
ScaleStream – An Adaptive Replication
Algorithm for Scalable Multimedia Streaming

Shabnam Ataee* Benoı̂t Garbinato* Mouna Allani† Fernando Pedone‡

*University of Lausanne †Imperial College London ‡University of Lugano
{shabnam.ataee,benoit.garbinato}@unil.ch m.allani@imperial.ac.uk fernando.pedone@usi.ch

Abstract—In this paper, we propose ScaleStream, a
new algorithm to support scalable multimedia streaming
in peer-to-peer networks, under strict resources con-
straints. With the growth of multimedia consumption
over the Internet, achieving scalability in a resource-
constrained environment is indeed becoming a critical
requirement. Intuitively, our approach consists in dynam-
ically replicating the multimedia content being streamed,
based on bandwidth and memory constraints. Our repli-
cation management strategy maximizes the number of
consumers being served concurrently, while minimizing
memory usage, under strict bandwidth constraints.

Keywords: large-scale systems, adaptive replica place-
ment, multimedia streaming.

I. INTRODUCTION

Multimedia streaming is emerging as one of the
largest sink of network resources. The expansion of
video-on-demand services, such as Netflix [14], offers
a good example of this growth. Delivering multimedia
content in a scalable manner is a challenge for any
streaming protocol because networks have inherent
bandwidth limits and computers have inherent mem-
ory and processing constraints. To ensure scalable
streaming, protocols thus have to consider these con-
straints. In peer-to-peer networks, most of the proposed
solutions focus on routing to ensure scalability and
adaptiveness [1], [5], [8], [9].

In scenarios where resources at the media server
are not sufficient to support a large set of consumers
however, no routing solution can prevent bottleneck
issues. When it comes to replication, a considerable
amount of research has been published in the field of
data replication, a well-known approach to increase
availability and ensure scalability [7], [11], [16]. Tra-
ditionally however, replication-based approaches have
mainly focused on read/write accesses, whereas multi-
media streaming implies a continuous flow of data from
servers to consumers. We advocate that replication is a
promising complementary approach to routing to fur-
ther increase the scalability of multimedia streaming.
Contributions. After formally defining our model
and the scalable multimedia streaming problem in

Sections II and III, we propose our novel replication
solution in Section IV, followed by its performance
evaluation in Section V. Our approach is targeted
at video-on-demand streaming, where consumers can
request streaming to start and to end at any point in
time (contrary to live streaming). The adaptiveness of
our approach lies in the fact that the replication scheme
will expand and contract according to consumer needs
and to resources constraints. It is scalable in the
sense that it maximizes the number of consumers
being served, while minimizing memory usage and
taking bandwidth constraints into account. Finally, our
approach is decentralized because it relies on purely
local strategies and hence induces a reasonable over-
head in managing the replication scheme. We describe
researches related to ours in Section VI and sketch
future work in Section VII.

II. MODELING MULTIMEDIA STREAMING

We consider a distributed system composed of pro-
cesses (nodes) that communicate by message passing.
We model the system topology as a connected graph
G = (Π,Λ), where Π = {p1, p2, ..., pn} is a set of n
processes (|Π| = n) and Λ = {l1, l2, ...} ⊆ Π × Π
is a set of bidirectional reliable communication links.
That is, we have V (G) = Π and E(G) = Λ. A link
from pi to pj is denoted by li,j . We define a path
as a combination of links and intermediate processes
through which a message transits from a source node
to a destination node.
Overlay tree. We assume that (1) some tree overlay
T covers the system graph G and (2) nodes only
communicate via the links in T . Links are assumed to
be reliable, i.e., they are typically implemented on top
of TCP, which is the case of most streaming systems
today. The set of links present in T is noted ΛT ,
so we have ΛT ⊆ Λ. If li,j ∈ ΛT and i 6= j, we
say that pj is a neighbor of pi. The set of neighbors
of pi in T is denoted by neighbors(pi). We then
denote path(p, q) the subset of links of ΛT connecting
processes p and q. We assume that T is created
by some underlying communication layer based on a

criteria that makes sense for upper layers, as suggested
in [12], i.e., geographical proximity between nodes in
our case.
Multimedia replication. We define M as the mul-
timedia content to replicate and size(M) denotes its
size in number of blocks of some predefined size. The
replication scheme of media M , denoted R, is then
a subtree of T composed of nodes holding a copy
of M , which implies that the replication scheme is
always connected. A process p ∈ R is sometimes
called a replica. In addition, we define R̄ as the part
of the network that is outside the replication scheme
(R̄ = T−R). The set of the neighbors of any node p is
composed of neighbors inside the replication scheme,
denoted neighborsR(p), and of neighbors outside the
replication scheme, denoted neighborsR̄(p). Further-
more, the subset of the nodes in R that have at least
one neighbor outside R is denoted by BR (for Border),
while the subset of the nodes in R that has only one
neighbor inside R is denoted LR (for Leaf).

