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Abstract

Cloud-scale storage applications have strict requirements. On
the one hand, they require scalable throughput; on the other
hand, many applications would largely benefit from strong
consistency. Since these requirements are sometimes con-
sidered contradictory, the subject has split the community
with one side defending scalability at any cost (the “NoSQL”
side), and the other side holding on time-proven transactional
storage systems (the “SQL” side). In this paper, we present
Augustus, a system that aims to bridge the sides by offer-
ing low-cost transactions with strong consistency and scal-
able throughput. Furthermore, Augustus assumes Byzantine
failures to ensure data consistency even in the most hostile
environments. We evaluated Augustus with a suite of micro-
benchmarks, Buzzer (a Twitter-like service), and BFT Derby
(an SQL engine based on Apache Derby).

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design—Distributed Systems; C.4
[Performance of Systems]: Fault tolerance

Keywords Scalable storage, Byzantine fault tolerance, trans-
actional database, cloud computing

1. Introduction

Many distributed multi-tier applications rely on a data man-
agement tier for state management. While it is simple to make
stateless tiers scale and tolerate failures, the same does not
hold for stateful tiers, and consequently the database is often
the performance and availability bottleneck of distributed
multi-tier applications. Although much effort has been put
into developing sophisticated database protocols that target
scalability and availability, cloud-scale computing applica-
tions, spanning a large number of servers and serving millions
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of simultaneous clients, often face the “database bottleneck”
challenge by relying on backend storage systems that offer
guarantees weaker than the traditional ACID properties (i.e.,
atomic and persistent transactions with strong isolation). This
new generation of systems, with few or no isolation guaran-
tees, have been termed “NoSQL,” as opposed to the more
traditional “SQL” systems.

The NoSQL versus SQL dilemma has given rise to an ani-
mate debate, with NoSQL advocates claiming that traditional
relational databases cannot scale to “cloud environments” and
SQL advocates claiming that NoSQL systems scale at the
cost of pushing the complexity to the application and giving
up on some of the guarantees that SQL systems offer [30].
In this paper, we argue that scalability and strong isolation
at the storage level are not mutually exclusive and propose
a storage system that combines a scalable design, through
partitioning, with strong multi-partition isolation by means
of ACID transactions. Although we are not the only ones
to pursue this direction (e.g., Calvin [31], H-Store [14]), to
the best of our knowledge, we are the first to consider it in
the presence of arbitrary failures (i.e., Byzantine failures).
As we detail later, previous scalable Byzantine fault-tolerant
systems are either non-transactional (e.g., [8]) or do not offer
strong multi-partition isolation (e.g., [13]).

The current generation of cloud environments offers few
guarantees about fault-tolerance and availability. Providers
claim that they will use “commercially reasonable efforts'”
to prevent disruptions. Such disclaimers are necessary due to
the nature of the hardware deployed in cloud environments.
To keep costs low providers deploy commodity hardware,
which is unreliable. Although many cloud providers do try to
offer some kind of fault-tolerance at the hardware level (e.g.,
ECC RAM, RAID storage, redundant network links), even
when these features are present, they may not be sufficient
to guarantee the dependability that some mission-critical
services require. For such cases, Byzantine fault-tolerance is
the safest solution since it makes no assumptions about the
behavior of faulty components. Moreover, this holds even in
the presence of homogenous hardware since failures tend to
concentrate on the same servers: more than 93% of servers
that suffer a transient failure will have another incident within
the year [27].

Uhttp://aws.amazon.com/ec2-sla/



Unfortunately, Byzantine fault-tolerant (BFT) services
usually have increased latency, when compared to simple
client-server interactions, and limited scalability, in the sense
that adding servers does not translate into higher throughput.
Much research has been done in the past years addressing
the latency problem (e.g., [12, 17, 29]), and several proposed
techniques could be integrated in our design. The lack of
scalability is derived from the fact that BFT services rely ei-
ther on state-machine replication or primary-backup replica-
tion, and neither scales. With state-machine replication every
operation must be executed by every replica; thus, adding
replicas does not increase throughput. With primary-backup
replication, the primary executes operations first and then
propagates the state changes to the backups; system through-
put is determined by the primary. Although some works have
proposed mechanisms to improve the throughput of BFT sys-
tems (e.g., [8, 13, 15]), Augustus, the system we designed and
implemented, is the first to scale both read-only and update
transactions linearly with the number of partitions.

Augustus’s interface was inspired by the paradigm of short
transactions, similar to the models proposed in [3, 6, 31].
Our definition of short transactions extends the traditional
read, compare, and write operations presented in [3] with
more powerful range operations. The resulting interface has
proved fundamental to implement complex data management
applications on top of Augustus. We implemented two such
applications: Buzzer, a social network engine that provides a
Twitter-like interface, and BFT Derby, a distributed relational
database based on Apache Derby. While the former belongs
to the NoSQL category, the latter is an SQL-based system.
Both Buzzer and BFT Derby can cope with malicious clients
and servers, and inherit Augustus’s scalability.

This paper makes the following contributions: (1) We
present a Byzantine fault-tolerant storage system based on a
novel atomic commit protocol optimized for single-partition
transactions and multi-partition read-only transactions. In par-
ticular, neither type of transaction requires expense signatures
and thus can be executed more quickly than multi-partition up-
date transactions. (2) We design Buzzer, a Twitter-like appli-
cation that takes advantage of our storage system: Buzzer uses
only cheap single-partition transactions and multi-partition
read-only transactions. (3) We implement BFT Derby, a
highly available SQL engine based on our extended stor-
age interface. (4) We execute a comprehensive performance
evaluation covering all of the proposed usage scenarios.

The remainder of this paper is organized as follows: Sec-
tion 2 details the system model and some definitions. Sec-
tion 3 introduces our scalable protocol and the novel opti-
mizations which enable its performance. Section 4 presents
the two applications built on top of it, and shows the perfor-
mance evaluation results. Section 5 reviews related work, and
Section 6 concludes the paper.

2. System model and definitions

We assume a message-passing distributed system with an
arbitrary number of client nodes and a fixed number n of
server nodes, where clients and servers are disjoint. Client and
server nodes can be correct or faulty. A correct node follows
its specification whilst a faulty node can present arbitrary
(i.e., Byzantine) behavior. An undefined but limited number
of clients can be Byzantine; the number of Byzantine servers
is defined next.

