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Abstract—Deferred update replication is a well-known ap-
proach to building data management systems as it provides
both high availability and high performance. High availability
comes from the fact that any replica can execute client
transactions; the crash of one or more replicas does not
interrupt the system. High performance comes from the fact
that only one replica executes a transaction; the others must
only apply its updates. Since replicas execute transactions
concurrently, transaction execution is distributed across the
system. The main drawback of deferred update replication
is that update transactions scale poorly with the number of
replicas, although read-only transactions scale well. This paper
proposes an extension to the technique that improves the
scalability of update transactions. In addition to presenting
a novel protocol, we detail its implementation and provide an
extensive analysis of its performance.
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I. INTRODUCTION

Deferred update replication is a well-established approach
to fault-tolerant data management systems. The idea is
conceptually simple: a group of servers fully replicate the
database; to execute a transaction, a client chooses one server
and submits the transaction commands to this server [19].
During the execution of the transaction, there is no coordina-
tion among different servers. When the client issues a com-
mit request, the transaction starts termination: its updates
(and some meta data) are atomically broadcast to all servers.
Atomic broadcast ensures that all servers deliver the updates
in the same order and can certify the transaction in the
same way. Certification guarantees that the database remains
consistent despite the concurrent execution of transactions.
The transaction passes certification and commits in a server
only if it can be serialized with other committed transac-
tions; otherwise the transaction is aborted—essentially, the
technique relies on optimistic concurrency control [12].

Deferred update replication has two main characteris-
tics, which contribute to its performance. First, an update
transaction is executed by a single server; the other servers
only certify the transaction and apply its updates to their
database, should the transaction pass certification. Applying
a transaction’s updates is usually cheaper than executing the
transaction. Second, read-only transactions do not need to be
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certified. A replica can serialize a read-only transaction by
carefully synchronizing it locally (e.g., using a multiversion
database). Consequently, read-only transactions scale with
the number of replicas.

Several database replication protocols are based on de-
ferred update replication (e.g., [1], [11], [14], [17], [19]),
which can be explained by its performance advantages with
respect to other replication techniques, such as primary-
backup and state-machine replication. With state-machine
replication, every update transaction must be executed by
all servers [24]. Thus, adding servers does not increase the
throughput of update transactions; throughput is limited by
what one replica can execute. With primary-backup replica-
tion [29], the primary first executes update transactions and
then propagates their updates to the backups, which apply
them without re-executing the transactions; the throughput of
update transactions is limited by the capacity of the primary,
not by the number of replicas. Servers act as “primaries”
in deferred update replication, locally executing transactions
and then propagating their updates to the other servers.

Although deferred update replication performs better than
state-machine replication and primary-backup replication,
update transactions scale poorly with the number of replicas.
The reason is that even though applying transaction updates
is cheaper than executing the transactions, it must be done
by each replica for every committed transaction. Intuitively,
the problem is that while increasing the number of replicas
also increases the total number of transactions executed per
time unit, it does not reduce a replica’s load of certifying
transactions and applying their updates. Asymptotically, the
system throughput is limited by the number of transactions
atomic broadcast can order and a single replica can certify
and apply to its database per time unit.

This paper proposes Scalable Deferred Update Replication
(S-DUR), an extension to deferred update replication that
makes read-only transactions and some types of update
transactions scale with the number of servers. Our solution
is to divide the database into partitions, replicate each
partition among a group of servers, and orchestrate the
execution and termination of transactions across partitions.
Local transactions, those that read and write items within a
single partition, are handled as in traditional deferred update
replication. Global transactions, those that access items in
more than one partition, undergo a different execution and



termination procedure. During execution, a global transac-
tion has its read operations submitted to servers in different
partitions. During termination, partitions coordinate to en-
sure consistency using a two-phase commit-like protocol,
where each participant is a partition. Different than two-
phase commit [3], the termination of global transactions
is non-blocking since each partition is highly available.
Moreover, S-DUR is faithful to the original deferred update
replication approach in that read-only transactions, both
local and global, are serialized without certification.

We have implemented and evaluated the performance
of S-DUR under various conditions. The experiments re-
ported in the paper show that read-only transactions and
local update transactions scale linearly with the number of
servers. In workloads with global update transactions only,
S-DUR performs similarly to the original deferred update
replication. In workloads with a mix of local and global
transactions, S-DUR’s performance depends on the percent-
age of global transactions: with update transactions only, S-
DUR’s performance is at least as good as the performance
of deferred update replication; with read-only transactions
only, S-DUR compares to deferred update replication when
at most 20% of transactions are global and worse otherwise.

The remainder of the paper is structured as follows.
Section II presents our system model and definitions used
throughput the paper. Section III recalls the deferred update
replication approach in detail and discusses the scalabil-
ity of update transactions. Section IV introduces scalable
deferred update replication and argues for its correctness.
Section V describes our prototype and some optimizations.
Section VI evaluates the performance of the protocol under
different conditions. Section VII reviews related work and
Section VIII concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

We consider a system composed of an unbounded set C' =
{ec1,¢ca, ...} of client processes and a set S = {s1, ..., s, } of
database server processes. Processes communicate through
message passing and do not have access to a shared memory.
We assume the crash-stop failure model (e.g., no Byzantine
failures). A process, either client or server, that never crashes
is correct, otherwise it is faulty.