Whenever some process p ∈ R̄ wishes to receive
media content M as a stream, it sends a request to the
closest replica in R; if process p is in R, it simply reads
its local copy of M . Since processes communicate
exclusively through T , process p only needs to know
to which of its neighbors it must send its request. The
latter is either in R or it forwards the request towards
the replication scheme via one of its neighbors. So, the
closest replica eventually receives p’s request and can
start streaming M block-by-block to p. From then on,
either p consumes the whole multimedia content or it
sends a request stop streaming M .

In the following, we assume that the stream rate
required to receive multimedia content M without
lagging is of one block per time quantum ∆t. While
the specific size of a block and the specific duration of
∆t actually depends on the codec and on the network,
we are only concerned with their ratio here. In network
terms, this ratio of one block per ∆t simply expresses
the bandwidth needed to stream M to one consumer.
So we express bandwidth in terms of the number of
distinct streams of M that can be supported.
Consumption models. When and how processes
become consumers, and how long they remain con-
sumers, is modeled by a consumption model. In
this paper, we consider three consumption models:
(1) static consumption, (2) random consumption and
(3) geographically-dependent consumption, or geo-
dependent consumption for short. These models are
used in Section V for our performance evaluation.

When studying the convergence of our replication al-
gorithm towards an optimal use of resources, formally
defined in Section III, we assume a static consumption
model. In such a model, some processes are randomly

chosen to be consumers at time t = 0 and remain
consumers forever. That is, after a consumer received
the last block of M , it immediately receives the first
block again, and all subsequent blocks of M . The goal
of this assumption is to study the convergence of our
replication algorithm under stable conditions.

When studying the dynamic behavior of our algo-
rithm, we consider two dynamic consumption models:
random consumption and geo-dependent consumption.
In the random consumption model, each process has
a certain independent probability to be a consumer at
any time. In the geo-dependent consumption model,
the probability for a process to be a consumer is a
function of the number of consumers in its neigh-
borhood within T . This model accounts for scenarios
where media consumption is submitted to geographical
constraints, typically time zones.
Resource limitation. We assume that each link in the
network has a limited bandwidth capacity, which for
simplicity we assume to be the same for all links and
denote by ∆B . This assumption does not compromise
the generality of our approach. The bandwidth actually
used by link l is then denoted bandwidth(l).

When it comes to memory, on the contrary, we as-
sume no strict limits, since practically any multimedia
content can be cached onto stable storage today, thanks
to the ubiquity of high-density hard disks. In addition,
all computers today have enough RAM to perform
stream buffering while consuming multimedia content.
Nevertheless, as explained in next section, our adaptive
replication scheme aims at serving as many consumers
as possible in spite of bandwidth constraints, while at
the same time minimizing the number of replicas.

III. ACHIEVING SCALABLE STREAMING

The goal of our adaptive replication algorithm
is to support scalable multimedia streaming, i.e., it
should dynamically adapt the membership of replica-
tion scheme R, in order to serve as many consumers
as possible. Since we assume no memory constraints,
a naive solution consists in simply replicating M
everywhere. This is however a bad idea, based on
the following observation. Unless all or at least a
large portion of processes are indeed consumers, fully
replicating a large multimedia content would initially
eat up a lot of bandwidth for very little gain. In
addition, although our presentation focuses on a single
multimedia stream, in real settings several multimedia
contents are managed concurrently, each one being
consumed by a subset of all processes.
Scalability as optimization function. Intuitively, our
replication algorithm aims at dynamically adapting
replication scheme R in order to maximize the num-
ber of consumers being concurrently served without

2

exceeding the bandwidth capacity, while at the same
time minimizing the size of R. When considering
dynamic consumption scenarios however, such as the
random consumption model and the geo-dependent
consumption model, the translation of this intuitive
optimization goal into a time-dependent optimization
function can be quite challenging.

