
Optimistic Atomic Multicast

Carlos Eduardo Bezerra∗‡, Fernando Pedone∗, Benoı̂t Garbinato†, Cláudio Geyer‡
∗University of Lugano, †University of Lausanne, ‡Universidade Federal do Rio Grande do Sul

Abstract—Message ordering is one of the cornerstones of
reliable distributed systems. However, some ordering guar-
antees, such as atomic order, are expensive to implement in
terms of message delays. This paper presents Optimistic Atomic
Multicast, a protocol that combines reduced latency and
increased throughput. Messages can be delivered optimistically
in a single communication step and conservatively in three
communication steps. Differently from previous optimistic
group communication protocols, Optimistic Atomic Multicast
does not rely on spontaneous message ordering for fast delivery.
In addition to presenting Optimistic Atomic Multicast, we
provide detailed performance results comparing it to other
ordering protocols in both local-area and wide-area networks.

Keywords-fifo reliable multicast; atomic multicast; quasi-
genuine; optimistic delivery

I. INTRODUCTION

Message ordering is one of the cornerstones of reliable
distributed systems and lies at the core of fundamental fault-
tolerant approaches such as state-machine replication [1],
[2]. In state-machine replication, servers are replicated so
that the failure of one or more replicas does not prevent
client requests from being executed against non-faulty repli-
cas. State-machine replication requires that (i) every correct
replica receive all requests and (ii) no two replicas disagree
on the order of received requests. These requirements are
captured by group communication primitives that ensure
total order, such as atomic broadcast [3].

Atomic broadcast simplifies the design of reliable dis-
tributed systems. However, it is typically expensive to im-
plement (e.g., in terms of communication steps) and does
not scale well (i.e., with the number of nodes involved in
the ordering protocol). The first shortcoming is particularly
problematic if the application is geographically distributed
since it has been shown that atomic broadcast requires three
communication steps [4]. The second shortcoming implies
that throughput, measured in number of requests ordered
by time unit, cannot be increased by adding nodes to the
system, an inherent limitation of total order.

The distributed systems research community has been
long aware of these problems and solutions to each one
of them have been proposed. Atomic broadcast protocols
with reduced latency have been designed based on optimistic
assumptions about spontaneous message ordering (e.g., [5],
[6], [7]), relaxed ordering requirements, dependent on appli-
cation semantics (e.g., [8]), or both (e.g., [9], [10]). Atomic
multicast addresses the (lack of) scalability of atomic broad-
cast. While atomic broadcast propagates messages to all

system members, atomic multicast divides the members into
groups and propagates messages to some groups only, not
all. If the atomic multicast protocol is genuine [11], then
only the message’s addressees (i.e., a set of groups) and
sender will coordinate to ensure order. As a result, atomic
multicast can scale better than atomic broadcast. This is
beneficial for applications whose state can be decomposed
into sub-states, each one associated to a group (e.g., [12])
since throughput can be increased by multicasting requests
to sets of groups, not the whole system.

This paper presents Optimistic Atomic Multicast, the
first atomic multicast protocol to exploit optimism, and
thus, to combine reduced latency and increased throughput.
Messages can be delivered optimistically in a single com-
munication step and conservatively in three communication
steps. To deliver messages optimistically, a process estimates
a wait window based on expected message transmission
delays and skews between node clocks. If the process’
estimate holds, the order in which messages are delivered
optimistically (i.e., the optimistic order) will match the
conservative order.

Optimistic Atomic Multicast is quasi-genuine: not only
the message’s sender and destinations coordinate to establish
order, but other groups may participate too. The set of groups
that participate in the ordering of a message is determined by
a relation, defined by the application. Moreover, this relation
may change over time, a reconfiguration, so groups can
be added and removed on-the-fly, reflecting the application
needs. Reconfigurations are expected to be used sparingly
though since they incur additional communication.

The contributions of this paper are: (1) An atomic multi-
cast protocol that delivers messages in three communication
delays. (2) A variation of this protocol that improves latency
and delivers messages optimistically in a single communica-
tion delay. (3) A detailed experimental assessment of these
protocols both in local-area and wide-area networks.

The remainder of the paper is organized as follows.
Section II presents the system model and some definitions.
Section III introduces Baseline Atomic Multicast. Section IV
contains the optimistic version of the algorithm. Section V
describes reconfiguration. Section VI presents our prototype
and Section VII evaluates its performance. Section VIII
reviews related works. Section IX concludes the paper.
A proof of correctness of our protocols is available in a
technical report [13].

II. SYSTEM MODEL AND DEFINITIONS

In the following, we introduce the underlying system
model (Section II-A) and define the consensus abstraction
(Section II-B), atop of which we have designed our atomic
multicast protocols.

A. Processes and communication

We consider a system Π = {p1, ..., pn} of processes
that communicate through message passing and do not have
access to a shared memory or a global clock. The system
is asynchronous: messages may experience arbitrarily large
(although finite) delays and there is no bound on relative
process speeds. We assume the benign crash-stop failure
model: processes may fail by crashing, but do not behave
maliciously. A process that does not crash is correct; oth-
erwise it is faulty. We define Γ = {g1, ..., gm} as the set
of process groups in the system. Groups are disjoint, non-
empty, and satisfy

⋃
g∈Γ g = Π. For brevity, we write

“p ∈ γ” instead of “∃g ∈ γ : p ∈ g”, where γ is any
set of groups such that γ ⊆ Γ.

Processes can also communicate using fifo reliable
multicast, defined by the primitives fr-mcast(γ,m) and
fr-deliver(m), where m is a message and γ is the set of
groups m is addressed to. Message m has two fields: m.src,
m’s source group, and m.data, the application-specific con-
tent. Fifo reliable multicast guarantees that (i) if a correct
process p fr-mcasts m, then eventually all correct processes
q ∈ γ fr-deliver m (validity); (ii) if a correct process p
fr-delivers m, then eventually every correct process q ∈ γ
fr-delivers m (agreement); (iii) for any process p and any
message m, p fr-delivers m at most once, and only if p ∈ γ
and m was previously fr-mcast (uniform integrity); and (iv) if
p fr-mcasts m to γ and then m′ to γ′, then no q ∈ γ ∩ γ′
fr-delivers m′ without first fr-delivering m (fifo order).