The system is asynchronous: there is no bound on mes-
sages delays and on relative process speeds. Processes com-
municate using either one-to-one or one-to-many communi-
cation. One-to-one communication uses primitives send(m)
and receive(m), where m is a message. Links are quasi-
reliable: if both the sender and the receiver are correct,
then every message sent is eventually received. One-to-many
communication relies on atomic broadcast, with primitives
abcast(m) and adeliver(m). Atomic broadcast ensures two
properties: (1) if message m is delivered by a process, then
every correct process eventually delivers m; and (2) no two

messages are delivered in different order by their receivers.!

The database is a set D = {x1, 29, ...} of data items. Each
data item z is a tuple (k, v, ts), where k is a key, v its value,
and ts its version—we assume a multiversion database. A
transaction is a sequence of read and write operations on
data items followed by a commit or an abort operation. We
represent a transaction ¢ as a tuple (id,rs,ws) where id is
a unique identifier for ¢, rs is the set of data items read
by t (readset(t)) and ws is the set of data items written
by t (writeset(t)). The set of items read or written by ¢ is
denoted by Items(t). The readset of ¢ contains the keys of
the items read by ¢; the writeset of ¢ contains both the keys
and the values of the items updated by t.

The isolation property is serializability: every concurrent
execution of committed transactions is equivalent to a serial
execution involving the same transactions [3].

III. DEFERRED UPDATE REPLICATION

In this section we review the deferred update replication
technique, explain how read-only transactions are serialized
without certification, and examine scalability issues.

A. The deferred update replication approach

In Deferred Update Replication (DUR), the lifetime of
a transaction is divided in two phases: (1) the execution
phase and (2) the termination phase. The execution phase
starts when the client issues the first transaction operation
and finishes when the client requests to commit or abort
the transaction, when the termination phase starts. The
termination phase finishes when the transaction is committed
or aborted.

Before starting a transaction ¢, a client c selects the replica
s that will execute ¢’s operations; other replicas will not be
involved in ¢’s execution. When s receives a read command
for z from c, it returns the value of x and its corresponding
version. The first read determines the database snapshot the
client will see upon executing other read operations for .
Write operations are locally buffered by c. It is only during
transaction termination that updates are propagated to the
servers.

In the termination phase, the client atomically broadcasts
t’s readset and writeset to all replicas. Upon delivering t’s
termination request, s certifies ¢. Certification ensures a
serializable execution; it essentially checks whether ¢’s read
operations have seen values that are still up-to-date when
t is certified. If ¢ passes certification, then s executes t’s
writes against the database and assigns each new value the
same version number k, reflecting the fact that ¢ is the k-th
committed transaction at s.

Algorithms 1 and 2 illustrate the technique for the client
and server, respectively. A read operation on item k starts
by updating transaction ¢’s readset (line 6, Algorithm 1) and

1Solving atomic broadcast requires additional assumptions [5], [9]. In
this paper we simply assume the existence of an atomic broadcast oracle.



Algorithm 1 Deferred update replication, client ¢’s code

Algorithm 2 Deferred update replication, server s’s code

1: begin(t):

2 trs<+ 0 {initialize readset}

3 WS+ 0 {initialize writeset}
4 tst+ L {initially transactions have no snapshot}

5: read(t, k):

6: tors<«trsU{k} {add key to readset}

7. if (k,x) € t.ws then {if key previously written...}

8: return v s.t. (k,v) € t.ws {return written value}

9: else {else, if key never written...}
10: send(read, k, t.st) to some s € S {send read request}
11: wait until receive(k, v, st) from s {wait for response}
12: if t.st = L then t.st < st {if first read, init snapshot}
13: return v {return value from server}
14: write(t, k,v):

15:  taws + tawsU {(k,v)} {add key to writeset}
16: commit(t):

17:  if t.ws = () then {if transaction is read-only...}
18: return commit {commit it right away}
19:  else {else, if it is an update...}
20: abcast(c, t) {abcast it for certification and wait outcome}
21: wait until receive(outcome) from s € S {ditto}
22: return outcome {return outcome}

then checking whether ¢ has previously updated k (line 7), in
which case this must be the value returned (line 8); otherwise
the client selects a server s to handle the request (line 10).
The client then waits for a response from s (line 11). If ¢
suspects that s crashed, it simply contacts another replica
(not shown for brevity). Upon the first read, ¢ updates ¢’s
snapshot (line 12), which will determine the version of future
reads performed by t¢. To perform a write as part of ¢,
the client simply adds item (k,v) to t.ws (lines 14-15).
The commit of a read-only transaction is local (lines 17
and 18). If ¢ is an update transaction, upon commit the
client atomically broadcasts ¢ to all servers and waits for
a response (lines 20-22).

Servers maintain variables SC and WS (lines 2-3, Algo-
rithm 2). SC has the latest snapshot created by server s. WS
is a vector, where entry WS[i] contains the items updated
by the i-th committed transaction at s. When s receives the
first read operation from a client, say, on key k, s returns the
value of £ in the latest snapshot (lines 4-7) together with
the snapshot id. The client will use this snapshot id when
executing future read operations. If s receives a read request
with a snapshot id, then it returns a value consistent with the
snapshot (line 6; see also next section). Upon delivering ¢
(line 8), s certifies it (line 9) and replies to ¢ (line 12). If the
outcome of certification is commit, s applies ¢’s updates to
the database (lines 10-11). Certification checks the existence
of some transaction u that (a) committed after ¢ received its
snapshot and (b) updated an item read by ¢. If u exists,
then ¢ must abort (lines 14—16). If ¢ passes certification, one
more snapshot is created (line 17) and ¢’s updated entries
are recorded for the following certification (lines 17-18).