For this reason, we formally define the optimization
goal pursued by our adaptive replication algorithm
for the static consumption model only. This allows
us to show that our algorithm converges towards an
optimal usage of resources, as soon as the consumption
stabilizes for long enough. This convergence property
of our algorithm results in significant performance gain
for dynamic consumption scenarios as well.
minimize |R| (a)

subject to ∀p ∈ CM : p ∈ SM (b)
∀l ∈ ΛT : bandwidth(l) < ∆B (c)
∀p, q ∈ ΠR : path(p, q) ⊆ ΛR (d)

 (1)

Given a static consumption model, Equation 1 for-
mally expresses the optimization problem we are trying
to solve. Expression 1(a) captures our optimization
objective, whereas Expressions 1(b) to 1(d) capture
the constraints under which an optimal must be found.
In Constraint 1(b), the term CM denotes the set of
processes that have requested to be a consumer at some
point or another, while the term SM denotes the set
of consumers that will eventually be served forever.
So, Constraint 1(b) simply states that eventually all
consumers must be concurrently served forever. Con-
straint 1(c) then states that bandwidth usage cannot ex-
ceed the bandwidth capacity ∆B , while Constraint 1(d)
states that R must always be connected.
Scalability and decentralization. Equation 1 formal-
izes the optimization goal of our replication algorithm.
Achieving this goal is however not sufficient for our
algorithm to actually scale: it needs in addition to be
decentralized in its operation. That is, every replica p
in R should be able to locally adapt R based solely
on what it observes in its direct neighborhood. Purely
local observations typically consist of the number
of consumers requesting to be served by p and the
bandwidth usage of links directly connected to p.

IV. THE SCALESTREAM ALGORITHM

The ScaleStream algorithm performs two tasks:
(1) serving consumers and (2) adapting replication
scheme R. For Task 1, simply note that each replica is
the root of exactly one subtree and each consumer is
part of exactly one subtree. So each replica is respon-
sible for serving consumers located in its subtree.

When it comes to adapt replication scheme R, some
process p can be in one of four possible states: in R,
joining R, leaving R, or out of R. Apart from the

obvious in and out, the joining state means that p is
already serving new open-stream requests but does not
yet hold a full copy of media M , whereas the leaving
state means that p is willing to leave R but has not
yet been cleared to do so. In addition to its own state,
each process p ∈ R is also aware of the states of its
direct neighbors in T . So when it comes to adapt R,
the key questions are when and how a process moves
from one state to another, i.e., under what condition a
process joins R, in which case we say R is expanding,
and under what condition a replica leaves R, in which
case we say R is contracting. Periodically, each replica
first checks whether expansion is needed and if not, it
then checks whether contraction is possible.
Expanding R. Intuitively, R expands as soon as a risk
of bandwidth shortage is detected at its border. For this
detection, our algorithm uses a bandwidth threshold
parameter, denoted ∆b, which is strictly smaller than
the actual bandwidth capacity ∆B . For the sake of
simplicity, we assume that all links have the same
bandwidth capacity ∆B , which implies that all replicas
can use the same bandwidth threshold ∆b.

So, let pr ∈ BR be some replica either in
R or joining R and ph ∈ neighborsR̄(pr), and
let consumerspr

(ph) be the set of consumers served
by pr through ph. Replica pr triggers the expansion
of R towards ph as soon as the following expansion
condition holds: ∆B − |consumerspr

(ph)| ≤ ∆b.
To trigger expansion, replica pr actually sends a

join message to ph, asking it to join R. From then
on, pr continues to serve media blocks to consumers
downstream of ph, but the latter now stores them.