We say that a group g executes the actions of sending,
receiving, multicasting and delivering a message with the
meaning that one or more processes in g execute the action.

B. Consensus

An important part of this work relies on consensus to
ensure that processes agree upon which messages are deliv-
ered and in which order they are delivered. Thus, we assume
that consensus can be solved within a group. Moreover, we
distinguish multiple instances of consensus executed within
the same group with unique natural numbers. Consensus is
defined by the primitives proposeg(k, v) and decideg(k, v),
where g is a group, k a natural number and v a value.
Consensus satisfies the following properties in each instance
k: (i) if process p ∈ g decides v, then v was previously
proposed by some process in g (uniform integrity); (ii) if
p ∈ g decides v, then all correct processes in g eventually
decide v (uniform agreement); and (iii) every correct process
in g eventually decides exactly one value (termination).

III. BASELINE ATOMIC MULTICAST

In this section we define the atomic multicast problem
(Section III-A), introduce the Baseline Atomic Multicast
algorithm (Sections III-B and III-C) and discuss its liveness
guarantees (Section III-D).

A. Problem definition
Atomic multicast allows messages to be sent to a set γ

of groups. It is defined by the primitives multicast(γ,m)
and deliver(m), where m is a message with fields m.src
and m.data, as defined in Section II-A. Atomic multicast
guarantees the following properties:
(i) If a correct process p multicasts m, then every correct

process q ∈ γ delivers m (validity).
(ii) If p delivers m, then every correct process q ∈ γ

delivers m (uniform agreement).
(iii) For any message m, every process p ∈ γ delivers m at

most once, and only if some process has multicast m
previously (uniform integrity).

(iv) If p multicasts m and then m′ to groups γ and γ′,
respectively, then no process q in both γ and γ′ delivers
m′ before delivering m (fifo order).

(v) No two processes p and q in both γ and γ′ deliver m
and m′ in different orders (atomic order).

Atomic multicast generalizes atomic broadcast, where
every message is multicast to all groups. To implement
atomic multicast using an atomic broadcast algorithm, it
suffices to broadcast every message m to all groups, and
those not interested in m discard it. Obviously, this is not
efficient. To rule out this kind of implementation, an early
work introduced the notion of genuine atomic multicast
algorithms [11], which spare unnecessary communication:
to deliver message m multicast to γ, groups g and h only
communicate if they are “concerned by m”. Group x is
concerned by m if the sender of m is in x or x ∈ γ.
While genuineness is an important property for atomic
multicast protocols, it is expensive: no genuine multicast
protocol can deliver messages in fewer than two inter-group
network delays [14]. Since we seek communication-efficient
algorithms, we introduce next the concept of quasi-genuine
atomic multicast protocols.

In a quasi-genuine atomic multicast protocol, the groups
that communicate to deliver a message m are determined
by an a priori sendersTo relation, defined based on the
application semantics and access patterns—as opposed to
m’s sender and destination groups. For any group g, we
define sendersTo(g) as the set of groups that can multicast a
message to g. If m is multicast to a set of groups γ, then all
groups in sendersTo(g), where g ∈ γ, can communicate to
deliver m, even if some group h in sendersTo(g) is neither
m’s sender nor one of m’s destination groups. We denote the
sendersTo relation the system’s configuration. A sendersTo
relation can be changed via a reconfiguration, described in
Section V.

Applications whose data can be partitioned according to
access locality can benefit from a quasi-genuine protocol.
Consider a database divided in partitions P1 and P2 such that
some data items are exclusively in P1, some are exclusively
in P2, and some items are shared by both partitions—in
other words, the partitions are not disjoint. Most commands
access (i.e., read and write) items in one partition only
and few commands include shared items. In this context,
we create groups g1, g2 and g3 such that processes in g1

and g2 replicate exclusive items in P1 and P2, respectively,
and processes in g3 replicate items shared by P1 and P2.
A command C that accesses items in partition Px, where
x ∈ {1, 2}, is handled by a process p in group gx. If C ac-
cesses items exclusive to Px only, then p multicasts C to gx;
if C includes exclusive and shared items in Px, p multicasts
C to gx and g3; finally, if C accesses only shared items,
p multicasts C to g3. Consequently, sendersTo(g1) = {g1},
sendersTo(g2) = {g2} and sendersTo(g3) = {g1, g2}. This
scheme allows commands that access items stored exclu-
sively in P1 to be ordered independently of commands that
access items stored exclusively in P2.

B. Overview of the algorithm

Hereafter, we assume that each message m has two
additional fields, m.ts, the message’s timestamp, and m.dst,
the set of groups m is addressed to. To multicast m to γ,
process p in group g sets m.ts to a unique initial timestamp
and then fr-mcasts m to all processes in g. Such timestamp
is created based on p’s wallclock (i.e., p’s real-time local
clock) and p’s unique identifier.

When processes in g fr-deliver m, they run a consensus
instance within g to agree on m’s final timestamp, after
possibly adjusting it to ensure the following invariant: for
any two messages m and m′, multicast by processes in g, if
a process in g decides m before m′, then m.ts < m′.ts. This
is important since we intend to deliver messages according to
their final timestamp order. The initial timestamp assigned
by the message’s sender may violate the invariant due to
the asynchrony of the system. If so, processes reassign the
message’s timestamp after consensus to keep the invariant.