: Initialization:
SC «+ 0
WSI[...] + 0

{initialize snapshot counter}
{initialize committed writesets}

1
2
3
4: when receive(read, k, st) from c

5. if st = 1 then st + SC {if first read, initialize snapshot}
6:  retrieve(k, v, st) from database  {most recent version < st}
7 send(k, v, st) to ¢ {return result to client}
8

: when adeliver(c, t)

9:  outcome < certify(t)  {outcome is either commit or abort}
10:  if outcome = commit then {if it passes certification...}
11: apply t.ws to database  {apply committed updates to db}
12:  send(outcome) to ¢ {return outcome to client}

13: function certify(t) {used in line 9}
14:  for i < t.st to SC do {for all concurrent transactions...}
15: if WS[i]Nt.rs# ( then {if some intersection...}
16: return abort {transaction must abort}
7. SC <+ SC+1 {here no intersection: one more snapshot}
18:  WS[SC|] « items(t.ws) {keep track of committed writeset}
19:  return commit {transaction must commit}

B. Read-only transactions

Database snapshots guarantee that all reads performed
by a transaction see a consistent view of the database.
Therefore, a read-only transaction ¢ is serialized according to
the version of the value ¢ received in its first read operation
and does not need certification. Future reads of a transaction
return versions consistent with the first read. A read on
key k is consistent with snapshot SC' if it returns the most
recent version of k equal to or smaller than SC (line 6,
Algorithm 2). This rule guarantees that between the version
returned for £ and SC no committed transaction w has
modified the value of k (otherwise, u’s value would be the
most recent one).

C. Scalability issues

While read-only transactions scale with the number of
replicas in deferred update replication, the same does not
hold for update transactions. There are two potential bottle-
necks in the termination protocol: (1) every update transac-
tion needs to be atomically broadcast; and (2) every server
needs to certify and apply the updates of every committing
transaction. Throughput is therefore bounded by the number
of transactions that can be atomically broadcast or by the
number of transactions that a server can execute, certify and
apply to the database.

If performance is determined by the execution and ter-
mination of transactions, then adding replicas to deferred
update replication may increase throughput, although the
expected gains are limited. Asymptotically, the throughput
of update transactions is determined by the number of
transactions that atomic broadcast can order and a single
replica can terminate per unit of time. This is an inherent
limitation of DUR, which we discuss in the next section.



IV. SCALABLE DEFERRED UPDATE REPLICATION

The idea of scalable deferred update replication is to
divide the database into P partitions and replicate each one
among a group of servers. In this section, we first show
a straightforward extension of deferred update replication
to account for partitioned data. We then justify the need for
more sophisticated solutions and present a complete and cor-
rect protocol. We also discuss read-only transactions, some
special cases, and conclude with a correctness argument for
the new protocol.

A. Additional definitions and assumptions

The set of servers that replicate partition p is denoted by
S, . For each key k, we denote partition (k) the partition to
which k belongs. Transaction ¢ is said to be local to partition
p if V(k,—) € Items(t) : partition(k) = p. If ¢ is not local
to any partition, then we say that ¢ is global. The set of
partitions that contain items read or written by ¢ is denoted
by partitions(t).

Hereafter, we assume that partitions do not become un-
available and that the atomic broadcast primitive within each
partition is live. Moreover, we assume that transactions do
not issue “blind writes”, that is, before writing an item z,
the transaction reads x. More precisely, for any transaction
t, writeset(t) C readset(t).

B. A straightforward (and incorrect) extension

Transactions that are local to a partition p can be handled
as in regular deferred update replication. Instead, global
transactions need special care to execute and terminate.

During the execution phase of a global transaction ft,
client ¢ submits each read operation of ¢ to the appropriate
partition.? Since each partition is implemented with deferred
update replication, reads issued to a single partition see a
consistent view of the database.

To request the commit of ¢, ¢ atomically broadcasts to
each partition p accessed by ¢, the subset of ¢’s readset and
writeset related to p, denoted readset(t), and writset(t),,
respectively. Client ¢ uses one broadcast operation per
partition. When a server s € S, delivers t’s readset(t),
and writeset(t),, s certifies ¢ against transactions delivered
before ¢ in partition p, as in traditional deferred update
replication, and then sends the outcome of certification,
the partition’s vote, to the servers in partitions(t). Since
certification within a partition is deterministic, every server
in S, will compute the same vote for ¢. Then, s waits for the
votes from partitions(t). If every partition votes to commit
t, then s applies t’s updates to the database and commits t;
otherwise s aborts t.

2This assumes that clients are aware of the partitioning scheme. Alterna-
tively, a client can connect to a single server and submit all its read requests
to this server, which will then route them to the appropriate partition.

We now show an execution of this protocol that violates
serializability. Recall that transactions are certified in the
order in which they are delivered.