One-to-one communication is through primitives send(m)
and receive(m), where m is a message. If sender and receiver
are correct, then every message sent is eventually received.
Primitives send and receive can be implemented on top of fair
links, which may fail to deliver, delay, or duplicate messages,
or deliver them out of order; however, if a message is sent
infinitely often to a receiver, then it is received infinitely
often.

One-to-many communication is based on atomic multicast,
defined by the primitives mulficast(g, m) and deliver(g, m),
where g is a group of servers and m is a message. Atomic
multicast ensures that (a) a message multicast by a correct
node to group g will be delivered by all correct servers in
g; (b) if a correct server in g delivers m, then all correct
servers in g deliver m; and (c) every two correct servers in
g deliver messages in the same order. While several BFT
protocols implement the atomic multicast properties above,
we assume (and have implemented) PBFT [5], which can
deliver messages in four communication steps and requires
ng = 3f, + 1 servers, where f, is the number of Byzantine
servers in g and ng < n.

We use cryptographic techniques for authentication, and
digest calculation.” We assume that adversaries (and Byzan-
tine nodes under their control) are computationally bound so
that they are unable, with very high probability, to subvert the
cryptographic techniques used. Adversaries can coordinate
Byzantine nodes and delay correct nodes in order to cause
the most damage to the system. Adversaries cannot, however,
delay correct nodes indefinitely.

3. Scalable BFT storage

In this section, we introduce the interface provided by our
storage service, describe its implementation in the absence of
faulty clients and in the presence of faulty clients, present the
performance optimizations that enable its good performance,
and argue about the protocol’s correctness.

3.1 Storage service

We consider a storage system composed of (key, value)
entries, where both key and value are of arbitrary type
and length. Clients access the storage by means of short
transactions [3, 6, 31]. A client first declares all operations of
a short transaction, submits it for execution and waits for its

2 SHA-1 based HMACs and AES-128 for transport encryption.



outcome, resulting in a single round of interaction between
clients and servers. Short transactions avoid the costs of client
stalls and can be efficiently implemented with locks of short
duration.

A transaction is composed of a sequence of operations,
which can be of three classes: comparison, query, and update
operations (see Table 1). The cmp(key,value) operation per-
forms equality comparison between the value in the storage
for the given key with the provided value. There are query op-
erations to read one entry and a range of entries. The update
operations allow to write the value of an existing key, insert a
key to the storage, and remove a key from the storage. To ex-
ecute a transaction, a server first performs all the comparison
operations. If those are successful, then the server executes
the query and update operations.

Class Operation Lock
Comparison cmp(key,value) read
Query read(key) read

read-range(start-key, end-key) | struct read+read
insert(key,value) struct write+write
write(key,value) write
delete(key) struct write+write

Update

Table 1. Transaction operations (read and write locks are
acquired on single keys; structural read and write locks are
acquired on partitions).

Augustus guarantees a form of strict serializability [24]
that accounts for update transactions and read-only transac-
tions submitted by correct clients.? In other words, we do not
care about read-only transactions from misbehaving clients.
For every history H representing an execution of Augustus
containing committed update transactions and committed
read-only transactions submitted by correct clients, there is a
serial history H containing the same transactions such that
(a) if transaction T reads an entry from transaction 7" in H,
T reads the same entry from 7" in H,; and (b) if T" terminates
before T" starts in H, then T precedes 7" in H.

This definition ensures that every committed state of the
storage can be explained by a serial arrangement of the
committed transactions. Note that we do not attempt to
preclude Byzantine clients from creating transactions that
violate the application’s integrity constraints. Handling such
attacks requires access control policies and mechanisms for
data recovery (e.g., maintaining database images) [16].

3.2 Storage architecture

Augustus’s design is based on two strategies: state-partitioning
and divide-and-conquer (see Figure 1(a)). We divide the stor-
age entries into partitions and assign each partition to a group
of servers (i.e., state partitioning); we handle the complexity

3 An update transaction contains at least one update operation; a read-only
transaction contains only comparison and query operations.

of tolerating arbitrary failures by first rendering each server
group Byzantine fault-tolerant individually, by means of state-
machine replication, and then handling transaction operations
across partitions with a novel BFT atomic commit protocol
(i.e., divide and conquer).

The scalability of Augustus comes from the fact that
atomic multicast, used to implement state-machine replica-
tion in a partition, spans the servers of the partition only. In
other words, the BFT atomic commit protocol proposed by
Augustus does not rely on a system-wide atomic multicast.

We divide the servers into non-intersecting groups of size
ng < n, out of which f; servers can be Byzantine. To
implement atomic multicast in each group, we require n, =
3fq+1 (see Section 2). We consider two schemes to distribute
keys among partitions, hashing and range partitioning. All
the correct servers of a group keep a complete copy of the
entries of its assigned partition.

3.3 Execution in failure-free cases

The execution of a transaction ¢ is divided in four steps (see
Figure 1(b)). In the first step, a correct client multicasts the
operations of ¢ to all partitions involved in ¢, performing one
multicast call per partition. Clients determine the partitions
involved in ¢ from ¢’s operations and the key-partitioning
scheme, known by the clients. Read-range operations involve
only partitions relevant to the queried range if keys are
distributed using range partitioning, or all partitions if keys
are distributed using hashing. Other operations involve only
the partition responsible for the key in the operation.

In the second step of the execution, each correct server s
delivers ¢ and computes t’s unique identifier from a digest
of t’s operations.* Then, s tries to acquire all of ¢’s locks
(described next). If ¢ can be granted all its locks, s executes t’s
comparison operations. If one of ¢’s locks cannot be granted
or one of ¢’s comparison operations fails, s sets ¢’s vote to
abort. Otherwise s executes ¢’s query operations, buffers all
t’s update operations, and sets t’s vote to commit. In either
case, a server’s vote on the outcome of a transaction is final
and cannot be changed once cast. If s votes to commit ¢, ¢
becomes pending at s; otherwise ¢ is considered terminated.
Note that within a partition, every correct server delivers the
same transactions in the same order (from the properties of
atomic multicast) and therefore transitions through the same
sequence of states (from the deterministic procedure used to
execute transactions).

