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Abstract—Multimedia consumption over the Internet
is emerging as one of the largest sink of network re-
sources, making scalable and reliable streaming increas-
ingly challenging. To address this challenge, we propose
RESTREAM, an adaptive replication algorithm that relies
on replication to achieve reliable and scalable streaming
in resource-constrained environments. Our algorithm
dynamically adapts replica placement to maximize the
number of consumers under latency and bandwidth
constraints, while minimizing the number of replicas. In
addition, RESTREAM supports partitioning, i.e., replicas
can be located anywhere in the network and do not neces-
sarily form a connected graph. This allows RESTREAM to
yield the same performance in consumption models where
consumers tend to be geographically co-located, as well
as in consumption models where consumers placement is
totally random.

Keywords: large-scale systems, adaptive replica place-
ment, multimedia streaming.

I. INTRODUCTION

In recent years, multimedia consumption over the
Internet has grown dramatically, in particular due to the
general trend consisting in moving multimedia content
from local disks to cloud-based storage on the Internet.
The expansion of audio and video streaming services,
such as iTunes Match,1 Google Play,2 or Netflix,3 tes-
tifies of this general trend. Streaming over the Internet
in a reliable and scalable manner is however difficult,
due to network bandwidth limits, as well as computer
memory and processing constraints. For this reason, a
recurring aspect of many streaming solutions is their
adaptivity to changes in the distributed environment in
which they execute. Most solutions proposed in peer-
to-peer networks for instance aim at dynamically rout-
ing blocks through the path with the highest amount of
resources, in order to avoid bottlenecks [1], [8], [13],
[16], [18]. These solutions work well when available
resources are sufficient to cope with the number of
consumers in the system. However, when resources at

1http://www.apple.com/itunes/itunes-match
2http://play.google.com
3http://www.netflix.com

the server fall short and no longer allow it to support
the growing number of consumers, routing solutions
alone cannot prevent bottlenecks.
Replication to the rescue. Here replication can be of
great value. To illustrate this claim, consider the exam-
ple of Figure 1(a), where a server is connected to the
network via low-bandwidth links.4 In this example, as
the number of consumers grows, a routing solution that
normally assumes the presence of high-bandwidth links
has no way to scale and at the same time to continue
delivering high quality streaming. The usual approach
here is to reduce the flow of data, by sending fewer or
smaller blocks, which in turn lowers the quality of the
multimedia content being streamed. Figure 1(b) then
shows the benefit of applying replication: by adding
replicas of the media at nodes directly connected to
the previous server, we increase the number of servers
and thus the number of streams that can be supported,
while keeping the same quality of service. In this very
simple example, replicated servers can now stream
more than five times what was possible for a single
server. We thus believe that replication is a promising
complementary approach to routing to further increase
scalability and reliability of multimedia streaming.
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Fig. 1. Replication: motivating example

Contribution and roadmap. In Sections II and III,
we formally define the system model and the problem
we consider in this paper, i.e., reliable and scalable
multimedia streaming. In Section IV, we then intro-
duce RESTREAM, a multimedia streaming algorithm

4Links are labeled with the maximum number of streams they can
support, reflecting the maximum bandwidth.



that relies on replication to support reliable and scal-
able streaming in resource-constrained environments.
Our algorithm is specifically targeted at video-on-
demand, where consumers can request streaming to
start and to end at any point in time (as opposed
to live streaming). Roughly speaking, our approach
consists in adapting replica placement to maximize
the number of consumers being served concurrently
under strict latency and bandwidth constraints, while
at the same time minimizing the number of replicas.
Contrary to many approaches targeted at streaming,
RESTREAM supports partitioning, i.e., replicas can be
located anywhere in the network and do not necessarily
form a connected graph. This makes it more reliable
and more resource-efficient. In Section V, we evaluate
the performance of RESTREAM and compare it with
our previous replication algorithm that does not support
partitioning [4]. Finally, Section VI discusses research
related to RESTREAM, while Section VII sketches our
ongoing and future work on multimedia streaming.

II. MODELING MULTIMEDIA STREAMING

We consider a distributed system composed of pro-
cesses (nodes) that communicate by message passing.
We model the system topology as a connected graph
G = (Π,Λ), where Π = {p1, p2, ..., pn} is a set of n
processes (|Π| = n) and Λ = {l1, l2, ...} ⊆ Π×Π is a
set of bidirectional communication links. That is, we
have V (G) = Π and E(G) = Λ. Nodes and links are
assumed to be unreliable. In this system, we consider
crash-recovery failure model. In this model, if a node
or a link crashes, it recovers after a while.
Overlay network. Regarding message passing,
we assume that (1) there are some tree overlay(s)
T1, T2, ..., Tn in the system, i.e.