Once group g has decided on m’s final timestamp, m is
fr-mcast to all its destination groups γ. Let h be a group
in γ. To ensure that no message m′ with a smaller final
timestamp than m’s (i.e., m′.ts < m.ts) is delivered after
m, process q ∈ h delivers m only when it has received at
least one message from every group x in sendersTo(h) with
a timestamp greater than m’s timestamp. We denote each
such a message barrier(x).

More precisely, a barrier is the guarantee that a group x
gives to some other group h that x will not send to h any new
messages with a timestamp lower than barrier(x). As all
groups receive messages from each other in the order of their
timestamps, ensured by fr-mcast, every message exchanged
between groups is a barrier.

C. Detailed description

To multicast m, p assigns m’s initial timestamp and
fr-mcasts m to the other processes in g (lines 7–10 in
Algorithm 1). Primitive getTime() (line 9) returns a unique
value based on the process’ unique identifier and current
wallclock value. After fr-delivering m, each process in g puts
m in messages (line 13) to be proposed until it is decided
(lines 19–20), along with other undecided messages. As all
correct processes in g do so, some decision will eventually
contain m.

Algorithm 1 Baseline Atomic Multicast, for p in group g

1: Initialization
2: k ← 0, messages← ∅
3: decided ← ∅, stamped ← ∅, delivered ← ∅
4: for all h ∈ sendersTo(g) do
5: barrier(h)← 0

6: To multicast a message m to groups in γ
7: m.src← g
8: m.dst← γ
9: m.ts← getTime()

10: fr-mcast({g},m)

11: when fr-deliver(m)
12: if g = m.src then
13: messages← messages ∪ {m}
14: else if m /∈ stamped then
15: stamped ← stamped ∪ {m}
16: barrier(m.src)← m.ts

17: when messages \ decided 6= ∅
18: k ← k + 1
19: undecided ← messages \ decided
20: proposeg(k, undecided)
21: wait until decideg(k,msgSet)
22: while msgSet \ decided 6= ∅ do
23: letm be in msgSet\decided with smallest timestamp
24: let m′ be in decided with greatest timestamp, if any
25: if m′ exists and m′.ts > m.ts then
26: m.ts← m′.ts + 1
27: if g ∈ m.dst then
28: stamped ← stamped ∪ {m}
29: decided ← decided ∪ {m}
30: barrier(g)← m.ts
31: fr-mcast(m.dst \ {g},m)

32: when stamped \ delivered 6= ∅
33: let m be in stamped\delivered with smallest timestamp
34: if ∀h ∈ sendersTo(g) : m.ts < barrier(h) then
35: deliver(m)
36: delivered ← delivered ∪ {m}

Algorithm variables:
messages: messages multicast by processes in g
decided: messages proposed and decided within g
stamped: messages with a final timestamp sent to g by any
group; to be delivered, some messages may need barriers from
groups in sendersTo(g)
delivered: messages already delivered by p

When a set of messages is decided, such messages are
handled by each process in g in ascending order of the initial
timestamps (line 23). If m has a timestamp that is lower than
that of some previously decided message m′ (lines 24–25),
then m.ts is changed to a value greater than m′.ts (line 26).
Doing so will ensure that all messages from g are delivered
in the order of their final timestamps.

After deciding m, p checks whether g is one of its
destinations (line 27). If so, m is inserted into stamped (line
28), meaning that p should deliver it eventually. Then, m is
included into decided (line 29) so that p stops proposing
m in the following consensus instances. As no message
decided afterwards within g will have a timestamp lower
than m’s, p sets barrier(g) to m.ts (line 30). Then, if m has
any destination other than g, say h, p fr-mcasts m to h (line
31). When some process q in h fr-delivers m for the first
time (lines 11 and 14), q inserts it into stamped (line 15)
and sets barrier(g) to m.ts (line 16). This is done since any
previous message from g has already been received.

Let r be a process in some group h′ ∈ m.dst. When
(i) the stamped set at r contains m, (ii) m has the lowest
timestamp among all undelivered messages in such set
(lines 32 and 33), and (iii) r has already received a barrier
from every group in sendersTo(h′) with value greater than
m.ts (line 34), r delivers m (lines 35 and 36).

D. Liveness guarantees

Assume that group g multicasts m to group h. In Algo-
rithm 1, for process q in h to deliver m, q must receive a
barrier b > m.ts from every group k in sendersTo(h). Since
the exchange of barriers among processes is triggered by
the multicast of application messages, the algorithm assumes
that every group in sendersTo(h) periodically multicasts an
application message to h. This assumption can be weakened
by having each group x in sendersTo(h) multicast a null
message if x does not have any application messages to
multicast to h for a certain timeout ∆. Null messages are
not delivered to the application, they only carry a barrier.

Multicasting null messages periodically is a simple so-
lution, however it may introduce unnecessary delays. If q
is only waiting for x’s barrier to deliver m and x has just
sent barrier b < m.ts to h, then unless x has an application
message to multicast to h, x will only send another barrier to
h after another timeout ∆. As a consequence, the delivery of
m may be delayed by up to ∆. Besides, there is no guarantee
that the next barrier sent by x to h will be greater than
m.ts. Another solution is for g, m’s source group, to request
barriers on behalf of m’s destination group h. As soon as
process p in g knows the final timestamp of m, p requests
a barrier to every x in sendersTo(h). When processes in x
receive a barrier request for m, they must run a consensus
instance to agree on a barrier with a timestamp greater than
m’s timestamp. This technique lowers delivery latency at the
cost of having more messages exchanged between groups.

IV. OPTIMISTIC ATOMIC MULTICAST

In the following, we modify Baseline Atomic Multicast to
introduce optimistic delivery. The resulting algorithm, Opti-
mistic Atomic Multicast, can deliver messages optimistically
after one communication step, at the risk of delivering some
of them out order. In brief, the idea is for a process p to
optimistically deliver a message m after p fr-delivers m; to
minimize out of order messages, processes may delay the
optimistic delivery by a small time window. We first define
the Optimistic Atomic Multicast problem (Section IV-A) and
then present the new protocol in detail (Section IV-B).