Since the expansion condition is typically detected
upon the reception of an open-stream message by pr,
the bandwidth headroom theoretically needs only to
be of one block, i.e., min(∆B −∆b) = 1. Indeed, as
soon as ph goes in joining state, it stores all blocks it
receives, including the first block for the new consumer
whose open-stream messages triggered the expansion.
So ph is able to serve new open-stream messages.
Contracting R. Intuitively, a contraction of R will
be attempted when the risk of bandwidth shortage
disappears at one of its leaves, provided that leaf
replica did not detect a need for expansion. More
precisely, let pr ∈ LR be some replica in R and p′r
its parent in R, and let consumerspr be the set of all
consumers being served by pr (including itself if it is
consuming as well). Replica pr, which did not detect
a need for expansion, attempts a contraction of R
towards p′r when the following contraction condition
holds: ∆B − |consumerspr

| > ∆b.
To attempt a contraction, pr sends a request-leave

message to p′r (its parent in R). The latter immediately
authorizes pr to leave, unless it is itself trying to

3

leave R. Note that this can only occur if pr and p′r are
the only two replicas left in R. We must nevertheless
consider this special case, otherwise both replicas
might leave R, which would then remain empty.

So, if p′r is itself in leaving state when receiving
the request-leave message from pr, it must apply an
additional deterministic criterion to decide whether to
let pr go or not. Assuming that each process p in the
system is given a unique numerical identifier, denoted
id(p), a suitable deterministic criterion could simply
be id(p′r) > id(pr).

As a result of this decision process, replica p′r
sends a reply-leave message containing its decision
back to pr. If pr is authorized to leave R, it checks
whether new open-stream messages were received
while waiting for a reply from p′r. If such is the case,
pr must check the contraction condition again and send
a cancel-leave message back to p′r if the condition no
longer holds. Otherwise, pr sends p′r a confirm-leave
message and gets rid of M . As soon as p′r receives
the confirm-leave message, it takes over all streaming
activities performed by pr. For this to work, we simply
have to assume that the confirm-leave message contains
information about the next block expected by each
consumer in consumerspr

prior to the contraction. In
practice, contraction is actually triggered only if the
condition holds for some time.

V. PERFORMANCE EVALUATION

To assess the performance of ScaleStream, we eval-
uate it against the three different consumption models
introduced in Section II, namely static consumption,
random consumption, and geo-dependent consumption.
For all of these models, we performed experiments
with 100 to 1000 processes on a geographical tree
network, using the Sinalgo simulation framework. To
implement this geographical tree, we first build a
ring network and we then additionally link each node
to its two closest indirect neighbors (one in each
direction). The resulting ring-mesh topology is thus a
ring where each node is transitively connected to its
four closest neighbors, which we can interpret as being
geographically located north, south, east and west from
that node. Finally, on top of this network, a random tree
is built, i.e., each node has at most four neighbors.

For our simulations, we assume that the multimedia
content consists in a movie lasting two hours (7200
seconds) and that each block contains 10 seconds
of movie. Therefore, the entire movie is made of
720 blocks. The simulation proceeds in steps of ∆t

duration: in each step at most one block is transmitted
to each consumer. The simulation continues until all
the consumers received the entire movie or stopped
watching it by sending a close-stream message to R.

As in each step at most one block of the movie is
transmitted to each consumer, it takes at least 720 steps
to transmit the entire movie to a specific consumer. In
addition, to simplify the interpretation of our results,
we consider that processes and links are reliable, and
that all links have the same bandwidth capacity (∆B)
and all processes use the same bandwidth threshold
(∆b). More precisely, we have ∆B = 6 blocks/step and
∆b = 2 blocks/step, which means that only part of the
total bandwidth capacity can be used for streaming.
Convergence to the optimal. ScaleStream converges
to an optimal replication scheme satisfying the opti-
mization problem of Equation 1, when facing a static
consumption model. An optimal replication scheme
is one containing the minimum number of replicas
required to transmit one block to each consumer in
each step.

To show this, 20% of the nodes of the network
are randomly selected to be static consumers, i.e.,
|CM | ∼= 0.2× |Π|. The simulation starts with just one
randomly placed replica and after a while, the number
of replicas stabilizes. To show that the resulting repli-
cation scheme is optimal, our results are compared to a
centralized algorithm that finds the optimal replication
scheme for the same set of static consumers.