Example. In the following example, partition P, stores
item x, and partition P, stores item y. Let ¢; and t; be
two global transactions such that ¢; reads x and then reads
and writes y; t; reads y and then reads and writes x (see
Figure 1). During termination, servers in P, first deliver ¢;’s
commit request and then ¢;’s commit request; servers in P,
deliver ¢; and then ¢;—this is possible because the termi-
nation of global transactions requires multiple invocations
of atomic broadcast, one per partition. Transaction ¢; passes
certification at P, because no transaction updated x since
t;’s snapshot; it passes certification at PP, because no other
transaction updates y at . Thus ¢; commits. By a similar
argument, ¢; also commits. However, their execution cannot
be serialized (i.e., in any serial execution involving ¢; and
t;, either ¢; must read ¢;’s writes or the other way round).

ti's snapshot at P, (ST)

j 's delivery at P, (SC)  j's commit at Py

f

[ . s, =y}
P | ! ws(t), = {y}

execution termination

Figure 1: Problematic execution.

C. A complete and correct protocol

The problem with the protocol presented in the previous
section stems from the fact that global transactions are not
delivered and certified in the same order across partitions,
something that cannot happen with the original deferred
update replication technique since transaction termination is
totally ordered by atomic broadcast.

In the examples shown before, certification at partition P,
determined that ¢; can be serialized after ¢; and certification
at partition P, determined that ¢; can be serialized after
t;, but this is obviously not enough. To solve the problem,
we use a stronger condition for certification, where each
partition checks whether ¢; and ¢; can be serialized in any
order with regards to one another (i.e., both ¢; before ¢; and
t; after t]‘).

More precisely, let o be the set of transactions that are
(a) delivered and certified before ¢; but (b) not included in
t;’s snapshot (i.e., because they committed after ¢; started).
At certification, servers in p check whether ¢;’s readset
intersects the writeset of any ¢; in o. If ¢; passes this test,



Algorithm 3 Scalable DUR, client ¢’s code

Algorithm 4 Scalable DUR, server s’s code in partition p

{initialize readset}
{initialize writeset}
{initialize vector of snapshot times}

1

2

3 .

4:  tst[l...P]+ [L..1]
5: read(t, k):

6: tors<trsU{k}

7. if (k,x) € t.ws then
8 return v s.t. (k,v) € t.ws

{add key to readset}
{if key previously written...}
{return written value}

9: else {else, if key never written...}
10: p < partition(k) {get the key’s partition}
11: send(read, k, t.st[p]) to s € S, {send read request}
12: wait until receive (k, v, st) from s {wait response}
13: if t.st[p]=_L then ¢.st[p] < st {if first read, init snapshot}
14: return v {return value from server}

15: write(t, k, v):

16:  taws + tawsU {(k,v)}
17: commit(t):

18:  for all p s.t. t.st[p] # L : abcast(c,t) to Sy

19:  wait until receive(outcome) from s € S

20:  return outcome {outcome is either commit or abort}

{add key to writeset}

then it can be serialized after every ¢; in o. To ensure that
t; can be serialized before transactions in o, servers in p
also check that ¢;’s writeset does not intersect the readsets
of transactions in o.

With the new certification test, in the execution of ex-
ample 1, both ¢; and ¢; will fail certification: ¢; will fail
certification at P, since its writeset intersects the ¢;’s readset;
t; will fail certification for the same reason at P,.

D. Algorithm in detail

Algorithm 3 shows the client for scalable deferred update
replication. To execute a read, the client first figures out
which partition stores the key to be read, and sends the
request to one of the servers in that partition (lines 10—-12).
Notice that the snapshot of a transaction is now an array of
snapshots, one for each partition (line 4). Upon receiving
the first response from the server, the client initializes its
snapshot time for the corresponding partition (line 13).
Subsequent requests to the same partition will include the
snapshot count so that subsequent reads to the same partition
observe a consistent view. At commit time (lines 18-20),
transactions are broadcast for certification to all partitions
concerned by the transaction (line 18). The client then waits
for the transaction’s outcome (line 21).

Algorithm 4 shows the server side. When local transaction
t is delivered, it is certified and appended to the queue
of PENDING transactions (lines 14-15). The order of the
transactions in queue PENDING follows the delivery order,
and it is the same on every server within the same partition.
Queue PENDING is consumed in order; when ¢ is at the head
of PENDING it can be finished (lines 20-22). To finish ¢,
we proceed as usual: if ¢ passes certification, it is applied
to the local database, thus generating a new snapshot, and

1: Initialization:

2 SC <+ 0 {snapshot counter}
3 PSC + 0 {pending snapshot counter}
4 RS[..]<+ 0 {committed readsets}
5 WS[L.]«0 {committed writesets}
6: VOTES + 0 {votes for global transactions}
7 PENDING <« () {transactions delivered but not completed}
8 DECIDED + () {ids of completed transactions}

9: when receive(read, k, st) from ¢
10:  if st=_ then st SC

11:  retrieve(k, v, st) from database
12:  send(k,v,st) to ¢

13: when adeliver(c, t)

14: v < certify(t) {compute the local outcome}
15:  PENDING «+ PENDING & (c, t,v)

16:  if t is global then {send vote if transaction is global}
17: send(t.id, p,v) to all servers in partitions(t)