A transaction can request locks on single keys or structural
locks on partitions, depending on the transaction’s operations
(see Table 1). Compare and read operations require read locks
on single keys and write operations require write locks on
single keys. A read-range query requires a structural read lock
on all partitions responsible for keys in the queried range,

4We require every two transactions to be different. It is easy for correct
clients to ensure this requirement by extending transactions with a “no-op”
operation containing a unique identifier.
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Figure 1. Overview of Augustus.
read | write | structread | struct write In the fourth step, the client sends the certificate proving ¢’s
read yes no yes yes outcome to all servers in the involved partitions and notifies
write no no yes yes the application. When s receives a valid certificate for ¢ from
struct re{ld yes | yes yes no the client, s checks whether ¢ is a pending transaction and has
struct write | yes | yes no yes not been already terminated, in which case s determines the

Table 2. Compatibility matrix of lock types (“yes” means
that the lock can be shared; “no” means that the lock is
mutually exclusive).

according to the partitioning scheme, and a read lock on
all existing keys within the queried range. Insert and delete
operations require a structural write lock on the partition

responsible for the key and a write lock on the specified key.

A transaction can upgrade its read locks to update locks if the
update locks do not conflict with other locks. Table 2 shows
the compatibility matrix for these lock types. This scheme
allows read, compare and write operations to be performed
concurrently with inserts and deletes, as long as they are on
different keys. Inserts and deletes on different keys can be
also executed concurrently. Read-range queries are serialized
with update operations to avoid phantoms [11], although
they can execute concurrently with read, compare and other
read-range operations. Although it is possible to implement
structural locks with finer granularity, we opted for a simpler
single partition-wide lock.

In the third step in t’s lifespan, s signs its vote for ¢ using
its private key and sends to the client its signed vote and the
result of ¢’s query operations, if the vote is commit. The client
collects the responses and once it gathers f; + 1 matching
responses from servers in g, it can determine g’s vote and
result. The client uses the collected votes from g to assemble
a vote certificate, that is, f, 4 1 signed votes from servers
in the partition that will be used to prove the partition’s vote
to the other partitions. The outcome of ¢ will be commit if
the client collects f; + 1 commit votes from every partitions
involved in ¢ and abort otherwise.

outcome of ¢ from the certificate and proceeds accordingly: s
either commits ¢’s updates or discards them. In either case, ¢
is no longer pending and becomes a terminated transaction.
The locks associated with the transaction are released when
the transaction terminates.

Augustus’s execution model avoids deadlocks since either
all the locks of a transaction are acquired atomically or
the transaction aborts. If two multi-partition transactions
are delivered in different order in two different partitions,
then each transaction will receive at least one vote to abort
from one of the involved partitions, which will lead to both
transactions being aborted.

3.4 Execution under Byzantine clients

Byzantine clients can attempt to subvert the execution by
trying to (a) disrupt the termination protocol and (b) abort
transactions submitted by correct clients.

In the first case, a Byzantine client could (a.1) multicast
non-matching operations to different partitions in the context
of the same transaction or (a.2) leave a transaction unfinished
in one or more partitions—notice that this may happen when
a client fails by crashing. For (a.1), recall from the previous
section that a transaction is uniquely identified by its opera-
tions. Thus, the non-matching operations will yield different
identifiers and be considered different transactions altogether
by the partitions. Since to be terminated a transaction requires
a certificate, including the vote of each partition involved in
the transaction, this attack will result in unfinished transac-
tions (i.e., forever in the pending state), which is identical to
case (a.2).

Our strategy to address scenario (a.2) is to rely on subse-
quent correct clients to complete pending transactions left
unfinished. From the previous section, if a transaction ¢ con-



flicts with a pending transaction v in some server s € g, ¢
is aborted by s. In the abort message sent by s to the client,
s includes u’s operations. When the client receives an abort
message from f; + 1 replicas in g, in addition to aborting
t, the client starts the termination of » by multicasting u’s
operations to every partition & involved in u. If a vote request
for u was not previously delivered in h (e.g., not multicast by
the client that created ), then the correct members of A will
proceed according to the client’s request. If u’s vote request
was delivered in h, then correct members will return the result
of the previous vote, since they cannot change their vote (i.e.,
votes are final). In any case, eventually the client will gather
enough votes to complete pending transaction u, following
the same steps as the normal case. To a certain extent, correct
clients play the role of “recovery coordinators” [3].

In case (b) above, Byzantine clients can try to harm correct
clients by submitting transactions that increase the likelihood
of lock conflicts. This can be attempted in a number of ways.
For example, by submitting transactions with many update
operations or by submitting multiple transactions concur-
rently. Such attacks can be effective against multi-partition
transactions submitted by correct clients and we cannot com-
pletely avoid them (i.e., legitimate transactions submitted
by correct clients can also cause aborts). In any case, the
short-duration nature of locks in Augustus limits the chances
of lock conflicts. In addition to this, other measures could
be used, although we do not currently implement them in
our prototype, such as limiting the number of operations in a
transaction or restricting the number of simultaneous pending
transactions originating from a single client (e.g., [20]).

3.5 Performance optimizations

The most time-critical operation in the protocol described
in the previous sections is the signing of votes, executed by
each correct server of a partition, in order to compose a vote
certificate for the partition. In this section we describe two
optimizations that reduce this operation to multi-partition
update transactions only.

3.5.1 Fast single-partition transactions

The atomic multicast protocol executed within each partition
guarantees that all correct servers in the partition compute
the same vote for a transaction after executing it. Therefore,
the protocol presented in Section 3.3 can be optimized
in two ways. First, the fourth step in the execution of a
transaction is not needed; servers can terminate a transaction
right after executing its operations. Second, as a consequence
of abbreviated termination, servers do not have to provide
signed votes to the clients, speeding up the execution of
single-partition transactions. Signed votes are used to build a
certificate for the transaction, used to prove the outcome of
one partition to another; in single-partition transactions this
is unnecessary.

