQL con-
figuration and steadily increase client load by eight clients
every twelve seconds. We then add a fifth and then sixth
MySQL server at times 72 and 108 and redistribute the client
load. Figure 7 shows the run in its entirety, along with the
same workload against a static four-node baseline. Through-
put reaches a peak of about 18000 TpmC at time 50 and
then latency begins increasing more rapidly. Throughput
and latency begin to diverge from the static system in the
shaded area corresponding to where the fifth node is added,
with the augmented system reaching a peak throughput of
24500 TpmC after the addition of a sixth node, while the
static system never surpasses 19500, a 25% improvement in

throughput in less than 60 seconds.
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6. RELATED WORK
In this section, we first focus on the scalability of data

management systems in general and then on solutions spe-
cific to MySQL. We conclude with a short discussion on
elasticity.

6.1 Database scalability
Many scalable storage and transactional systems have been

proposed recently, several of which expose applications to
a simple interface based on read and write operations (i.e.,
“key-value”stores). Some storage systems such as Dynamo [11]
and Cassandra6 guarantee eventual consistency, where op-
erations are never aborted but isolation is not guaranteed.
Eventual consistency allows replicas to diverge in the case
of network partitions, with the advantage that the system is
always available. However, clients are exposed to conflicts
and reconciliation must be handled at the application level.

COPS [18] is a wide-area storage system that ensures a
stronger version of causal consistency, which in addition to
ordering causally related write operations also orders writes
on the same data items. Walter [30] offers an isolation prop-
erty called Parallel Snapshot Isolation (PSI) for databases

6http://cassandra.apache.org/



replicated across multiple data centers. PSI guarantees snap-
shot isolation and total order of updates within a site, but
only causal ordering across data centers. Differently from
previous works, Sinfonia [1] offers stronger guarantees by
means of minitransactions on unstructured data. MoSQL
differs from these systems in that it implements both a rich
interface (i.e., SQL) and provides stronger guarantees (i.e.,
serializability).

Google’s Bigtable [7] and Yahoo’s Pnuts [8] are distributed
databases that offer a simple relational model (e.g., no joins).
Bigtable supports very large tables and copes with work-
loads that range from throughput-oriented batch processing
to latency-sensitive applications. Pnuts provides a richer
relational model than Bigtable: it supports high-level con-
structs such as range queries with predicates, secondary in-
dexes, materialized views, and the ability to create multi-
ple tables. However, neither of these databases offer full
transactional support. Spanner [9], Google’s successor to
BigTable [7], offers a semi-relational model with wide-area
transaction support, but relies on an assumption of globally-
meaningful timestamps provided through specialized hard-
ware. Google’s Megastore [3] similarly provides a relational
model and wide-area transaction support, but with low la-
tency only within small partitions; cross-partition transac-
tions use an expensive two-phase commit protocol.

With multicore architectures now the norm, considerable
research has gone into improving single-server performance.
Multimed [32] treats a multicore system as a distributed sys-
tem and runs parallel database instances mediated through
replication middleware. DORA [22] proposes a coupling of
threads to disjoint sets of data rather than transactions in
order to reduce locking overhead.

Several fault-tolerant database protocols have exploited
partial replication to improve performance. One class of
such protocols requires transactions to be atomically broad-
cast to all participants. When delivering a transaction, a
server may discard those transactions that do not read or
write items that are replicated locally (e.g., [23, 28, 29]).
Alternatively, some protocols implement partial database
replication using either atomic multicast primitives (e.g.,
[13, 24]) or a two-phase commit-like protocol to terminate
transactions [27]. Differently from MoSQL, all these systems
expose a simple read-write interface to applications.