18: when receive(tid, p, v) and tid ¢ DECIDED
190  VOTES + VOTES U (tid,p,v)

20: when head(PENDING) is local

21: (e, t,v) < head(PENDING)

22:  finish(c, t,v)

23: when head(PENDING)) is global

24: (e, t,v) < head(PENDING)

25 if Vk st t.stlk] £ L : (tid, k,x) € VOTES then

{if first read, init snapshot}
{most recent version < st}
{return result to client}

26: outcome — commit

27: if (t.id, x, abort) € VOTES then

28: outcome < abort

29: finish(c, t, outcome)

30: DECIDED <+ DECIDED U t.id

31: VOTES + {(i,p,v) € VOTES | i # t.id}

32: function finish(c, ¢, outcome) {used in lines 21, 28}
33:  if outcome = commit then {if transactions commits}
34: apply t.ws with version SC' to database

35: SC+SC+1 {expose snapshot to clients}
36:  send(outcome) to ¢ {return outcome to client}
37:  PENDING < PENDING © (c,t,*)

38: function certify () {used in line 13}
39:  for i + t.st[p] to PSC do {for all concurrent transactions}
40: if WS[ijNt.rs#0 or {if some intersection...}
41: (t is global and RS[i] Nt.ws # () then

42: return abort

43:  PSC «+ PSC +1  {no intersection, next pending snapshot}
44:  RS[PSC] « items(t.rs) {keep track of readset}
45:  WS[PSC] < items(t.ws) {keep track of writeset}
46:  return commit

the outcome of ¢ is sent to the client (lines 32-37). As
opposed to Algorithm 2, we now keep track of two separate
counters: SC' and PSC. PSC is incremented whenever
some transaction is certified and enters the PENDING queue.
SC' is incremented whenever a transaction is taken from the
PENDING queue and is applied to the database. Therefore,
counter SC is incremented only when a transaction has
finished and created a new snapshot to be exposed to clients.

The delivery of a global transaction ¢ requires additional
steps: it is certified (line 14), appended to the PENDING



queue (line 15), and the outcome of the local certification test
is exchanged between servers in different partitions (lines
16-17). Servers keep track of the received votes in a set
called VOTES (lines 18-19). Global transaction ¢ can be
finished when it is at the head of the PENDING queue (line
23), and enough votes have been received (lines 24-25). For
the algorithm to be correct, it is sufficient to wait for only
one vote from every partition involved, as every server in
the partition produces the same vote for a given transaction.
The final outcome for global transaction ¢ is decided as
follows: if every partition voted for committing ¢, then it
is committed, otherwise it is aborted (lines 26-28).

E. Certification-less read-only transactions

In the protocol described so far, both read-only and update
transactions must be certified to ensure that they can be
serialized. Certifying read-only transactions is a serious
disadvantage with respect to the original deferred update
replication approach, where read-only transactions are se-
rialized without certification. In the following we describe
how global transactions can build a consistent global view
of the database. Consequently, read-only transactions do not
need to be certified (see [25] for more details).

Assume that a global transaction ¢ reads from snapshots
SC, and SC,, from partitions P, and P,, respectively.
There are two reasons why ¢ may see an inconsistent view of
the database: (a) SC'; contains at least one global transaction
t; that is not included in SC,. (b) Both SC, and SC,
contain the same committed global transactions, but ¢ sees
transactions ¢; and t; in different orders in SC, and SC,,.

To address case (a), servers build a vector of snapshot
identifiers, one per partition, which together form a consis-
tent global view of the database. When ¢ issues the first read,
instead of receiving the SC' for the partition, it receives a
vector of SC's, one SC per partition. This vector corresponds
to a set of consistent snapshots, a global snapshot, and is
used by ¢ for all future read operations.

A server builds the vector of snapshot ids as follows.
The vector is initially filled with zeros, as the first global
snapshot contains no global transactions. When a global
transaction ¢ commits, servers communicate their local SC
create by t’s commit—exchanging the SC's can be done by
a background task and piggybacked in vote messages of
global transactions. With the SC' for each committed global
transaction, a server can update the vector of SCs with
a more recent global snapshot: When the server observes
that the same set of transactions has been committed in all
partitions, the vector is updated with the corresponding SC's.

With regards to case (b), we note that ¢ can only tell
the order of ¢; and t; in a snapshot if they write the same
data item in the snapshot. It follows from Algorithm 4
that if two concurrent global transactions ¢; and t; write
a common data item, then at most one of them can commit,
and consequently case (b) cannot happen.

F. Handling partially terminated transactions

With scalable deferred update replication, a client may
fail while executing the various atomic broadcasts involved
in the termination of a global transaction ¢. Since atomicity
is guaranteed within a partition only, it may happen that
some partitions deliver ¢’s termination request while others
do not. A partition Py that delivers the request will certify
t, send its vote to the other partitions involved in ¢, and wait
for votes from the other partitions to decide on ¢’s outcome.
Obviously, a partition P; that did not deliver ¢’s termination
request will never send its vote to the other partitions and ¢
will remain partially terminated. Local transactions do not
suffer from the same problem since atomic broadcast ensures
that within a partition either a local transaction is delivered
by all servers or by no server.