3.5.2 Fast read-only transactions

As discussed in Section 3.3, the vote certificate prevents a
Byzantine client from forcing the termination of a transaction
in one partition without the agreement of the other parti-
tions. Partitions participating in a multi-partition read-only
transaction, however, do not need to prove the outcome of the
transaction to each other; for the transaction to be serializable,
each partition only needs to hold read locks until the client
executes the fourth step of the protocol. For these transactions
it is possible to waive the vote certificate.

Eliminating the requirement of a signed certificate allows
malicious clients to create read-only transactions that observe
a non-serializable execution. In Figure 2(a), transaction %1,
submitted by the Byzantine client, reads a value of x that
precedes transaction ¢5 and a value of y that succeeds ¢5. To
commit ¢; at the first partition, the Byzantine client forges the
vote from partition 2, something that would be impossible if
signed certificates were required.

Multi-partition update transactions require a vote certifi-
cate since they must be serializable with other update transac-
tions and read-only transactions executed by correct clients.
To see why we cannot waive vote certificates from such trans-
actions, consider the execution in Figure 2(b), where the
Byzantine client uses a similar attack to commit ¢ ’s write to
key x before it sends ¢; to the second partition. As a result,
to reads a value of x that succeeds ¢2 and a value of y that
precedes t1.

3.6 Correctness

We show that for all executions H produced by Augustus
with committed update transactions and committed read-only
transactions from correct clients, there is a serial history H
with the same transactions that satisfies two properties: (a) If
T reads an item that was most recently updated by 7" in
H (or “T reads from T"” in short), then T reads the same
item from 7" in H; (i.e., H and Hy are equivalent). (b) If T’
commits before T” starts in H then T precedes 7" in H..

Case 1. T and T’ are single-partition transactions. If T’
and T" access the same partition, then from the protocol,
one transaction executes before the other, according to the
order they are delivered. If T executes first, T" precedes T”
in H,, which trivially satisfies (b). It ensures (a) because
it is impossible for 7" to read an item from 7" since 7" is
executed after T terminates. If 7' and T" access different
partitions, then neither T' reads from 7" nor 1" reads from T'
and T, and T” can appear in H, in any order to ensure (a). To
guarantee (b), T precedes 7" in H if and only if 7' commits
before T” starts in H. In this case, recovery is never needed
since atomic multicast ensures that 7" and 7" are delivered
and entirely executed by all correct servers in their partition.

Case 2. T and T" are multi-partition transactions, access-
ing partitions in PS (partition set) and PS’, respectively. We
initially consider executions without recovery.
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(a) A possible execution in Augustus
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(b) An execution that cannot happen in Augustus

Figure 2. Certification-free executions. Execution (a) is serializable since we do not care about ¢, a read-only transaction
submitted by a Byzantine client; this execution may happen due to the fast read-only transaction optimization. Execution (b) is
not serializable since ¢, precedes ¢ at partition 1 and ¢, precedes ¢; at partition 2. Augustus does not allow execution (b).

First, assume that P.S and PS’ intersect and p € PS N
PS’. There are two possibilities: (i) either the locks requested
by T and T are shared or (ii) at least one such lock is
exclusive. In (i), property (a) is trivially ensured since neither
transaction performs updates (i.e., these require exclusive
locks) and thus one transaction does not read from the
other; to ensure (b), 7' and 7" appear in H, following their
termination order, if they are not concurrent. If they are

concurrent, then their order in H does not affect property (b).

In (ii), from the algorithm either (ii.a) 7' commits in every

p before T” is executed at p or (ii.b) the other way round.

This holds because otherwise 1" or T” or both transactions
would be aborted. Without lack of generality, assume (ii.a)
holds. Thus, T" precedes 1" in H,. Property (a) is guaranteed
because it is impossible for T' to read from 7" since T'
commits before 7" is executed in p. Property (b) holds
because it impossible for 7” to terminate before 7.

Now assume that PS and PS’ do not intersect. Then T
and 7" can be in H, in any order. In either case, (a) is trivially
ensured. T precedes 1" in H if and only if T' commits before
T’ starts in H, and thus (b) is ensured. Recovery extends the
lifetime of a transaction, but does not change the argument
above.

Case 3: T is a single partition transaction accessing P
and 7" is a multi-partition transaction accessing partitions in

PS'.If T is executed before T” at P, T precedes T’ in H,.

Property (a) follows from the fact that 7" cannot read from

T'; property (b) follows because T’ can only finish after 7T'.

If P ¢ PS’, then (a) trivially holds and (b) can be ensured

by placing 7" and 7" in H, following the order they complete.

Finally, if T is executed after 7" at P, then T” precedes T in
H,. Property (a) holds since 7" cannot read from 7" and it is
impossible for 7' to commit before 7”.

4. Performance evaluation

In this section, we describe the environment in which we
conducted our experiments, reason about our choice of bench-
marks, and experimentally assess Augustus and the applica-
tions we implemented on top of it.

4.1 Environment setup and measurements

We ran all the tests on a cluster with two types of nodes:
(a) HP SE1102 nodes equipped with two quad-core Intel
Xeon L5420 processors running at 2.5 GHz and 8 GB of
main memory, and (b) Dell SC1435 nodes equipped with two
dual-core AMD Opteron processors running at 2.0 GHz and
4 GB of main memory. The HP nodes are connected to an HP
ProCurve Switch 2910al-48G gigabit network switch, and
the Dell nodes are connected to an HP ProCurve 2900-48G
gigabit network switch. The switches are interconnected via a
20 Gbps link. The single hop latency between two machines
connected to different switches is 0.17 ms for a 1KB packet.
The nodes ran CentOS Linux 6.3 64-bit with kernel 2.6.32.
We used the Sun Java SE Runtime 1.7.0_10 with the 64-Bit
Server VM (build 23.6-b04).

Our prototype includes an atomic multicast implementa-
tion based on PBFT [5] and the transaction processing engine.
The prototype was implemented in Java 7. We implemented
range queries using Java’s own sorted collections. In the ex-
periments, each client is a thread performing synchronous
calls to the partitions sequentially, without think time. Client
processes ran on the Dell nodes. Each partition contained four
servers, which ran on the HP nodes. Our largest deployment
included 32 server nodes and 40 client nodes to host up to
2000 client threads, evenly distributed across nodes.