A. Problem definition

Optimistic Atomic Multicast is defined by primitives
multicast(γ,m), opt-deliver(m) and deliver(m). Hereafter,
we refer to the last two primitives as optimistic and con-
servative delivery, respectively. Thus, Optimistic Atomic
Multicast delivers messages twice, once optimistically and
once conservatively, although optimistic delivery requires
fewer communication steps than conservative delivery.

Conservative delivery guarantees the five properties of
atomic multicast, defined in Section III-A. Optimistic de-
livery guarantees validity, uniform integrity, and fifo order
of atomic multicast; it ensures non-uniform agreement and
probabilistic atomic order (i.e., atomic order is guaranteed
under certain assumptions, as defined next).1

Applications can exploit this abstraction by processing
a message as soon as it is optimistically delivered. If the
optimistic delivery order of messages does not match their
conservative delivery order, the application may need to
rollback the processing of these messages and re-execute
them in the correct order (e.g., [15], [16]). However, rolling
back the processing of out-of-order messages is not needed
if their relative order does not matter to the application (e.g.,
one message modifies the state of variable x and the other
message reads variable y).

B. Delivering messages optimistically

In Optimistic Atomic Multicast, processes in the destina-
tion set of a message m predict m’s atomic order from m’s
initial timestamp after one communication step. This is done
as follows. When a process p in g multicasts m, p fr-mcasts
m to all groups in m.dst, not only its own group. When q in
m.dst fr-delivers m, q optimistically delivers m following
the order given by m’s initial timestamp.

In order for m’s optimistic order to match its conserva-
tive order, three conditions are sufficient: (a) there are no
message losses; (b) m’s source group does not change m’s
initial timestamp; and (c) before a process in m’s destination
groups optimistically delivers m, the process receives all
messages with initial timestamp smaller than m’s.

1Since agreement of optimistic delivery is non-uniform, if the sender
crashes while multicasting a message, some processes may deliver the
message optimistically but never conservatively.

Condition (a) can be approximated with reliable point-to-
point communication (e.g., TCP). We satisfy conditions (b)
and (c) probabilistically using the following scheme. Assume
p is a process in m’s source group or in one of m’s destina-
tion groups. To satisfy conditions (b) and (c), respectively, p
must wait “long enough” before proposing m in a consensus
instance and before optimistically delivering m.

The problem is how to define the length of p’s wait
window, denoted w(p). As we consider an asynchronous
system, it is impossible to determine w(p) deterministically;
instead, we optimistically assume that p can estimate w(p).
Let δ(p, q) be the time a message takes to go from q to p
and ε(p, q) the skew between the clocks of p and q.2

Wait window. For process p in group g, we define w(p) as
maxq∈sendersTo(g)(δ(p, q) + ε(p, q))

If our optimistic assumption holds, that is, every process
can accurately estimate its wait window, then the order of
optimistic delivery matches the order of the conservative
delivery. In more detail, the optimistic delivery works as fol-
lows: After an undecided message m has been fr-delivered
by p, p waits until its wallclock has a value greater than
m.ts + w(p) and then p opt-delivers m and proposes m in
the next consensus instance. At this moment, if the optimistic
assumption holds, all messages that could possibly have
an initial timestamp lower than m.ts have already been
fr-delivered by p. Thus, such messages will be optimistically
delivered in the order of their initial timestamps.

If every process q of g has estimated w(q) correctly, then
all processes in g will propose messages in the same order,
that is, following the initial timestamps. Therefore, there will
be no timestamp changes and the optimistic delivery will
be correct. This happens because each process q waits for
w(q) before proposing a message, and the messages waiting
to be proposed are proposed in their initial timestamp order.
Not changing timestamps allows for a further improvement:
If barriers are requested for each message m, the barrier
requests may be sent to the destination groups of m at the
same time as m is fr-mcast by its sender. Such requests
are also sent with a reliable multicast primitive, before the
sender fr-mcasts m in the first step of the algorithm.

If the optimistic assumption fails to hold and some
message m is received by some process p after a message
m′ has been already opt-delivered by p, where m.ts < m′.ts,
then optimistic delivery violates atomic order. Out-of-order
optimistic deliveries are detected by the application since
they do not match the order of conservative of deliveries. The
application must then handle these out-of-order messages if
necessary.

2Notice that a negative skew means that the value of q’s clock is higher
than the value of p’s clock, and so p can wait less for messages from q,
as they will have higher timestamps than p’s messages.

V. RECONFIGURATION

A reconfiguration allows the sendersTo relation to change
during the execution. Since including a process in the
relation and removing a process from the relation follow
similar procedures, we focus next on inclusion. For process p
in group g to multicast a message to group h, p creates a re-
configuration request mrq, where mrq.dst = {h}, timestamps
mrq and fr-mcasts it to all processes in g. Upon fr-delivering
mrq, it is inserted into messages, eventually proposed and
decided within g, and then reliably multicast to h. Once
processes in h receive mrq, they enqueue a request response
mrp to be proposed and eventually decided within h, where
mrp.dst = {g}. As with multicast messages, both mrq and
mrp may have their timestamps changed after consensus.
The final timestamp of mrp defines the moment from which
processes in h will wait for barriers from g. No message
m with a timestamp greater than mrp.ts will be delivered
by the processes in h until a barrier greater than m.ts is
received from g. Once mrp is received by g, it can multicast
messages to h. Such messages will have a timestamp greater
than mrp.ts, to ensure their correct delivery order.