To handle partially terminated transactions, a server s
in P, that does not receive P,’s vote after a certain time
suspects that servers in P; did not deliver ¢’s termination
request. In this case, s broadcasts a termination request for
t on behalf of c. Since s does not have the readset and
writeset of ¢ for P, it broadcasts a request to abort ¢ at
P,. Notice that s may unjustifiably suspect that servers in
P, did not deliver ¢’s termination request. However, atomic
broadcast ensures that ¢’s message requesting ¢’s termination
and s’s message requesting t’s abort are delivered by all
servers in P in the same order. Servers in P; process the
first message they deliver for ¢: ¢’s message will lead to the
certification of ¢ at P; s’s message will result in an abort
vote. Whatever message is delivered first, no transaction will
remain partially terminated.

G. Correctness

In the following, we argue that any execution of S-DUR is
serializable, that is, it is equivalent to a sequential execution
involving the same transactions.

We start by introducing three definitions involving trans-
actions ?; and t;.

Definition 1. t; is serialized before t; if there is a serial
execution in which ¢; appears before ;.

Definition 2. t; and t; intersect if and only if readset(t;) N
writeset(t;) # 0.

Definition 3. t; and t; are concurrent at partition P, if they
overlap in time at P,. If ¢; and ¢; are not concurrent at P,
then either ¢; precedes t; or t; precedes t; at P,.

Traditional DUR ensures that at each partition, local
transactions are serializable. From the certification test, the
delivery order of transactions in a partition defines one serial
execution equivalent to the real one. Since no two local
transactions from different partitions intersect, any serial
execution that (a) is a permutation of all transactions and
(b) does not violate the delivery order of each partition
is equivalent to the actual execution, and therefore every
execution of local transactions only is serializable.



With global transactions, however, the above does not
hold since global transactions may intersect with local
transactions in multiple partitions. In order to show that
S-DUR guarantees serializable executions with both local
and global transactions, we introduce a few facts about the
algorithm. Hereafter, ST and SC", are the snapshot and the
delivery order of transaction ¢; at partition P,, respectively.

Fact 1. If t; passes certification at P, then it can be
serialized anywhere after ST, up to SC,.

To see why, note that ¢; is certified against each ¢; that
committed after ¢; started (otherwise it would be in ¢;’s
snapshot SC;.) and finished before t; (otherwise ¢; would
not know about ¢;). From the certification test, ¢; and ¢; do
not intersect, and thus ¢; can be serialized before or after ¢;.

Fact 2. If t; and t; are concurrent at Py, then they can be
serialized in any order.

Fact 2 is a consequence of Fact 1. Since t; and t; are
concurrent at P,, they overlap in time, and it must be that
ST < SC! and ST! < SC7. Without loss of generality,
assume that SC? < SC’. Obviously, ¢; can be serialized
before t;. Transaction ¢; can be serialized before ¢; since,
from Fact 1, ¢; can be serialized at S Cfc, t; can be serialized
at ST!, and ST < SCY.

Fact 3. The lifespan of a committed transaction in every two
partitions in which it executes must overlap in time.

This follows from the fact that a transaction only com-
mits in a partition after receiving the votes from all other
partitions in which it executes.

We now proceed with a case analysis and show that for
any interleaving involving global transactions ¢; and ;, there
is a serial execution that is equivalent to the real execution,
and therefore S-DUR is serializable (see Figure 2).

e Case 1. t; precedes t; in all partitions. Then trivially
t; can be serialized before ¢;.

e Case 2. t; precedes t; in partition P, and they are
concurrent in some partition P,. From Fact 2, ¢; can
be serialized before t; in P,.

e Case 3. t; and t; are concurrent in all partitions. Then,
from Fact 2, they can be serialized in any order at every
partition.

e Case 4. t; precedes t; in partition P, and t; precedes
t; in partition P,. This case is impossible from Fact 3.

H. Discussion

Local and global read-only transactions and local update
transactions scale linearly in S-DUR with the number of
servers. The performance of global transactions depends
on how many partitions transactions access. In general,
when running global transactions only, we can expect the
system to be outperformed by the traditional deferred update
replication protocol—although as we show in Section VI,
the difference is very small. Therefore, overall performance

will depend on a partitioning of the database that reduces the
number of global transactions and the number of partitions
accessed by global transactions.

With respect to deferred update replication, our certifica-
tion condition introduces additional aborts in the termination
of global update transactions. Transaction termination in
DUR relies on total order: any two conflicting transactions
t; and t; are delivered and certified in the same order in
every server. Thus, it is sufficient to abort one transaction
to solve the conflict. Since in S-DUR ¢; and ?; can be
certified in any order, to avoid inconsistencies, we must be
conservative and abort both transactions. This is similar to
deferred update replication algorithms that rely on atomic
commit to terminate transactions [18].

V. IMPLEMENTATION AND OPTIMIZATIONS

We use Ring Paxos [16] as our atomic broadcast primitive.
There is one instance of Ring Paxos per partition. Servers
log delivered values on disk, as part of the atomic broadcast
execution. Therefore, the committed state of a server can
be recovered from the log. Our prototype differs from
Algorithm 4 in the following aspects:

« Each client connects to a single server only and submits
all its read requests to this server. When the server
receives a request for a key k that is not stored locally,
the server routes it to a server in the partition that stores
k.

o Our implementation reduces the number of vote mes-
sages exchanged for global transactions. Only one
designated replica in a partition sends vote messages.
If the other replicas suspect the failure of the assigned
replica, they also send their votes and choose another
replica as responsible for propagating the partition’s
votes.