⋃n
i=1 Ti covers the

system graph G, (2) each node is at least in the
membership of a tree Ti and (3) nodes only com-
municate via the links in T1, T2, ..., Tn. The set of
links present in Ti is noted ΛTi

, so we have ΛTi
⊆ Λ.

Links are typically implemented on top of TCP, which
is the case of most streaming systems today [12].
If li,j ∈ ΛTi and i 6= j, we say that pj is a
neighbor of pi in Ti. The set of neighbors of pi
in

⋃n
i=1 Ti is denoted by neighbors(pi). Note that

this paper does not address the question of how to
build tree overlay(s) T1, T2, ..., Tn. Rather, we assume
that T1, T2, ..., Tn were created by the underlying com-
munication layer based on a criteria that makes sense
for upper layers, i.e., geographical proximity between
nodes in our case. This architecture based on two-
layers is inspired by [20].
Multimedia replication. We define M as the multi-
media content to replicate and size(M) denotes its size
in number of blocks of some predefined size. There is
at least one seed in the network. The seed is a node
pi ∈ Π which always has a copy of media M . We

assume that each seed pi is the root of a tree overlay
Ti, and also the root of each tree overlay Ti is a seed
(pi). Therefore, the number of seeds in the network is
equal to the number of the tree overlays. In addition,
we assume that each Ti is a directed tree i.e., each
process p ∈ ΠTi

knows the direction to the respective
seed pi of Ti. In other words, in directed tree Ti each
node knows its parent.

Each process p ∈ Π can become a consumer.
Whenever p wishes to receive media content M as
a stream, it sends a request to the seed of a tree Ti
to which it belongs. This request is routed along the
path to the seed until it reaches the closest replica
which has a copy of media M . This replica eventually
accepts p’s request and starts streaming M block-by-
block to p. From then on, either p consumes the whole
multimedia content or it sends a request to the seed to
stop streaming M .

The replication scheme of media M , denoted R, is
then defined as a set of nodes holding a copy of M
(R ⊆ Π). Contrary to our previous work [4], the repli-
cation scheme of RESTREAM can be partitioned, i.e.,
it does not necessarily form a connected graph. We also
define R̄ as the set of nodes of the network which are
out of the replication scheme (R̄ = Π−R). Now, we
can divide the set of the neighbors of any node p to two
parts: neighbors inside the replication scheme, denoted
neighborsR(p), and neighbors outside the replication
scheme, denoted neighborsR̄(p). Similarly, in each
directed tree Ti, the set of the children of any node p
is composed of children inside the replication scheme,
denoted childrenRi

(p), and of children outside the
replication scheme, denoted childrenR̄i

(p).
In the following, we assume that the stream rate

required to receive multimedia content M without
lagging is of one block per time quantum ∆t. While
the specific size of a block and the specific duration
of ∆t actually depends on the codec and on the
network, we are only concerned with their ratio here.
In network terms, this ratio of one block per ∆t simply
expresses the bandwidth needed to stream M to one
consumer. So for simplicity, hereafter all bandwidths
are expressed in terms of the number of distinct streams
of M that can be supported.
Consumption models. When and how processes
become consumers, and how long they remain con-
sumers, is modeled by consumption models. We con-
sider three consumption models: (1) static consump-
tion, (2) random consumption and (3) geographically-
dependent consumption, or geo-dependent consump-
tion for short. These models are used in Section V,
when evaluating the performance of our adaptive repli-
cation approach.

When studying the convergence of our replication al-
gorithm towards an optimal use of resources, formally
defined in Section III, we assume a static consumption
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model. In such a model, some processes are randomly
chosen to be consumers at time t = 0 and remain
consumers forever. That is, after a consumer received
the whole media content M , it immediately starts
receiving the media M again from the beginning. The
goal of this assumption is to study the convergence of
our replication algorithm under stable conditions.