The throughput and latency numbers in all experiments
were selected at the point of highest power in the system, that
is, where the ratio of throughput divided by latency was at



its maximum. Although this does not represent the absolute
maximum throughput of the system, it indicates the inflection
point where the system reaches its peak throughput before
latencies start to increase due to queueing effects.

4.2 Benchmark rationale

We evaluated our storage system with a series of micro-
benchmarks and two different classes of applications: Buzzer,
a Twitter clone that tolerates Byzantine failures, and BFT
Derby, a Byzantine fault-tolerant SQL database. We detail
these systems in the following sections.

Augustus transactions can be classified in four groups:
(1) local update transactions, (2) local read-only transactions,
(3) global update transactions, and (4) global read-only trans-
actions, where local transactions involve a single partition and
global transactions involve two or more partitions. The micro-
benchmarks were designed to assess the performance of these
transaction groups under various conditions, including per-
centage of multi-partition transactions, number of operations
in a transaction, and size of data items.

Buzzer illustrates how to implement a scalable application
using “cheap transactions,” those belonging to the more
efficient group, as assessed in the micro-benchmarks. Finally,
BFT Derby shows that Augustus’s interface and consistency
are sufficient to serve as the storage layer of an SQL database,
and boost its reliability and performance.

4.3 Micro-benchmarks

We evaluated four different types of workloads (see Table 3).
Workloads A and B perform updates, while workloads C
and D are read-only. The keys used in each request were
picked randomly from the key space. We varied the number
of partitions for all workloads from one to eight. Keys were
distributed among partitions using key hashing. For the multi-
partition tests, we employed six different mixes, starting with
only single-partition transactions up to a 100% of multi-
partition transactions. Multi-partition transactions involved
two partitions.

Reads Writes Key size Value size DB size

Type | (ops) (ops) (bytes) (bytes) (items)
A 4 4 4 4 3M
B 2 2 4 1K M
C 8 0 4 4 3M
D 4 0 4 1K M

Table 3. Workload types in microbenchmark.

The first observation from the experiments (see Figure 3)
is that for all workloads with multi-partition transactions,
Augustus’s throughput increases linearly with the number
of partitions. In Figure 3, for example, the topmost graph
(workload A) for 0% of multi-partition transactions (leftmost
cluster of bars) shows that while the throughput for one
partition peaked at 40K tps, the throughput for eight partitions
peaked at 320K tps, an eightfold performance increase.

The second observation from the experiments is that the
overhead caused by the fourth step of the protocol, required
by multi-partition transactions, depends on the size of the
payload and the type of transaction, as we now explain.

In workload C, with small read-only transactions, the
throughput penalty for going from single-partition to 20%
multi-partition transactions with two partitions is about 33%.
Increasing multi-partition transactions to 40% causes a 45%
throughput penalty, while 60% of multi-partition transac-
tions cause a 52% penalty. With 100% of multi-partition
transactions, there is a 66% reduction in throughput. In
workload A, with small update transactions, the 20% multi-
partition transactions penalty with two partitions is 50%, i.e,
from 76K tps to 38K tps. A multi-partition mix of 40% causes
a 60% penalty, and a 100% multi-partition mix causes a 72%
throughput penalty, which then peaks at 21K tps.

Comparatively, in workloads B and D, with transactions
with large payload, there is almost no performance loss until
60% multi-partition transactions. In workload D, with large
read-only transactions, the throughput penalty for going from
0% to 60% multi-partition transactions with two partitions is
about 5%. At 100% multi-partition transactions, the penalty
is about 15%, and throughput peaks at 17K tps. Workload B,
with large update transactions, the reduction in throughput
for going from single-partition to 60% multi-partition trans-
actions is about 18%. At 100% multi-partition transactions,
the decrease in throughput is about 37%.

The difference in behavior between small and large pay-
loads is explained by CPU and network usage. Large payloads
coupled with small percentages of multi-partition transactions
lead to saturation of network links. We observed peaks of
19 Gbps network traffic at the interconnect between switches
in workload D. The saturation of the network links is par-
tially due to the message authentication method employed
(shared secret key HMACs) and to the very nature of PBFT,
which requires at least 2 f 4 1 replies for each request. Larger
percentages of multi-partition transactions lead to CPU satu-
ration, particularly in the case of small transactions, due to
the necessity of signing the commit certificates. Workloads A
and C, for example, saturate servers CPUs long before the
saturation of network links.

We conclude that Augustus’s transactions perform as fol-
low: (1) Local read-only transactions have the best perfor-
mance because their termination is optimized and there is
minimal overhead to acquire read locks. (2) Local update
transactions come next: although their termination is opti-
mized, the acquisition of the exclusive write locks is a slightly
more expensive operation in our implementation. (3) Global
read-only transactions are second to last, since they incur
the overhead of the multi-partition termination protocol but
do not require the computationally expensive vote certificate.
(4) Global update transactions have the worst performance:
their termination requires the complete termination protocol
and the computationally expensive signed vote certificate.
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In our experiments, read-only workloads have a lower
latency than the equivalent-sized update workloads (see Fig-
ure 4). In both workloads C and D the average latencies were
below 5 ms across all mixes; moreover, the latencies of multi-
partition read-only transactions were mostly unaffected by
the percentage of multi-partition transactions. This confirms
our expectations from the optimized termination protocol
for read-only multi-partition transactions. Latencies of multi-
partition updates are higher than the single-partition updates,
and increase with the percentage of multi-partition transac-
tions. Workload A starts with average latencies between 4.1
and 5.2 ms, and ends at 7.7 ms for 100% multi-partition trans-
actions. Workload B has its average latency between 10.5 and
12.4 ms for update transactions.

Type | Multi-partition | Number of partitions
(%) 2 4 8
20 026 042 202
40 042 056 241
A 60 054 072 280
80 0.77 096 294
100 0.87 113 3.28
20 0.15 030 0.96
40 028 042 136
B 60 040 054 1.63
80 056 079 198
100 0.66 080 2.16

Table 4. Maximum abort rates (in %) in workloads A and B.

Abort rates for the micro-benchmarks were very low, most
of the time under 1% (see Table 4). The worst value, 3.28%,
was observed for workload A running under a 100% multi-
partition mix on eight partitions. Types C and D had no aborts,
by virtue of being read-only.