6.2 MySQL scalability
Asynchronous, statement-based replication has been sup-

ported by early versions of MySQL and was among the most
important features leading to its extensive use in web-based
applications. In a basic configuration, a master server writes
committed SQL statements to a replication log that are sent
asynchronously to one or more slave servers which then ap-
ply each SQL statements as is. The approach scales well
for heavy read workloads where synchrony requirements are
not strict, characteristic of many early web applications.
More recently, MySQL has enabled row-based asynchronous
replication that sends row change states to slaves rather
than statements. An extension to MySQL called “semi-
synchronous” replication shipped with core MySQL from
version 5.5. It enabled a master server to wait until the
receipt of a notification from at least one slave machine that
the event was received (not necessarily committed locally)
before proceeding, providing improved data integrity.

Horizontal partitioning and sharding are the common ap-

proaches to scaling write throughput in MySQL applica-
tions. Local horizontal partitions have been supported by
core MySQL since version 5.1, while “sharding” (or the hor-
izontal partitioning of tables into separate databases) has
become a well-known approach for large-scale applications.
Many of the problems with sharding stem from its demo-
tion of a MySQL server to a component of a larger system
of which it has no awareness, resulting in pushing up sig-
nificant complexity from the RDBMS into the application
layer. Hibernate Shards7 is one example of middleware that
insulates application developers from this burden.

Sprint [5] and ScaleBase8 are examples of middleware that
reside between the application and“demoted”RDBMS nodes
and manage transactions and the distribution of data across
nodes. In both systems, the middleware intercepts SQL
commands issued by the applications, and parses and de-
composes them into sub-SQL requests, which are submit-
ted to the appropriate databases. Results are collected and
merged, before being returned to the application. MoSQL
does not translate SQL requests into sub-SQL requests; it
relies on MySQL’s parser to handle this task.

MySQL supports a storage-layer interface with which up-
per layers of the database engine interact. This enables, in
principle, any storage strategy to be used transparently. Inn-
oDB is the default transactional storage engine for MySQL
and is used in most cases, but storage layers targeting effi-
cient archival, compressed storage, in-memory storage, and
network-based storage exist depending on application needs.
MySQL Cluster provides a scalable, low-latency and shared-
nothing storage engine for MySQL. It offers high perfor-
mance but with weak transaction isolation (READ COM-
MITTED). Additional data nodes can be added online, but
not in a seamless fashion and manual intervention is required
to reconfigure and rebalance data.

6.3 Elasticity
With the advent of large, distributed storage layers run-

ning on typically commodity hardware, the requirement of
up-front investment in infrastructure to support peaks in
throughput has received more attention. This has resulted
in a focus on the idea of database “elasticity”, the ability
of a system to contract and expand as needed in order to
respond to peaks and troughs in activity.

ecStore [34] is a peer-to-peer elastic storage system provid-
ing range-query and transaction support. It uses an efficient
load-adaptive replication scheme to load-balance requests
for frequently accessed data, but in an eventually consistent
manner. ElasTraS [10] provides transactional multi-key ac-
cess to data. The ElasTraS system is composed of multiple
transaction managers on top of a fault-tolerant distributed
storage (such as Amazon S3). Owning transaction managers
(OTM) are assigned to a partition of the data stored in the
distributed storage, to which it is granted exclusive access.
To ensure ACID transactional guarantees, ElasTraS uses
minitransactions [1] to handle cross partition transactions.
ElasTraS provides also Higher Level Transaction Managers
(HTM) responsible for caching data and absorbing load of
read-only transactions. Like MoSQL, ElaTraS provides the
ability to add and remove servers depending on the load.
Unlike the above systems, MoSQL is a storage engine for
MySQL executing full–fledged SQL transactions.

7http://shards.hibernate.org/
8http://www.scalebase.com



7. FINAL REMARKS
We propose MoSQL, a distributed and fault-tolerant stor-

age engine for MySQL. MoSQL preserves ACID properties
while offering good performance tradeoffs: despite being dis-
tributed, MoSQL reaches similar performance compared to
InnoDB, when deployed on two servers, while offering linear
or sublinear scalability with additional storage nodes. We
also demonstrate the elasticity of MoSQL, its ability to add
storage nodes online, immediately contributing throughput
while lowering overall system latency.
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