When studying the dynamic behavior of our al-
gorithm, we consider two models where consumers
change over time: random consumption and geo-
dependent consumption. In the random consumption
model, each process has a certain independent prob-
ability to be a consumer at any point in time. We
assign values to these probabilities in Section V, when
we evaluate the performance of our algorithm in the
random consumption model. In the geo-dependent con-
sumption model, the probability for a process to be a
consumer is no longer independent but a function of the
number of consumers in its neighborhood. This model
accounts for scenarios where the media consumption
is submitted to geographical constraints, typically time
zones, and only makes sense when overlay trees are
built based on geographical proximity.
Resource limitation. To account for resource limita-
tions, we assume that each node in the network has
a limited upload and download bandwidths. Contrary
to our previous work [4] and in order to account for
the bandwidth heterogeneity of the Internet, upload
and download bandwidths are not necessarily the same
for all nodes. Hereafter, we denote the upload and
download bandwidth capacity of node p as ∆u(p) and
∆d(p) respectively. As suggested earlier, we express
bandwidth in terms of the number of distinct streams
of M that can be supported. The upload and download
bandwidth actually used by node p is then denoted
bandwidthu(p) and bandwidthd(p) respectively. With
respect to directed tree Ti, the download bandwidth
of process p ∈ Ti is relevant when p is receiving
blocks from its parent in Ti and its upload bandwidth
is relevant when p is sending blocks to its children in
Ti.

When it comes to memory, on the contrary, we as-
sume no strict limits, since practically any multimedia
content can be cached onto stable storage thanks to
the ubiquity of high-density hard disks. In addition,
all computers today have enough RAM to perform
stream buffering while serving or consuming multime-
dia content.5 Nevertheless, as explained in next section,
our adaptive replication scheme aims at serving as
many consumers as possible in spite of bandwidth
constraints, while at the same time minimizing the
number of replicas.

5In practice, RESTREAM includes a straightforward buffering
scheme to smooth out small but significant bandwidth fluctuations
and thus avoid potential latency issues due to those fluctuations.

III. SCALABLE AND RELIABLE STREAMING

The main objective of our adaptive replication al-
gorithm is to support scalable multimedia streaming,
i.e., it should dynamically adapt the membership of
replication scheme R in order to serve as many con-
sumers as possible. In addition, our adaptive replication
algorithm should be reliable, i.e., it continues to work
even when nodes or links crash. Since we assume no
memory constraints, a naive solution consists in simply
replicating M everywhere. This is however a bad
idea, based on the following observation: although our
presentation focuses on a single multimedia stream, in
real settings several multimedia contents are managed
concurrently, each one being consumed by a subset of
all processes. So, in such settings, fully replicating all
multimedia contents is simply not possible.
Scalability as an optimization function. Intuitively,
our replication algorithm aims at dynamically adapting
replication scheme R in order to maximize the number
of consumers being concurrently served, without ex-
ceeding the bandwidth capacity and latency threshold,
while at the same time minimizing the size of R. When
considering dynamic consumption scenarios however,
such as the random consumption model and the geo-
dependent consumption model, the translation of this
intuitive optimization goal into a non-static optimiza-
tion function can be quite challenging.

For this reason, we formally define the optimization
goal pursued by our adaptive replication algorithm
for the static consumption model only. This allows
us to show that our algorithm converges towards an
optimal usage of resources, as soon as the consumption
stabilizes for long enough. As discussed in Section V,
this convergence property of our algorithm results in
significant performance gain for dynamic consumption
scenarios as well.

So, given a static consumption model, Expression 1
formally expresses the optimization problem we are
addressing. Expression 1(a) captures our optimization
objective, whereas Expressions 1(b) to 1(e) capture the
constraints under which an optimal solution must be
found. In Constraint 1(b), the term CM denotes the set
of processes that have requested to be a consumer at
some point or another, while the term SM denotes the
set of consumers that will eventually be served forever.
So, Constraint 1(b) simply states that eventually all
consumers must be concurrently served forever. Con-
straint 1(c) then states that the upload bandwidth usage
of each node p cannot exceed the upload bandwidth
capacity (∆u(p)) of node p, while Constraint 1(d)
states that the download bandwidth usage of each node
p cannot exceed the download bandwidth capacity
(∆d(p)) of p. Finally, Constraint 1(e) expresses that
the latency a consumer should expect before starting
to receive the multimedia content must not exceed
∆l. Maximum latency ∆l is expressed as the distance
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minimize |R| (a)
subject to ∀p ∈ CM : p ∈ SM (b)

∀p ∈ Π : bandwidthu(p) ≤ ∆u(p) (c)
∀p ∈ Π : bandwidthd(p) ≤ ∆d(p) (d)
∀p ∈ CM : distance(p,R) ≤ ∆l (e)

 (1)

in number of hops between the consumer and the
replication scheme R.
Scalability, reliability and decentralization. Expres-
sion 1 formalizes the optimization goal towards which
our replication algorithm should converge. Achieving
this goal is however insufficient for our algorithm to
actually scale: it needs in addition to be reliable and
decentralized in its operation.