« We use bloom filters to efficiently check for inter-
sections between transaction readsets and writesets.
Every server needs to keep writesets of both local
and global transactions that executed in the past. The
implementation keeps track of only the past K writeset
bloom filters, where K is a configurable parameter of
the system.?

o The implementation broadcasts transactions in small
batches. This is essentially the well-known group com-
mit optimization in centralized databases. In the case of
DUR and S-DUR, it amortizes the cost of the atomic
broadcast primitive over several transactions.

VI. PERFORMANCE EVALUATION

In this section we assess the performance of scalable
deferred update replication under different workloads. We

3There are two more advantages in using bloom filters: (1) bloom filters
have negligible memory requirements; and (2) they allow us to send just
the hashes of the readset when broadcasting a transaction, thus reducing
network bandwidth. However, using bloom filters results in a small number
of transactions aborted due to false positives.
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Figure 2: Interleaved executions of transactions (Cases 1-3 are possible under S-DUR but not Case 4).

look into throughput, latency and abort rate of S-DUR and
compare them to standard DUR.

A. Setup and benchmarks

We ran the experiments in a cluster of Dell SC1435
servers equipped with two dual-core AMD-Opteron 2.0 GHz
processors and 4 GB of main memory, and interconnected
through an HP ProCurve2900-48G Gigabit Ethernet switch.
Replicas are attached to a 73 GB 15krpm SAS hard-disk
and perform asynchronous writes.

We evaluated the performance of S-DUR using four
different workloads, which we summarize in Table I. Unless
stated otherwise, we use three servers per partition, which
means there are a total of three replicas for each data item.
Clients were evenly distributed across servers and ran on
separate machines. Global transactions access items stored
in two different partitions.

Reads  Writes Key size  Value size DB size
Type (ops) (ops) (bytes) (bytes) (items/partition)
A 4 4 4 4 M
B 2 2 4 1K IM
C 8 0 4 4 3M
D 4 0 4 1K IM

Table I: Workload types - Varying number of read and write
operations per transaction (ops), and key and value sizes
(bytes).

B. Throughput

In Figure 3 we show the normalized throughput of S-
DUR while varying the percentage of global transactions.
Throughput is normalized over the performance of standard
DUR with three replicas. We repeated the experiment for
2, 4 and 8 partitions, under all workloads. Shaded areas in
Figure 3 correspond to setups in which the protocol scales
linearly with the number of partitions (or replicas, for DUR).

For comparison, we also show deferred update replication
with 6, 12 and 24 replicas (last three columns in the graphs).
The experiments confirm that update transactions in DUR
do not scale as replicas are added to the system. In fact,
increasing the number of replicas resulted in almost no
performance improvement for update transactions in DUR.

Under update transactions (workload types A and B),
S-DUR’s throughput scales linearly with the number of
partitions when all transactions are local. For instance, with
workload A and 0% of global transactions, doubling the
number of partitions also doubles the total throughput. The
performance of S-DUR degrades as the percentage of global
transactions increases. This is due to the additional cost of
exchanging votes and to the fact that global transactions
slow down local transactions (i.e., if a local transaction ¢; is
delivered after a global transaction ¢;, then ¢; will terminate
after ¢; terminates). However, with 10% or less global
update transactions, S-DUR in a configuration with eight
partitions (i.e., 24 nodes) can execute four times more update
transactions that DUR with the same number of nodes. With
100% of global transactions, S-DUR performs slightly worse
than DUR in most cases, and better in one scenario (8
partitions in workload A). The break-even point is between
40% and 60% of global transactions, in which case DUR
and S-DUR execute the same number of transactions per
time unit in all our setups.

We now consider read-only transactions (workload types
C and D). As opposed to update transactions, we observe
that in all configurations read-only transactions scale linearly
with the number of partitions, both in DUR and in S-
DUR. With local transactions only, DUR and S-DUR have
almost identical performance. S-DUR’s throughput degrades
as the percentage of global transactions increases. This is a
limitation of our implementation as requests not stored by
a server are routed to the appropriate server. Consequently,
for global read-only transactions, read operations for keys
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replicated in a different partition require one more round
trip. In fact, workload type C degrades more quickly than
type D because transactions in workload D perform fewer
read operations (even if workload B reads larger values).

C. Latency

Figure 4 shows the latency for the experiments reported
in the previous section (global and local transactions com-
bined). For workload type A, all S-DUR configurations show
similar latency, in most cases a few milliseconds higher than
DUR. Latency values for workload type B present more vari-
ation, although they tend to increase with the percentage of
global transactions. Latency of global read-only transactions
in S-DUR, for both workloads, is consistently higher than
in traditional DUR. This is not surprising since global read-
only transactions involve communication among partitions,
which is not the case with DUR where the database is fully
replicated in each replica. This difference tends to decrease
for larger data items (workload D).

Figure 5 compares the latency of global transactions with
the latency of local transactions. In all cases, global transac-
tions are 2 to 4 milliseconds slower than local transactions.

This is due to the extra communication needed to terminate
global transactions.