Whenever a message m is sent to h, its sender can request
barriers to every group in sendersTo(h) so that m can be
delivered. For that, all groups in sendersTo(h) must know
one another. So, as soon as g decides mrq, it fr-mcasts a
notification mrn to all groups in sendersTo(h), containing
the timestamp of the reconfiguration request. When each
process q ∈ sendersTo(h) fr-delivers mrn, q knows that it
has to send a barrier request to g when sending messages to
h with a timestamp greater than mrq.ts. This value is chosen
because the reconfiguration request itself may be seen as a
barrier from g to h. Finally, q checks among the history of
messages from its group if there are messages addressed to
h with timestamps greater than mrq.ts for which no barrier
request has been sent to g. Then a barrier request is sent to
g regarding such messages. This is done to ensure progress
when a reconfiguration takes place.

VI. IMPLEMENTATION

In the following, we comment on the implementation of
our prototype and assess the number of communication steps
needed for the optimistic and the conservative deliveries.
We base our analysis on “good runs”, that is, those with no
failures, no suspicions of failure, and no reconfigurations.
In practice these are (hopefully) the most common cases. In
the analysis, we assume a maximum network message delay
δ and negligible processing time.

We implemented consensus using Paxos [17]. To ensure
termination, Paxos assumes the existence of a leader. In our
implementation, one process in each group is assigned the
role of leader, coordinating the execution of consensus in
its group. To propose a value, a process sends it to the
leader of its group, which then proceeds with consensus.
The leader optimizes latency by executing Phase 1 of Paxos

before a value is proposed [17]. Consensus instances are
run in parallel, one for each multicast message. Each group
implements an independent instance of Paxos.

To determine w(p), each process p calculates an estimate
delay plus clock skew for every process q that sends mes-
sages to p. The value of w(p) is the maximum among such
estimates. Such an estimate, p calculates the average of the
difference between its current time and m’s timestamp (i.e.,
getTime()−m.ts) for the last 100 messages received from q
received by p. Notice that this difference accounts for both
δ(p, q) and ε(p, q).

Consider a message m multicast by p in g to the groups
in γ. In order to optimistically deliver m, p fr-mcasts m to
all groups in γ and to all the processes in g. This step takes a
delay of δ. Instead of delivering m optimistically and starting
consensus as soon as m is fr-delivered, processes in g wait
until their local time is greater than m.ts +w(p). If process
clocks are synchronized and message delay estimations are
exact, then w(p) will match δ, and optimistic delivery
and the start of consensus will happen with delay δ. If
clocks are not synchronized or message delay estimations
are inaccurate, then w(p) may be too large, and processes
will wait longer than necessary to start consensus, or w(p)
may be too small, and consensus may start too early, before
a message m′ with timestamp smaller than m’s is received,
leading to the optimistic and conservative delivery of m and
m′ to happen in different orders.

In the best case, consensus is executed in two communica-
tion steps (i.e., 2δ), after which m’s final timestamp is deter-
mined. Group g must then fr-mcast m to each group h in γ.
Since we implement consensus with Paxos and the destina-
tions are learners, sending m’s final timestamp to members
of h can be done in Paxos’ Phase 2B messages, saving one
communication step [17]. The optimization works as long as
g’s leader is not replaced; otherwise, more communication
steps are needed [17]. Process q will conservatively deliver
m when q receives barriers with timestamp greater than m’s
final timestamp from every group x in sendersTo(h). The
barriers necessary for delivering m are requested by p, m’s
sender, right before fr-mcasting m in the first step of the
algorithm. At this time, p only knows m’s initial timestamp.
Thus, processes in x send a barrier to q that is greater than
m’s initial timestamp. If m’s initial and final timestamps
are the same (i.e., the optimistic assumption holds), then
q will receive all its needed barriers three communication
steps after m is multicast: one step for the request to be
transmitted from p to x plus two steps for consensus to be
executed in x. In this case, the conservative delivery will
have a latency of 3δ. If m’s initial and final timestamps
differ, a new barrier request will be necessary. In a good
run, the timestamp proposed by g’s leader is decided, so g’s
leader can send the new barrier request to x while running
consensus in g, leading to a 4δ conservative latency.

VII. PERFORMANCE EVALUATION

We evaluated the proposed protocols in local-area (Sec-
tion VII-A) and wide-area networks (Section VII-B). In
all experiments, every process multicasts messages to other
groups, at a constant rate, according to the sendersTo re-
lation. Each run of an experiment took 150 seconds, and
latency values are reported as their 95th percentile.

We compare our algorithms with Paxos amcast, a protocol
we implemented for atomic multicast using Paxos, where a
single set of acceptors act as a fault-tolerant sequencer for all
messages multicast in the system, providing a global order
for them.

A. Local-area network experiments

The local-area network experiments were executed in a
cluster of HP SE1102 servers, each with two quad-core Intel
Xeon L5420 processors and 8GB of main memory, running
CentOS 6.2 64 bits. The servers were interconnected through
an HP ProCurve2910al-48G Gigabit switch and their clocks
were kept approximately synchronized by using NTP. There
were five groups, each with three processes; processes were
distributed among five different servers of the cluster.

In the following, we evaluate how our protocols behave
with respect to different loads (Section VII-A1), differ-
ent numbers of groups multicasting to each other (Sec-
tion VII-A2), and different estimations of the wait window
for the optimistic delivery (Section VII-A3).

1) Throughput, latency and mistakes versus load: Fig-
ure 1 shows how throughput and latency vary with the
load, measured in number of messages multicast per process
per second. The maximum throughput of each protocol is
circled in the graph. We define maximum throughput as
the throughput value that corresponds to the latency before
its inflection point (also marked in the graph). Optimistic
Atomic Multicast’s maximum throughput is determined by
the conservative delivery.

We can see that the maximum throughput of Optimistic
Atomic Multicast (graph on the left) is lower than the
baseline’s. This is due to the higher overhead of Optimistic
Atomic Multicast (i.e., the initial reliable multicast is sent
to all destination groups, as opposed to the sender’s group
only). Paxos amcast has the lowest maximum throughput,
since all messages are handled by the same set of acceptors.