Reliability is a key issue in multimedia streaming
concept: replicas should continue streaming to con-
sumers in the presence of nodes and links failure. In
terms of decentralization, every node p ∈ Π should be
able to locally adapt R based solely on what it observes
in its direct neighborhood. Purely local observations
typically consist of the number of consumers request-
ing to be served by p and the upload and download
bandwidth usage of node p itself.

IV. THE RESTREAM ALGORITHM

The RESTREAM algorithm essentially performs two
tasks: (1) serving consumers and (2) adapting replica-
tion scheme R. Sections IV-A and IV-B describe these
two basic tasks and how they are combined when R
needs to be adapted while serving consumers. Finally,
Section IV-C describes how RESTREAM algorithm
copes with node and link failures.

As the tasks performed by each seed and its tree
are completely independent of other seeds and their
respective trees, in this section for simplicity we focus
our presentation on one seed ps and the corresponding
overlay tree T rooted at ps. When multiple trees for
distinct media contents are used, the system shares
the upload and download bandwidth for streaming
distinct media contents. In this case, the usage rate
of upload and download bandwidth of different nodes
increases, which might trigger the expansion of repli-
cation scheme for each media, more often and sooner.

In this section, as suggested in Section II, we also
assume that each process p has access to the underlying
communication layer that created tree overlay T . This
communication layer is also responsible for routing
request messages (for media M ) from each consumer
to the closest replica in the path to the seed, and for
routing media blocks from that replica back to the
consumer.

In RESTREAM, a process p can be in one of four
possible states with respect to replication scheme R: in
R, joining R, leaving R, or out of R. Apart from the
obvious in and out, the joining state means that p is
already serving new open-stream requests but does not
yet hold a full copy of media M , whereas the leaving

state means that p is willing to leave R but has not
yet been cleared to do so. In addition to its own state,
each process p is also aware of the state of its direct
neighbors in T .

A. Serving consumers
Each node p in T can become a consumer and

ask for media M . To understand how new consumers
are served, let us consider the graph we obtain when
corresponding to each replica pr either in R or joining
R, we remove its link which connects pr to its parent
pp in T .6 As illustrated in Figure 2, we end up with a
forest F , where each replica either in R or joining R
is the root of exactly one subtree Ti, and each process
p either leaving R or out of R is contained in exactly
one subtree. So when it comes to streaming the content
of M , each replica either in R or joining R is simply
responsible for serving new consumers located in its
subtree Ti.

T1

T2
T3

node p either in R or joining R

node p either leaving R or out of R

Fig. 2. Serving consumers with RESTREAM

B. Adapting replication scheme R
When it comes to adapting R, the key questions

are when and how a process moves from one state to
another, i.e., under what condition a process joins R,
in which case we say R is expanding or growing, and
under what condition a replica leaves R, in which case
we say R is contracting or shrinking.
Expanding R. Intuitively, R expands as soon as a
risk of bandwidth shortage or locating too away from
R is detected by a node in the network. Because of the
decentralized nature of our algorithm, the expansion is
detected locally by a node in the network. Expanding
R can occur in one of the following situations.

Let p be some node in T and ph ∈ neighbors(p)
either leaving R or out of R, and let openStreams(p)
be the set of open streams routed via p. Node p,
upon the reception of an open-stream message via ph,
triggers the expansion of R towards ph if the upload
bandwidth shortage is detected at p and therefore
Expression 2 becomes true.

|openStreams(p)| ≥ ∆u(p)− |childrenR̄(p)| (2)

6The seed is the root of T and it does not have any parent.
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To trigger expansion, node p sends a join message
to ph, asking it to join R. Node p also sends the open-
stream message received via ph back to ph, because
node p does not have enough upload bandwidth to
serve this specific consumer.

Since the expansion condition is typically detected
upon the reception of an open-stream message by p,
the bandwidth headroom theoretically needs only to be
of one block for each child ph out of R. Indeed, as
soon as ph goes into joining state, it stores all blocks
it receives. In addition, it asks for the media from the
first block to fill in the gap. As a consequence, ph is
able to serve new open-stream messages.

Node p ∈ R̄, which did not detect an upload
bandwidth threshold upon the reception of an open-
stream message, adds this new request to the list of its
openStreams(p). Node p attempts an expansion of R
towards itself when it detects download bandwidth
shortage expressed in Expression 3.

|openStreams(p)| ≥ ∆d(p) (3)

To trigger expansion, node p goes in joining state,
and it accepts the received open-stream message.