‘We now consider the effects of Byzantine clients on the
execution. Byzantine clients can have a negative impact on
performance by leaving unfinished transactions in the system.
We evaluate the impact of Byzantine clients in workloads A
and C with four partitions and mixes of 20, 60, and 100% of
multi-partition transactions. In these experiments, the total
number of clients is fixed (320) and we vary the percentage
of Byzantine clients in the workload from zero up to 32%.
While correct clients follow the workload mix of local and
global transactions, Byzantine clients always submit multi-
partition transactions only and never terminate them. This
behavior corresponds to attack (a.2), discussed in Section 3.4.
Byzantine clients were allowed to submit only one transaction
at a time [20].

Overall, throughput decreases more or less proportionally
with the increase of Byzantine clients (see Figure 5). This
happens for two reasons. First, Byzantine clients leave all
their transactions pending and so the higher the proportion of
Byzantine clients in the workload, the fewer transactions are
committed. Second, pending transactions left by Byzantine
clients must be finished by correct clients, which increases

the amount of work that correct clients must do, a fact that
has also an impact on latency.

Although latency of committed transactions increases with
the number of Byzantine clients, this effect is more noticeable
with small percentages of global transactions (see Figure 5).
For workload A with 20% of globals, the average latency
increases from 4.03 ms to 5.45 ms. For workload C, the
average latency goes from 3.09 ms to 4.25 ms. The relatively
small increase in latency for workload A is explained by the
fact that the overhead of the recovery protocol is relatively
insignificant if compared to the cost of signing the votes.
This is particularly visible when all transactions are multi-
partition: average latency increases only from 7.24 ms to
7.49 ms. For workload C, where there is no need for signed
commit certificates, the average latency goes from 4.73 ms to
5.35 ms in the mix with 100% of global transactions.

4.4 Buzzer benchmark

Buzzer is an application developed on top of Augustus that
implements an API similar to Twitter. It contains methods
to: (a) create an account, (b) follow and un-follow users,
(c) find out who follows an user, (d) post new messages, and
(e) retrieve a user’s timeline, i.e., the most recent messages
sent by users being followed.

We compared our system to Retwis,> another Twitter
“clone.” Retwis implements the same API as Buzzer, but relies
on the Redis key-value store.® Redis is well-known for its
performance, but does not offer Byzantine fault-tolerance or
multi-partition transactions. In other words, Redis key space
can be partitioned, but it is up to the application to ensure
multi-partition consistency. Our comparison was based on the
three most frequent operations on social networks: posting
a new message, following a user, and retrieving a user’s
timeline.

Retwis implements these operations as follows. Posts are
first-level entities, with their own unique key. Each user has
a list of friends (i.e., people they follow), a list of followers
(i.e., people who follow them), a list of posts that belongs
to them, and a list of posts that is their timeline. Following
a user is a two-command operation that adds one user to
the list of followers of another user, and inversely adds the
other to the list of friends of the first. A new post requires
the acquisition of an unique Postld (a shared atomic counter),
to avoid duplicate entries, and the submission of the post
data linked to the Postld. The Postld is then added to the
user’s post list, and subsequently to the timelines of all the
followers of that user. Retrieving the timeline first fetches
the timeline list, then retrieves the posts by their ids. As
explained below, the acquisition of a Postld imposes a severe
performance penalty on Retwis. We opted not to change the
implementation of Retwis and benchmark it as is for two
reasons: (1) changing the behavior of Retwis would defeat

3 http://retwis.antirez.com/
6 http://redis.io/
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Figure 5. Impact of Byzantine clients on throughput (left) and latency (right) in workloads A (top) and C (bottom).

the goal of having a public, well-known reference benchmark;
(2) Retwis is a good representative of the architecture that is
used in this type of social networks sites.’

We implemented Buzzer’s primitives as follows. Posts are
linked to the user who posted them. Posting a new message
is a simple insert operation where the key is a composition
of the user’s id and a unique timestamp. The lists of friends
and followers are also user-prefixed. Keys are distributed
among partitions using range partitioning. Range boundaries
between partitions are defined such that user accounts and
posts are evenly distributed across partitions, but the data
of a single user is kept together in a partition. Due to this
distribution, creating an account and posting a new message
are single-partition transactions. This enables efficient range
queries because these will be restricted to single-partition
read-only transactions for any given user. Following an user
is a two-insert transaction, one for the friends list and one for
the user’s followers list. This transaction is, at worst, a two-
partition update. Retrieving the timeline requires fetching the
list of friends and then performing a multi-partition range
query for the posts of the friends. The user-centric range
partitioning scheme enables efficient range queries because
all read-range operations will be restricted to a single partition
when obtaining the data for a given user.

The major difference between Retwis and Buzzer is the
way the timelines are stored and compiled. In Retwis, time-

7 Tumblr, a Twitter competitor, assigns unique IDs to posts to build users’
inboxes: http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-
billion-page-views-a-month-and-harder.html

lines are precomputed since updates are always local and
are no more expensive than read-only operations. In Buzzer,
we implemented timeline operations using global read-only
transactions. This design choice has been advocated by [28]
as the better option for systems that need to deal with a high
rate of new messages. It is also important to notice that since
Augusts guarantees strict serializable executions, any causal
dependencies between posts will be seen in the correct order.
More precisely, if user B posts a message after receiving a
message posted by user A, no user who follows A and B will
see B’s message before seeing A’s message. In Retwis, this
scenario may result in different timelines for different users.

The social network data used in the benchmarks contained
100,000 users, and the connections were generated using a
Zipf distribution with a size of 20 and a skew of 1, shifted
by one.® In other words, each user followed at least one
other user, 50% of users followed up to four other users,
and 95% of users followed up to 17 other users. For the
“Post” and “Follow” benchmarks, we started with an empty
data store, i.e., there was no relationship data between the
different users, and therefore no timelines to update. For
the “Timeline” benchmark, we preloaded the same randomly
generated social network. The “Mix” benchmark performed
all of the operations from the previous benchmarks using
the same preloaded network, with the following composition:

8 The publicly available statistics on the Twitter network seem to fit Zipf’s
law reasonably well. See http://www.sysomos.com/insidetwitter/ for a fol-
lower/following breakdown.
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85% of calls retrieved timelines, 7.5% posted new messages,
and the last 7.5% were requests to follow other users.