D. Abort rate

Figure 6 reports the normalized abort rates of update
transaction (read-only transactions never abort). For all
configurations, we observed (a) less than 1% of aborts and
(b) fewer aborts in workload type B than in workload type
A since type B transactions perform fewer operations.

In general, aborts are influenced by a combination of two
factors: decreasing the number of global transactions results
in higher throughput and thus more aborts; increasing the
number of global transactions tends to augment aborts since
certification of global transactions is more restrictive.

With local transactions, abort rate remains constant with
the number of partitions, even though more partitions ac-
commodate higher throughput. This happens because the
database grows proportionally to the number of partitions.
With global transactions, aborts tend to increase with the
number of partitions since the throughput of each partition
is a fraction of the throughput of DUR and thus there is less
contention within partitions.



VII. RELATED WORK

A number of protocols for deferred update replication
where servers keep a full copy of the database have been
proposed (e.g., [1], [11], [14], [17], [19]). As explained in
Section III-C, in the case of full database replication, the
scalability of update transactions is inherently limited by
the number of transactions that can be ordered, and by the
number of transactions that can be certified and applied to
the local database at each site.

Some protocols provide partial replication (e.g., [22], [26],
[27]) to improve the performance of deferred update replica-
tion. This alleviates the scalability problem in that only the
subset of servers addressed by a transaction applies updates
to their local database. However, these protocols require
transactions to be atomically broadcast to all participants.
When delivering a transaction, a server may discard those
transactions that do not read or write items that are replicated
locally.

Alternatively, some protocols implement partial database
replication using atomic multicast primitives (e.g., [10],
[23]). Fritzke et al. [10] describe a protocol where each
read operation of a transaction is multicast to all concerned
partitions, and write operations are batched and multicast
at commit time to the partitions concerned by the trans-
action. P-Store [23] implements deferred update replication
with optimizations for wide-area networks. Upon commit,
a transaction is multicast to the partitions containing items
read or written by the transaction; partitions certify the
transaction and exchange their votes, similarly to S-DUR.
On the one hand, multicasting a transaction to all involved
partitions has the advantage of ordering certification across
partitions and aborting fewer transactions (e.g., it would
avoid the problematic execution depicted in Figure 1). On
the other hand, genuine atomic multicast is more expensive
than atomic broadcast in terms of communication steps [21],
and thus transactions take longer to be certified.

Many scalable storage and transactional systems have
been proposed recently. Some of these systems resemble
our implementation of scalable deferred update replication
in that they expose a similar interface to clients, based
on read and write (i.e., get and put) operations. Some
storage systems (e.g., [8], [30], [4]) guarantee some form of
relaxed consistency, eventual consistency, where operations
are never aborted but isolation is not guaranteed. Eventual
consistency allows replicas to diverge in the case of network
partitions, with the advantage that the system is always
available. However, clients are exposed to conflicts and rec-
onciliation must be handled at the application level. COPS
[15] is a wide-area storage system that ensures a stronger
version of causal consistency, which in addition to ordering
causally related write operations also orders writes on the
same data items. Walter [28] offers an isolation property
called Parallel Snapshot Isolation (PSI) for databases repli-

cated across multiple data centers. PSI guarantees snapshot
isolation and total order of updates within a site, but only
causal ordering across data centers. S-DUR also partitions
the database to leverage the capacity of independent clus-
ters to increase throughput, and enforces a global total
order on the transactions that update multiple partitions.
However, S-DUR overall provides stronger guarantees (i.e.,
serializability) than Walter. Similarly to Walter, S-DUR also
uses a vector of timestamps to build global snapshots. The
vectors are built in different ways though, since in S-DUR
transactions always see a serializable committed state of the
database, while in Walter transactions may see committed
transactions in different orders.

Differently from previous works, Sinfonia [2] offers
stronger guarantees by means of minitransactions on un-
structured data. Similarly to S-DUR, minitransactions are
certified upon commit. Differently from S-DUR, both update
and read-only transactions must be certified in Sinfonia, and
therefore can abort. Read-only transactions do not abort in
S-DUR.

Google’s Bigtable [6] and Yahoo’s Pnuts [7] are dis-
tributed databases that offer a simple relational model (e.g.,
no joins). Bigtable supports very large tables and copes
with workloads that range from throughput-oriented batch
processing to latency-sensitive applications. Pnuts provides
aricher relational model than Bigtable: it supports high-level
constructs such as range queries with predicates, secondary
indexes, materialized views, and the ability to create multiple
tables. However, none of these databases offer full transac-
tional support.

Rao et al. [20] proposed a storage system similar to the
approach presented here in that it also uses several instances
of Paxos [13] to achieve scalability. Differently than S-DUR,
however, it does not support transactions across multiple
Paxos instances.

VIII. CONCLUSION

This paper proposes an extension of the deferred update
replication approach. Deferred update replication is imple-
mented by several database protocols due to its performance
advantages, namely, good throughput in the presence of
update transactions and scalability under read-only trans-
actions. Scalable Deferred Update Replication, the paper’s
main contribution, makes the original approach scale under
both read-only transactions and local update transactions.
Under mixed workloads, with global and local update trans-
actions, system throughput depends on the percentage of
global transactions. In the worst case (i.e., 100% of global
update transactions), performance is similar to the traditional
deferred update replication.
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