Latency is another reason for expanding replication
scheme R. Let p be a consumer out of R. Upon
reception of the first block of media M , p checks how
far it is from the nearest replica in the path to the seed,
using information piggybacked on block messages. If
this distance is greater than a latency threshold ∆l

(Expression 4), consumer p joins R.

distance(p,R) > ∆l (4)

In all these situations, new replica pr in joining
mode continues to route media blocks to consumers
downstream of it, but now stores them locally. As soon
as pr can take over the streaming to a consumer, it does
so and asks its parent pp to stop sending blocks to that
specific consumer. If process pp is not in R, it will
forward this close-stream request further to its parent.

Finally, if replica pr in joining mode receives a
close-stream message from a consumer but it does not
serve this consumer, it stops routing media blocks to
that consumer but in order to speed up the procedure
of fulling in its copy of media M , it does not forward
this close-stream message further to its parent.
Contracting R. Intuitively, a contraction of R will
be attempted when the risk of bandwidth shortage
disappears at one of its replicas pr (excluding the
seed). That is, replica pr either in R or joining R
periodically attempts a contraction of R towards itself
when Expression 5 becomes true.

|openStreams(pr)| < ∆d(pr) (5)

If Expression 5 becomes true, replica pr switches
to leaving state. During the time that replica pr is

leaving, it does not accept new open-stream requests
and just forwards them towards the seed to its par-
ent. But, it should continue streaming to its current
consumers. As soon as it finished serving its current
consumers, it can leave R and change its state to out.
Finally, the partitioned nature of RESTREAM implies
that each replica can decide to leave R independently.
For this reason a problematic situation can occur i.e.,
all replicas might leave R, in which replication scheme
R would then remains empty. To avoid this special
situation, we assume that the seed cannot leave R and
all the nodes always know the direction to the seed.

Note that in practice, it might not be a good
idea to start contracting R immediately after detect-
ing the contraction condition. In some cases indeed,
RESTREAM might enter into a series of wasteful
contraction-expansion cycles. For this reason, when a
replica detects the contraction condition, it delays the
contraction attempts and rechecks the condition a while
later. Contraction will actually be triggered only if the
condition remains true after that delay. Note also that
with RESTREAM, if replica pr is also a consumer, it
is not allowed to leave R. This introduces a certain
level of fairness into the system: while replica pr is
a consumer and is being served by other replicas, it
cannot leave R and must serve other consumers.

C. Coping with failures
When it comes to reliability, we consider crash-

recovery failure model. When a node or link fails (per-
manently or temporarily), tree overlay T is partitioned
into two or more subtrees and the first step consists in
repairing it. This is the responsibility of the underlying
communication layer, which is also in charge of detect-
ing failures and notifying the upper layer, in our case
RESTREAM, of changes in T ’s structure. Among the
subtrees resulting from the failure, only one remains
connected to the seed.7 So repairing T simply consists
in reconnecting all subtrees disconnected from the seed
to the node immediately after the failed node or link, in
the direction of the seed. This is illustrated in Figure 3.

As soon as T is repaired, all nodes whose neigh-
borhood changed due to the failure are notified by
the underlying communication layer. Observe here that
whether the failure impacted some node p, or some
link l that connected node p in the direction of the
seed, all disconnected subtrees will be reconnected to
p’s parent (see Figure 3). So, if p was not a replica,
its parent simply resumes streaming to all consumers
in the reconnected subtrees, either as replica or simply
as routing node. If p was a replica however, its parent
must either take over its role, if it is a replica itself, or
send open-stream requests upstream towards to seed,

7We assume that seeds never fail; in practice, this means that they
are hosted by some robust server infrastructure, typically managed
by the stream provider, e.g., Netflix, Apple, etc.
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Fig. 3. Coping with failures

in order to resume streaming to consumers in the
reconnected subtrees. In addition, these changes might
of course trigger further expansion or contraction of R
in subsequent steps of the RESTREAM algorithm.

When a node recovers after a failure, it will be re-
connected as a leaf to one of its geographical neighbors
by the underlying communication layer. When a link
recovers, it will not be reused in the structure of current
recovered tree immediately but may be used later, when
recovering from further failures.