The latency of optimistic delivery at the protocol’s max-
imum throughput (graph on the right) is significantly lower
than that of Paxos amcast and less than half that of base-
line and conservative. The conservative delivery latency is
higher than baseline’s because, in the former, messages
are proposed for consensus only after being opt-delivered,
whereas in the latter they are proposed as soon as they
are fr-delivered. Among the non-optimistic deliveries, Paxos
amcast achieves the lowest latency since it does not have to
send or wait for barriers to deliver messages.

0K

1K

2K

3K

4K

5K

6K

7K

8K

 0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

m
sg

s.
 d

el
iv

er
ed

 p
er

 p
ro

c.
/s

)

Messages multicast per process per second

baseline amcast
max. throughput

opt−amcast
max. throughput

Paxos amcast
max. throughput

baseline amcast
opt−amcast

Paxos amcast

0

1

2

3

4

5

 0 100 200 300 400 500 600 700 800 900

La
te

nc
y

(m
s)

Messages multicast per process per second

baseline amcast
opt−amcast conservative

opt−amcast optimistic

0.04% 0.31% 0.42% 0.12%
0.06% 0.03%

0.05%

0.14%0.11%

Paxos amcast

Figure 1. Throughput, latency and percentage of mistakes for |sendersTo(g)| = 3, for every g, in a local-area network.

0K

2K

4K

6K

8K

T
hr

ou
gh

pu
t

(m
sg

s.
 d

el
iv

er
ed

 p
er

 p
ro

c.
/s

)

baseline amcast
opt-amcast

Paxos amcast

0.01%
0.06% 0.03%

0.21%
0.13%

0

2

4

6

8

1 2 3 4 5

La
te

nc
y

(m
s)

|sendersTo(g)|, for every group g

baseline amcast
opt-amcast cons.

opt-amcast opt.
Paxos amcast

 0

 2

 4

 6

 8

La
te

nc
y

(m
s)

baseline amcast
opt-amcast cons.

opt-amcast opt.
Paxos amcast

 0

 0.01

 0.02

 0.03

 0.04

0.5 1 1.5 2 2.5 3

M
is

ta
ke

s
(%

)

Wait window (ms)

Figure 2. Impact of number of communicating groups and wait-window size on throughput and latency (percentages are mistakes in optimistic delivery).

Figure 1 (right) also shows the percentages of mistakes
of the optimistic delivery, i.e., the percentage of messages
whose optimistic order does not match the conservative
order. By using NTP to synchronize clocks and estimating
a wait window before opt-delivering messages, the mistakes
rate remained below 0.5%.

2) Impact of the number of communicating groups: From
Figure 2 (top left), the maximum throughput of each protocol
tends to increase with the number of destinations of each
message. This happens because as the number of destina-
tions increases, more groups will deliver a message decided
by each consensus instance. Therefore, configurations with
more destinations make better use of consensus executions.
As the number of destinations for each message augments,
the throughput difference between Paxos and the other
algorithms decreases; when every message is addressed to
every group, all acceptors notify all processes in the system,
which is the normal case for Paxos amcast, but not for

the baseline and Optimistic Atomic Multicast. Even in such
situation, Paxos amcast has lower throughput, since it has
only one set of acceptors ordering all messages, while the
other protocols have one set of acceptors per each group,
distributing the load.

Still in Figure 2 (bottom left), we can see that the number
of communicating groups has an impact on the optimistic
delivery latency. This happens because the optimistic de-
livery latency in each process p is affected by the wait
window w(p), which is based on the worst latency among
the processes sending to p; as more processes are included
in the calculation of w(p), the chances of getting a process
with a higher estimated delay plus clock skew increase. A
more significant effect can be noticed on the baseline and
conservative latencies. This happens because not always all
required barriers are received immediately when a message
is enqueued for delivery.

 0

 100

 200

 300

 400

 500

 600

 700

Virginia California Oregon Ireland

T
hr

ou
gh

pu
t (

m
sg

s.
 d

el
iv

er
ed

 p
er

 p
ro

c.
/s

)

Amazon EC2

baseline amcast
opt−amcast

Paxos amcast

 0

 50

 100

 150

 200

 250

 300

 350

 400

Virginia California Oregon Ireland

La
te

nc
y

(m
s)

Amazon EC2

baseline amcast
opt−amcast cons.

opt−amcast opt.
Paxos amcast

2.
77

% 3.
21

%

3.
46

%

5.
04

%

Figure 3. Throughput, latency and percentage of mistakes for |sendersTo(g)| = 2, for every g, in a wide-area network.

3) Impact of the estimated delay and clock skew: Figure 2
(top right) shows the latency and percentage of mistakes
of the optimistic delivery on maximum throughput when
each group can send messages to three other groups (i.e.,
∀g : |sendersTo(g)| = 3). We can see that both the
conservative and the optimistic delivery latencies increase
with the length of the wait window, which depends on
the estimated delay δ and clock skew ε. The conservative
delivery increases because a message is proposed only after
it is opt-delivered, and so, the final delivery order tends to
be the same as the optimistic one. As a reference, we show
the latencies of the baseline protocol and Paxos amcast.

The percentage of mistakes decreases as the wait window
becomes larger, as depicted in Figure 2 (bottom right).
Waiting for more than 1 ms proved not to be very effective
in comparison to how much it increased latency. Still, such
small increase of the wait window (from 0.6ms to 0.9ms,
approximetely) was enough to reduce the mistakes rate by
more than half, leading to an accuracy of over 99.98%.