The fact that Retwis needs to acquire a PostID for each
new post causes a bottleneck that explains our better through-
put even with a single partition (see Figure 6). Since posts
are a single-partition update transaction they scale linearly
with the number of partitions. In these executions, the atomic
multicast is the largest component of the overall latency, and
it remains so regardless of the number of partitions.

Follow operations show a reverse picture, where the
Retwis instance overcomes Buzzer. The throughput loss
from one to two partitions is due to the use of signed vote
certificates, which are computationally expensive to generate
and verify. However, Buzzer’s performance improves with
4 partitions, doubling the throughput of the two partition
scenario and slightly overtaking the baseline at 57k tps.
Latencies for this scenario are high, and due mainly to the
creation and verification of the votes and certificates, but also
due to the extra round of messages required to terminate the
transactions.

The Timeline benchmark shows that our decision to im-
plement the timeline feature using a different approach than
Retwis payed off already for a single partition. The Mix
benchmark performed as expected, following the numbers of
the Timeline benchmark closely, but with an abort rate of 15%.
This abort rate is consistent across all tested configurations,
and explained by our locking mechanism, which prevents
concurrent inserts and range queries (see Section 3.3).

With an exception for the single-partition scenario, latency
for the Timeline benchmark is very similar for all scenarios,
and here again the atomic multicast takes the largest share
of the latency. Retwis latencies are compatible with normal
values for a single, non-replicated server.

4.5 BFT Derby benchmark

We illustrate Augustus’s expressive interface and strong con-
sistency with BFT Derby, a highly available SQL database
server. Moreover, thanks to Augustus’s capability to tolerate
Byzantine failures, BFT Derby can tolerate arbitrary behav-

ior of its storage components. We chose the Apache Derby
server as the SQL front-end for BFT Derby because it is im-
plemented in Java and has a modular design, which supports
the integration of different subsystems, including storage. We
implemented a persistence provider and a transaction con-
troller for Derby supporting a subset of the SQL language to
replace the default implementations.

Our prototype is simple, however it is enough to demon-
strate how Augustus can be used to boost the performance of
an SQL database designed to run as a standalone server. BFT
Derby currently implements single-statement SQL transac-
tions for INSERT, UPDATE, DELETE, and SELECT opera-
tions, and multi-statement SQL transactions without range-
based SELECT statements. Single-statement transactions
are translated directly into Augustus transactions. Multi-
statement transactions rely on a session-unique transaction
cache. SELECT statements are immediately executed as sin-
gle Augustus read-only transactions, and their results are
preserved in the transaction cache. Update statements (e.g.,
INSERTSs, UPDATESs, and DELETES) are batched in the trans-
action cache and dispatched as a single Augustus’s update
transaction on COMMIT. The previously read items in the
transaction cache are included in the COMMIT transaction
as cmp operations. Therefore, the updates only take place if
all previously read items are still up to date.

Since transaction isolation and atomicity are provided by
Augustus, multiple Derby instances can be deployed against
the same storage, each instance operating as an individual
client of the storage system (see Figure 1). Moreover, relying
on Augustus for isolation allows us to disable the concurrency
control in the SQL server, which can run under a lower and
more efficient isolation level (i.e., READ COMMITTED).

Bypassing Derby’s internal persistence and isolation mech-
anisms comes at a cost. When using its internal mechanisms,
Derby tracks changes to optimize caching and updates on
indexes, and provides interfaces for third-party providers to
notify its caching and indexing subsystems of changes. When
running several Derby instances on top of the same storage
backend, it is not safe to perform caching unless the backend



functionality is extended to support cache lifecycle manage-
ment. We did not implement this Derby extension; instead, we
disabled Derby’s cache mechanism when deploying multiple
instances of the database on top of Augustus.

All experiments were performed against a single table
containing one integer primary key and an integer data field.
We benchmarked single-statement transactions: INSERT, UP-
DATE, SELECT on the primary key and SELECT on a range.
These statements were performed as complete transactions,
i.e., a COMMIT was issued after each statement. Keys were
distributed among partitions using range partitioning. IN-
SERTs were executed against an empty database, and UP-
DATE and SELECTSs were tested using the dataset from the
workload A of the micro-benchmark. We established a base-
line by measuring all scenarios on a standalone instance of
Derby. The standalone instance used the default settings for
cache and index optimization. All measurements were per-
formed against in-memory databases.

We deployed BFT Derby using a “three tier”-like archi-
tecture: we used separate nodes to host the clients, the Derby
front-ends, and Augustus servers. To assess the scalability of
our implementation, we varied the number of Derby front-
ends running on top of a single Augustus partition, and then
we doubled the number of partitions. The standalone Derby
instance (our baseline) was deployed on a different machine
than the clients.

In the “Insert” benchmark, we observed that in a single
partition BFT Derby performs inserts as fast as the baseline:
both Derby baseline and BFT Derby peak around 13K tps, for
a single partition with one front-end (see “1P1F” in Figure 7).
When a second SQL front-end server (“1P2F”) was added,
throughput peaked at 29K tps, twice the single front-end
throughput. A third SQL front-end (“1P3F”) does not result in
a proportional increase in throughput since the single partition
reaches its maximum performance. Four front-ends deployed
with two Augustus’s partitions (“2P4F”), however, reach a
throughput of 61K tps, four times the throughput of a single
front-end. BFT Derby latencies remained approximately the
same for all scenarios and higher than Derby baseline because
of the underlying BFT atomic multicast.

The “Select” benchmark presented a slightly different pic-
ture. In this case, BFT Derby had a 36% throughput drop from
the baseline. The Derby baseline peaked at 22K tps, while
BFT Derby peaked at 14K tps. This is explained by Derby’s
superior caching and internal indexing mechanisms. Using a
second SQL front-end increased throughput to 29K tps, twice
as much as the single front-end case. A third SQL front-end
only increased throughput to 40K tps. Adding two partitions
with four front-ends resulted in a peak throughput of 65K tps.
Latencies behaved the same as the Insert benchmark.