V. PERFORMANCE EVALUATION

In order to assess the performace of our RESTREAM
algorithm, we evaluate it against the three different
consumption models introduced in Section II, namely
static consumption, random consumption, and geo-
dependent consumption. For all of these models, we
consider only one seed in the network and perform
experiments with 100 to 1000 processes on a geo-
graphical tree network rooted at the seed, using the
Sinalgo simulation framework.8

For our simulations, we assume that the multimedia
content consists in a movie lasting two hours (7200
seconds) and that each block contains 10 seconds of
movie. Therefore, the entire movie is made of 720
blocks. The simulation proceeds in steps of ∆t duration
(see Section II): in each step at most one block is
transmitted to each consumer. We also assume when a
consumer starts to get the first block, it should receive
the entire media in a predefined period of time. If
during this period, it does not receive the whole media,
it asks to stop streaming. This assumption is necessary
to evaluate the performance of the algorithm precisely.
The simulation continues until all the consumers have
received the entire movie or have stopped watching it
by sending a request-leave message to R.

As in each step at most one block of the movie is
transmitted to each consumer, it takes at least 720 steps
to transmit the entire movie to a specific consumer. In
our simulation, we assume that the latency threshold
is 3 hops (∆l = 3 hops). In addition, to simplify the
interpretation of our results and make it comparable
with our previous work, we consider that processes
and links are reliable, but this time processes could

8http://dcg.ethz.ch/projects/sinalgo

have different download and upload bandwidth capac-
ities (∆d(p), ∆u(p)). Different download and upload
bandwidth capacities offered in our network are shown
in Table I. These bandwidth capacities are typically
offered by Internet Service Providers (ISPs) in Western
Europe. We assume that the seed has the maximum
download and upload bandwidth capacity.

down/up (kbits/sec) down/up (blocks/step)

5,000/500 5/1
25,000/2,500 25/3
50,000/5,000 50/5
100,000/7,000 100/7

TABLE I
AVAILABLE DOWNLOAD/UPLOAD BANDWIDTHS

A. Convergence to the optimal replication scheme
We now show that RESTREAM tends to converge

to an optimal replication scheme satisfying the opti-
mization problem of Equation 1, when facing a static
consumption model. An optimal replication scheme
is one containing the minimum number of replicas
required to transmit one block to each consumer in
each step.

To show this, 20% of the nodes of the network
are randomly selected to be static consumers, i.e.,
|CM | ∼= 0.2 × |Π|. The simulation starts with just
one replica (the seed) and after a while, the number
of replicas stabilizes. To show that the resulting repli-
cation scheme tends towards the optimal, our results
are compared to a centralized algorithm that finds the
optimal replication scheme for the same set of static
consumers. Indeed, Expression 1 is a rather simple
optimization problem when it comes to solve it in a
centralized manner.

Table II summarizes the results of comparing RE-
STREAM with the optimal centralized algorithm for
networks of different sizes. Each experiment was re-
peated 10 times, i.e., for each network size we created
10 different networks and executed both algorithms.
Although in these executions RESTREAM does not end
up with a replication scheme containing exactly the
same number of replicas as the centralized algorithm,
it always ends up with the number of replicas about
1.5 times of the replicas in the centralized algorithm.

To understand why RESTREAM algorithm does not
completely converge to optimal R, first note that ini-
tially, all consumers tend to receive the media from
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|Π| |Ropt| |R| |R|/|Ropt| steps to converge
100 8.9 14.4 1.62 1176.1
200 17.2 24.4 1.42 1373.2
300 25.1 37.6 1.50 1183.3
400 33.9 50.0 1.47 1180.8
500 40.5 61.0 1.51 1400.2
1000 80.5 115.8 1.44 1382.8
2000 160.4 232.5 1.47 1469.3

TABLE II
AVERAGED RESULTS FOR VARIOUS NETWORK SIZES

seed but, as bandwidth is limited, some intermediate
nodes will decide to join R. These new replicas then
start to serve other replicas and consumers. Among
these consumers, some will in turn detect a potential
latency problem and therefore decide to join R as well.

However, having any consumer with a latency prob-
lem become a replica is not the best choice to minimize
the size of R. Rather, consumers joining R for a
latency problem should be located as close as possible
to the seed, because they can serve more consumers
and therefore minimize the size of R. But for con-
sumers with latency problems to agree on who should
join R, we need some kind of agreement protocol,
which would then compromise the fully distributed
nature of RESTREAM.

Finally, in Table III we compare RESTREAM with
SCALESTREAM, an earlier replication algorithm we
proposed for streaming which does not support par-
titioning [4]. In comparison of these two algorithms it
is shown that as the number of nodes in the network
increases, the size of R in our previous algorithm
(SCALESTREAM) increases sharply, which is not the
case in RESTREAM algorithm. This benefit happens
because of the partition nature of our replication
scheme and this shows the scalability of RESTREAM
algorithm. The scalability of our algorithm is also
visible in the number of steps to converge to optimal R.
As it is shown in Table III, independent of the number
of nodes in the network, the replication scheme always
converges to optimal one in steps around 2 times of the
size of media M (in number of blocks).