B. Wide-area network experiments

The wide-area experiments used four m1.large Amazon
EC2 instances3 running Ubuntu Server 12.04.1 64 bits. Each
instance was located in a different geographical region: three
in the United States (Virginia, California and Oregon) and
one in Ireland. To synchronize clocks, each of such instances
queried a nearby public GPS-based NTP server, resulting in
synchronization offsets below 10ms. It is worth noting that
this deployment was fairly heterogeneous, since instances
from different regions had different levels of processing
power and network bandwidth. To report maximum through-
put, we chose the load up to which latency was stable in
every process. There were four multicast groups, each with
four processes, one process from each geographical region.

3http://aws.amazon.com/ec2

In Figure 3, we can see the throughput and latency results
in a WAN. As in the cluster, the maximum throughput
achieved by baseline and Optimistic Atomic Multicast are
fairly higher than that of Paxos amcast, with baseline’s as
the highest. Regarding latency, the optimistic delivery took
the shortest time, in every region. We can see a high latency
variation depending on the geographic location. The pro-
cesses in Ireland experienced the highest latency, for every
protocol evaluated. On the other extreme, the processes in
Virginia had the lowest latencies for most protocols.

Finally, the rate of mistakes in the WAN experiments was
much higher than in the cluster. It is a known fact that
latencies in the Internet are much less predictable than in a
local-area network, so a lower accuracy was not surprising.
Still, we managed to achieve an accuracy around 95%. This
means that, even if all messages sent to a given destination
require strict ordering among them, only 5% might cause
rollbacks. However, many applications can tolerate out-
of-order messages (e.g., two messages with requests that
access different rows in the same partition). Therefore, when
accounting for application semantics, 5% of out-of-order
messages will likely result in less than 5% of rollbacks.

VIII. RELATED WORK

There is a plethora of works in the literature related
to atomic broadcast and multicast [18]. We review here
those which are the most relevant to our work. To the
best of our knowledge, no previous work presents all the
features provided by our protocol, which is a quasi-genuine,
reconfigurable, fault-tolerant, fifo atomic multicast that can
deliver messages in three communication steps, with an
optimistic delivery within one single step.

A. Atomic broadcast and multicast

Our atomic multicast protocols order messages using
a mechanism that resembles Lamport’s total order algo-

rithm [1]: analogously to our barrier mechanism, a process
considers an event to be the next in a total order of events
when the process knows that such event has the lowest
timestamp among all possible events to be considered in
the system. Similarly to our protocols, Lamport’s total order
algorithm also relies on fifo, reliable channels. Differently
than our protocols, it requires the participation of all pro-
cesses in the system and does not tolerate failures.

One could see our barrier mechanism as a deterministic
merge [19] algorithm. In particular, our protocols model each
group as a merger and producer at the same time. To ensure
that all mergers receive the same set of messages of all
producers, we employ consensus and fifo reliable multicast.
Finally, the merging is done by sorting all undelivered
messages according to their timestamps and delivering those
which have a timestamp up to the lowest of the last barriers
received from the groups in sendersTo. Differently from [19],
however, our protocols tolerate failures and do not require all
mergers to receive all messages from all producers. Instead,
each group may have a different sendersTo set. We also
support reconfiguration, allowing the sendersTo relation to
change over time.

Two fault-tolerant genuine atomic multicast algorithms
are presented in [11]. Both are based on Skeen’s multicast
algorithm [20]. In the first algorithm, the destinations of
each multicast message exchange timestamps for the mes-
sage and, once each destination has received a timestamp
from a majority of processes from each destination group,
consensus is run among the destinations to decide the final
timestamp. Upon decision, the message destinations coor-
dinate to determine the message’s position in the delivery
queue. Such a protocol can deliver messages in 4δ, assuming
the best-case bound of 2δ for consensus. A variation of
this algorithm [21], optimized for message size, has delivery
latency of 5δ.

The second algorithm in [11], similarly to [14] and [22],
has an optimal delivery latency of two inter-group commu-
nication delays. Although based on Skeen’s algorithm, they
can tolerate failures by replacing each process by a group
of processes. To deliver messages with low latency, commu-
nication within each group must be fast, so each group is
contained in a single site (e.g., the same local-area network).
As a result, these protocols are vulnerable to disasters, that
is, the failure of the site. Although messages can be delivered
with two inter-group delays, overall delivery latency (i.e.,
considering inter group and intra group communication) is
6δ in most cases and 4δ in a few special cases.

In [14], the authors propose a broadcast protocol which
delivers messages in atomic order within one single com-
munication step. This protocol is based on rounds: each
process delivers the received messages in a round only after
receiving the messages from all other groups for that round.
To ensure liveness, groups need to constantly exchange
messages, even if null. Rounds are conceptually similar

to our barrier mechanism. Since our multicast protocols
are quasi-genuine, not all groups have to coordinate to
deliver messages. Furthermore, the sendersTo relation can
be reconfigured at any time based on the communication
patterns of the application.

B. Optimistic total order

Optimistic techniques have been used before to reduce the
latency of atomic broadcast. To our knowledge, the protocol
proposed in this paper is the first to exploit optimism
in atomic multicast. Moreover, differently from previous
approaches, our optimistic assumption does not rely on
spontaneous total order, a property that typically holds in
local-area networks under moderate load, but not necessarily
in geographically distributed systems.

Two optimistic atomic broadcast protocols are proposed in
[5] and [7]. In both cases, if the optimistic assumption holds,
messages are delivered within two communication delays.
The idea of the algorithm in [5] is to rely on spontaneous to-
tal order to avoid ordering through consensus messages that
have already been spontaneously ordered by the network.
Fast Paxos [7] is an extension of the classic Paxos algorithm.
Differently from classic Paxos, messages are sent directly to
acceptors (skipping the leader). If messages are received in
the same order, delivery is done in two communication steps;
otherwise, it takes longer.

Broadcast algorithms that take into consideration appli-
cation semantics to deliver messages fast have been also
proposed [8], [9], [10]. To a certain extent, these algorithms
“optimistically” assume that not every two messages must
be delivered in the same order by all processes, but only
some messages (e.g., messages that access shared objects).
Optimistic Atomic Multicast does not rely on application
semantics. We note however that application semantics could
be used when deciding whether the order of optimistic and
conservative delivery match.