The “Range” benchmark measured the throughput of
a SELECT statement querying a range of keys. The peak
throughput for a single partition is about 60% of the 25K tps
of the baseline. Adding a second SQL front-end doubles the

throughput and brings it to 30K tps, and the third front-end
brought it to 39K tps. As expected, these values follow the
single SELECT benchmark closely. The introduction of a
second partition pushed throughput over 60k tps. This is
explained by the fact that using range partitioning allows
the read-range operations to be executed as single-partition
transactions, and thus scale linearly.

For the “Update” benchmark, BFT Derby with a single
front-end performed at about the same level as the baseline;
11K tps versus 12K tps at peak performance, respectively.
The second SQL front-end doubled throughput, bringing it to
23K tps. The third SQL front-end only increased throughput
to 27K tps. With four front-ends, throughput peaked at
45K tps. One could expect updates to perform just as well as
inserts since in both cases statements can be mapped directly
to Augustus transactions. However, for each update statement
Derby internally issues the equivalent of a SELECT statement
to make sure that the entry being updated exists. Despite
the fact that Augustus can handle the UPDATE invocation
correctly, i.e., to update the entry only if it already exists, we
could not override this behavior inside Derby and disable
it. As a result, each UPDATE statement was translated to
two Augustus transactions: one read transaction to make sure
the key existed, and then a compare and write transaction at
commit. This explains the higher latency, which is the double
of other scenarios.

5. Related work

Although the literature on Byzantine-fault tolerant systems is
vast, until recently most research was theoretical, within the
distributed computing community (e.g., [4, 19, 21, 25]). After
Castro and Liskov’s PBFT showed that tolerating Byzantine
failures can be practical [5], many papers proposed tech-
niques to reduce the latency of BFT state-machine replica-
tion (e.g., [1, 7, 12, 17, 29]) and tolerate malicious attacks
in database systems [32]. We focus next on previous work
related to improving throughput under Byzantine failures,
the main issue addressed by Augustus. Existing protocols
can be divided into those that do not support transactions
(e.g., [2, 8, 13, 18]), more suitable for file system replication,
and those with transaction support (e.g., [9, 23, 26]).

Farsite [2] is one of the first storage systems to explore
scalability in the context of Byzantine failures. It provides
BFT support for the metadata of a distributed filesystem, and
confidentiality and availability for the data itself, through en-
cryption and replication. Differently from Augustus, Farsite is
not intended for database applications, as it does not support
transactions and assumes low concurrency and small-scale
read-write sharing.

Although the separation of agreement and execution is
presented in [33], it is only in [8] that we see the first applica-
tion of the reduction to an f + 1 execution quorum coupled
with on-demand replica consistency. While the approach does
improve throughput, the improvement depends on the num-
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ber of “cross-border” (i.e., multi-partition) requests, which
require an expensive inter-partition state-transfer protocol.

Zzyzx [13] implements a centralized locking system that
allows clients, once they acquire the required locks, to submit
an unlimited number of sequential operations to a BFT
quorum of log servers. BFT agreement is only executed at
the end to ensure the client submitted the same operations
in the same order to all log servers. Scalability is achieved
by dividing the application state across several partitions
of log servers. As pointed out by the authors, the solution
is optimized for the specific single-client, low-contention,
single-partition data scenario. It is also important to point
out that throughput of the whole system is bound by the
throughput of the centralized locking system.

Oceanstore [18] separates replicas in tiers and introduces
delayed dissemination of updates. Although it supports some
form of transactions, it is based on an update dissemination
protocol that requires a complex model of replicas containing
both tentative and commited data. If strong consistency is
required, the system executes as fast as the primary tier.

Early work on BFT databases by Garcia-Molina et al. [10]
assumed serial transaction execution and did not target
throughput scalability. Particularly related to our proposal
is the commit protocol proposed by Mohan et al. [22] for
terminating distributed transactions under Byzantine failures.
Augustus differs from this protocol in that each transaction
participant (i.e., a partition) can tolerate Byzantine failures
and atomic commit is executed among correct participants.
In [22], the transaction coordinator collects votes from the
participants and all transaction members run a BFT agree-
ment protocol to decide on the transaction’s outcome.

Recent protocols that provide Byzantine fault-tolerance in
the context of databases are presented in [9, 23, 26]. In [9]
and [26], transactions are first executed at one replica and
then propagated to the other replicas, where they are checked
for consistency and possibly commit. While the protocol
in [9] guarantees snapshot isolation and relies on broadcasting

transactions twice (i.e., in the beginning of the transaction,
to assign it a consistent snapshot, and at the end to certify
the transaction), the protocol in [26] ensured serializability
and broadcasts transactions at the end of their execution.
These approaches support single-partition transactions and
do not scale throughput under update transactions. In [23]
we briefly discuss the use of a BFT atomic commit protocol
to terminate multi-partition transactions, although without
Augustus’s optimizations and with no in-depth evaluation.
In [15], Kapritsos and Junqueira propose a way to improve
the scalability of agreement protocols (i.e., the message
ordering). As the authors indicate themselves, scalability
of the agreement protocol does not imply scalability of the
execution of requests. Their work is orthogonal to ours, since
our model is agnostic to the underlying agreement protocol,
and could use implementations more scalable than PBFT.

6. Final remarks

Scalability, strong consistency, and Byzantine fault-tolerance
appear to be conflicting goals when the topic is cloud-scale ap-
plications. Augustus approaches this issue with an optimized
BFT atomic commit protocol that enables scalable throughput
under read-only and update transactions. Moreover, single-
partition transactions (both read-only and updates) and multi-
partition read-only transactions are efficiently executed (i.e.,
without the need of expensive signed certificates).

We developed two scalable applications on top of Augus-
tus, thereby demonstrating its functionality. Buzzer shows
how common operations in a social network application can
benefit from Augustus efficient transactions. BFT Derby
illustrates how an existing centralized databases can be
made scalable under common SQL statements. Although
our prototype is simple (i.e., it currently only supports single-
statement transactions with a SELECT, INSERT, UPDATE
and DELETE operations and multi-statement transactions on
single keys), it is the foundation for more complex SQL-based
data management systems.
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