SCALESTREAM RESTREAM
|Π| |R| steps |R| steps
100 24.4 262.4 14.4 1176.1
300 168.8 574.4 37.6 1183.3
500 318 861.1 61.0 1400.2

1000 724 1604.3 115.8 1382.8

TABLE III
COMPARISON OF RESULTS OBTAINED IN SCALESTREAM AND

RESTREAM ALGORITHMS

B. Dynamic consumption models
In order to evaluate the dynamic behavior of our

algorithm, we consider two models where consumers
change over time (random consumption and geo-
dependent consumption). For both models, in order to

evaluate our algorithm in a fair manner, our results
are compared to two types of static but disconnected
replication schemes named random replication scheme
and consumers-centric replication scheme. A random
replication scheme is a static and disconnected replica-
tion scheme in which replicas are selected randomly,
whereas a consumers-centric replication scheme is a
type of random replication scheme in which replicas
are chosen randomly among consumers.

These two static replication schemes are best effort:
when a replica receives a request from a consumer p, it
starts streaming to the consumer and sends one block
in each step to p. Each block is routed in the path to
the destination and it arrives at p if all the intermediate
nodes in this path have enough download and upload
bandwidth to route this block. Otherwise, the block is
dropped.
Geo-dependent consumption model. To implement
this consumption model, as explained earlier, we as-
sume that the geographical tree network is divided into
five time zones and that the number of nodes in all
these timezones is approximately equal. Each zone is
connected to its direct neighbor zones (each zone has
at most two direct neighbor zones).

Connected timezones have a one hour difference and
20% of the nodes are selected as eventual consumers
at the beginning of the simulation. Furthermore, we
assume that each consumer starts consuming the movie
stream between 7:45pm and 8:15pm in its timezone.9
Formaly, in one timezone after the other, eventual
consumers become actual consumers for 30 minutes
(180 steps), with gaussian distribution (µ = 8pm,
σ2 = ( 180

4 )2). We also assume that each node con-
sumes the movie at most once and that only half of
the consumers watch the movie until the end. That
is, after receiving half of the movie, consumers stop
watching it with probability 0.5 (by sending a request-
leave message to R).

In order to compare the performance of RESTREAM
with the two static replication schemes, we only
consider executions where the average memory cost
for all these three algorithms is roughly equal (the
average memory cost is the average number of replicas
across an execution). In the following, we compare
RESTREAM with the random and the consumers-
centric replication schemes in terms of bootstrap time
(latency) and average video quality for networks of
100, 200, 300, 400, 500, and 1000 nodes. Here again,
each experiment was repeated 10 times. The bootstrap
time shows the latency and it is the number of steps
that a consumer must wait from the time it sends its
open-stream request until it receives the first block of
the movie. The video quality is the percentage of the
number of blocks that are effectively received by a

9This is a typical video-on-demand scenario: people in a timezone
start watching some newly released movie at roughly the same time.
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consumer over the number of blocks that should be
received.

Figures 4(a) and 4(b) show our algorithm always
exhibits smaller average bootstrap time and more aver-
age video quality than two static replication schemes.
This advantage of RESTREAM grows as the number
of nodes in the network increases, which shows the
scalability of our approach.
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Fig. 4. Results in geo-dependent consumption model

Compared to our previous work, both RESTREAM
and SCALESTREAM reach good performance when
facing geo-dependent consumption. The good perfor-
mance of our previous system, in spite of its connected
nature, is due to the fact that open-stream requests
come in waves from one region after the other, as con-
sumers spread across timezones. Thus, its connected
replication scheme has enough time to expand towards
these regions, while contracting from other regions,
resulting on average in more video quality and in
shorter bootstrap time.
Random consumption model. Evaluating our al-
gorithm on random consumption model gives us a
measure to how adaptive RESTREAM is in a com-
pletely unpredictable streaming scenario. As for the
geo-dependent consumption model, 20% of the nodes
are selected as eventual consumers at the beginning
of the simulation. Then, for 2.5 hours (900 steps),
with gaussian distribution (µ = 8pm, σ2 = ( 900

4 )2),
eventual consumers become actual consumers but this
time they are selected purely randomly, as expressed
in Section II. Here also, actual consumers might stop
watching the movie with probability 0.5 after receiving
half of the blocks.