In [6], the authors propose a technique that approximates
spontaneous ordering in a wide-area setting. The key idea
is for every process to insert artificial delays in incoming
messages. The resulting delay between each process p and
every other process should then become the same as the
delay between p and a given sequencer s (e.g., the leader
in a consensus-based protocol). For the technique to work
properly, the communication latency between each pair of
processes has to be approximately constant. Our optimistic
delivery does not have one single sequencer process as
a reference, as opposed to [6]. Instead, given a set of
processes which communicate with one another, each one of
such processes is able to determine an optimistic ordering
based solely on its own wait window and on messages’
timestamps. Furthermore, the authors propose an atomic

broadcast protocol,4 where the latency between every single
pair or processes must be constant, whereas we propose an
optimistic atomic multicast protocol which cares only about
those pairs of processes that can communicate, as defined
by the sendersTo relation.

IX. CONCLUSION

This work introduced the concept of quasi-genuine multi-
cast, a class of protocols based on pre-determined commu-
nication patterns (i.e., the sendersTo relation). Such patterns
are based on the application and may be changed on-the-fly
(i.e., by means of a system reconfiguration). Experimental
results in both local-area and wide-area networks show
that Optimistic Atomic Multicast is effective in increasing
throughput and reducing latency. Low latency is due to
a probabilistic assumption that was verified in 95% of
deliveries in a wide-area network and over 99.5% in a local-
area network. As a future work, we intend to investigate
protocols that automatically detect communication patterns
and reconfigure the system as pairs of groups communicate
more or less frequently.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[2] F. B. Schneider, “What good are models and what models
are good?,” in Distributed Systems (S. Mullender, ed.), ch. 2,
Addison-Wesley, 2nd ed., 1993.

[3] V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and
related problems, pp. 97–145. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1993.

[4] L. Lamport, “Lower bounds for asynchronous consensus,”
Distributed Computing, vol. 19, no. 2, pp. 104–125, 2006.

[5] F. Pedone and A. Schiper, “Optimistic atomic broadcast:
a pragmatic viewpoint,” Theoretical Computer Science,
vol. 291, no. 1, pp. 79 – 101, 2003.

[6] A. Sousa, J. Pereira, F. Moura, and R. Oliveira, “Optimistic
total order in wide area networks,” in Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems, SRDS ’02,
pp. 190–199, IEEE Computer Society, 2002.

[7] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19,
no. 2, pp. 79–103, 2006.

[8] F. Pedone and A. Schiper, “Generic broadcast,” in Proceed-
ings of the 13th International Symposium on Distributed
Computing (DISC’99, formerly WDAG), 1999.

[9] L. Lamport, “Generalized consensus and paxos,” Tech. Rep.
MSR-TR-2005-33, Microsoft Research (MSR), Mar. 2005.

4In [6], the protocol is called “atomic multicast”, but is defined as a
protocol in which every correct process delivers all messages multicast by
all correct processes. From our definitions, we call it “atomic broadcast”.

[10] P. Sutra and M. Shapiro, “Fast Genuine Generalized Consen-
sus,” in Symposium on Reliable Distributed Systems, (Madrid,
Spain), Oct. 2011.

[11] R. Guerraoui and A. Schiper, “Genuine atomic multicast in
asynchronous systems,” Tech. Rep. 98/273, EPFL, Mar. 1998.

[12] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a
workload-driven approach to database replication and parti-
tioning,” Proc. VLDB Endow., vol. 3, pp. 48–57, 2010.

[13] C. E. Bezerra, F. Pedone, B. Garbinato, and C. Geyer,
“Optimistic atomic multicast,” Tech. Rep. 2013/01, University
of Lugano, Feb. 2013.

[14] N. Schiper and F. Pedone, “On the inherent cost of atomic
broadcast and multicast in wide area networks,” in Pro-
ceedings of the 9th international conference on Distributed
computing and networking, ICDCN’08, (Berlin, Heidelberg),
pp. 147–157, 2008.

[15] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wies-
mann, “Using optimistic atomic broadcast in transaction pro-
cessing systems,” IEEE Trans. Knowl. Data Eng., vol. 15,
no. 4, pp. 1018–1032, 2003.

[16] F. R. Cecin, C. F. R. Geyer, S. Rabello, and J. L. V.
Barbosa, “A peer-to-peer simulation technique for instanced
massively multiplayer games,” in Proceedings of the 10th
IEEE international symposium on Distributed Simulation and
Real-Time Applications, pp. 43–50, 2006.

[17] L. Lamport, “The part-time parliament,” ACM Transactions
on Computer Systems (TOCS), vol. 16, no. 2, pp. 133–169,
1998.

[18] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
put. Surv., vol. 36, pp. 372–421, December 2004.

[19] M. K. Aguilera and R. E. Strom, “Efficient atomic broadcast
using deterministic merge,” in Proceedings of the nineteenth
annual ACM symposium on Principles of distributed comput-
ing, (New York, NY, USA), pp. 209–218, ACM, 2000.

[20] K. Birman and T. Joseph, “Reliable communication in the
presence of failures,” ACM Transactions on Computer Sys-
tems (TOCS), vol. 5, no. 1, pp. 47–76, 1987.

[21] L. Rodrigues, R. Guerraoui, and A. Schiper, “Scalable atomic
multicast,” in Computer Communications and Networks,
1998. Proceedings. 7th International Conference on, pp. 840
–847, oct 1998.

[22] J. Fritzke, U., P. Ingels, A. Mostefaoui, and M. Raynal, “Fault-
tolerant total order multicast to asynchronous groups,” in
Reliable Distributed Systems, 1998. Proceedings. Seventeenth
IEEE Symposium on, pp. 228–234, 1998.