RESTREAM is again compared to the random and
the consumers-centric replication schemes in terms of
bootstrap time (latency) and average video quality, only
for executions where the average memory cost for all
these algorithms is roughly equal. Results are presented
in Figures 5(a) and 5(b) and show that RESTREAM
reaches almost the same results as in geo-dependent
consumption model, contrary to our previous system.

This achievement shows that although consumers
are selected completely randomly and thus end up all
over the network, the replication scheme R can quickly
adapt to this new situation. As a consequence, achiev-
ing the good performance in RESTREAM (whether in
geo-dependent or random consumption) is independent
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Fig. 5. Results in random consumption model

of the nature of consumption models and this good
achievement comes thus due to the partitioned nature
of the RESTREAM replication scheme. This aspect of
RESTREAM is quite precious in today’s globalization
of multimedia consumption over the Internet.

VI. RELATED WORKS

To support the growth of media streaming, re-
search efforts have mainly focused on routing algo-
rithms. Typically, a routing solution consists in build-
ing and maintaining an overlay through which the
stream blocks are routed. These solutions are known
as overlay-based solutions. Tree and mesh are two
widely studied overlay topologies in P2P networks. A
single tree is an acyclic graph that leads to loopless
routing. This simple routing scenario causes some of
the overlay-based solutions rely on a tree topology for
their routing process [13], [16], [2], [8], [17], [6], [9],
[21]. But tree-based data topology cannot fairly use the
network resources because the bandwidth of leaf peers
is not utilized in this topology [7].

To overcome this limitation, multiple tree-based data
topologies were proposed. CoopNet, SplitStream, and
MutualCast are examples of these systems [22], [8],
[14]. In CoopNet and SplitStream, content is parti-
tioned into multiple stripes, each distributed over a dif-
ferent tree. That is, the leaf peers of one tree are made
intermediate peers of another tree to construct more
efficient system that could potentially take advantage
of all resources in the P2P network [7].

In tree-based algorithms, routing is done globally,
while in mesh-based systems, delivery decisions are
made locally at each peer [7]. This property causes
that mesh-based systems are being widely deployed
in many popular P2P applications like Bit-Torrent10,
PPLive11 and UUSee12. Our RESTREAM algorithm is
also complementary to mesh-based systems.

These routing solutions work well when available
resources are sufficient to serve all the consumers in
the system. However, when resources at the multimedia
server fall short and no longer allow it to support the
growing number of consumers, routing solutions alone

10http://www.bittorrent.com
11http://www.pplive.com
12http://www.uusee.com
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cannot prevent bottlenecks. P2P caching and repli-
cation are solutions to cope with increasing number
of consumers in P2P networks [10], [23], [24], [5].
P2P caching and replication reduce origin server load,
network bandwidth usage, and also client-side latency.
These benefits lead to improve scalability, reliability
and performance of the system with lower cost [7].

In a replication solution, the replica placement de-
pends on some cost function to optimize. For ex-
ample, in [26] the replication scheme adapts to the
read-write pattern. In [3], the objective is to adapt
to the read-write pattern in unreliable environment.
The approach defined in [15], [19] also takes into
consideration storage costs and node capacity to serve
requests. In [11], the replication aims at balancing
load in terms of CPU and disk utilization in order
to increase the system throughput. In [25], the replica
placement strategy aims at minimizing the average read
and write latency and the bandwidth usage to enforce
consistency between replicas. In SCALESTREAM, the
replica placement strategy aims at bandwidth optimiza-
tion [4]. Similar to these previous replication solutions,
RESTREAM can be considered as a type of adaptive
replica placement that specifically aims at bandwidth
and latency optimization.

VII. CONCLUDING REMARKS

In this paper, we proposed RESTREAM, a scalable
and reliable algorithm based on replication to support
multimedia streaming. We illustrated its benefits by
first showing that it converges towards an optimal
replica placement in static consumption models and
by then showing that its partitioned nature helps to
cope with failures and to achieve good performance
in different types of dynamic consumption models. In
terms of reliability, we could of course go further:
for example, rather than fixing the latency threshold,
we could adapt it based on the reliability of nodes
and links along the path from the consumer to the
replication scheme. Our next steps will also consist
in investigating how underlying layer can be built to
maximize performance and reliability. In addition, we
are working on real implementation of RESTREAM to
test it in real streaming scenarios. To achieve this goal,
we are implementing an experimental testbed based on
RESTREAM on top of PlanetLab Europe.13
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