|Π| |R| steps
100 24.4 262.4
300 168.8 574.4
500 318 861.1

1000 724 1604.3

|Π| |R| steps
1000 672 1586
1000 704 1621
1000 783 1598
1000 876 1586

(a) summary (b) details

TABLE I
CONVERGENCE TOWARDS THE OPTIMAL

Table I(a) shows how many steps ScaleStream takes
to converge towards a replication scheme comparable
to the one computed by the optimal centralized algo-
rithm, for networks of 100, 300, 500, and 1000 nodes.
That is, in all executions, ScaleStream ends up with
a replication scheme containing the same number of
replicas as the centralized algorithm, which shows that
it does indeed converge to the optimal. Each exper-
iment was repeated 10 times, i.e., for each network
size we created 10 different networks and executed
both algorithms. Table I(b) then details the results of
various experiments with a network of 1000 nodes. We
can see that, as the positions of consumers vary from
one simulation to the other, our algorithm converges to
replication schemes with various numbers of replicas.
Dynamic consumption models. To evaluate the dy-
namic behavior of our algorithm, we consider two
models where consumers change over time (random
consumption and geo-dependent consumption). For
both models, and in order to evaluate our algorithm in

4

a fair manner, our results are compared to a balanced
replication scheme. A balanced replication scheme is
a static replication scheme that has better performance
than other static connected replication schemes. In-
tuitively, a balanced replication scheme is computed
statically and tries to minimize the distance to its
furthest consumers. As a result, it is roughly located
in the middle of the network. It should be noted that
the balanced replication scheme is different from the
optimal replication scheme presented in Section V.

In our simulations, ScaleStream always starts with a
replication scheme consisting of just one replica, while
the balanced replication scheme has more than one
replica right from the start. This fact counts against
our ScaleStream algorithm but even then ScaleStream
outperforms the balanced replication scheme.

1) Geo-dependent consumption model: Our algo-
rithm is able to take advantage of potential geograph-
ical correlations in dynamic consumption patterns, in
order to improve its performance. Such geographical
correlations account for what happens in reality when
streaming the same multimedia content across multiple
timezones, e.g., in a continent-wide video-on-demand
scenario. We assume that the geographical tree network
is divided into five time zones and that the number of
nodes in all these timezones is approximately equal.
Connected timezones have a one hour difference and
20% of the nodes are selected as eventual consumers
at the beginning of the simulation. Furthermore, we
assume that each consumer starts consuming the movie
stream between 7:45pm and 8:15pm in its timezone;
this is a typical video-on-demand scenario: people in
a timezone start watching some newly released movie
at roughly the same time. Formally, in one timezone
after the other, eventual consumers become actual
consumers for 30 minutes (180 steps), with gaussian
distribution (µ = 8pm, σ2 = (180

4)2). We also assume
that consumers stop watching it with probability 0.5
after receiving half of the movie (by sending a close-
stream message to R).

To compare the performance of ScaleStream and the
performance of the balanced replication scheme, we
only consider executions where the average memory
cost for both these algorithms is roughly equal (the
average memory cost is the average number of replicas
across an execution). We compare ScaleStream with
the balanced replication scheme in terms of bootstrap
time and average bandwidth cost for networks of 100,
200, 300, 400, 500, and 1000 nodes. Here again, each
experiment was repeated 10 times. The bootstrap time
is the number of steps that a consumer must wait
from the time it sends its open-stream request until
it receives the first block of the movie. The average
bandwidth cost is the average number of blocks that

are transmitted in the entire network in one step.
Figures 1(a) and 2(a) show that our algorithm always

exhibits smaller average bootstrap time and bandwidth
cost than the balanced replication scheme. Further-
more, the advantage of ScaleStream grows as the
number of nodes in the network increases, which shows
the scalability of our approach.

100 200 300 400 500 600 700 800 900 1000
number of nodes

0

500

1000

1500

2000

2500

3000

av
er

ag
e

bo
ot

st
ra

p
tim

e
(s

te
ps

) ScaleStream algorithm
Balanced replication scheme

100 200 300 400 500 600 700 800 900 1000
number of nodes

0

50

100

150

200

250 ScaleStream algorithm
Balanced replication scheme

(a) geo-dependent consumption (b) random consumption

Fig. 1. Average bootstrap time

100 200 300 400 500 600 700 800 900 1000
number of nodes

0

200

400

600

800

1000

1200

av
er

ag
e

ba
nd

w
id

th
 c

os
t (

bl
oc

ks
/s

te
p) ScaleStream algorithm

Balanced replciation scheme

100 200 300 400 500 600 700 800 900 1000
number of nodes

0

100

200

300

400

500 ScaleStream algorithm
Balanced replciation scheme

(a) geo-dependent consumption (b) random consumption

Fig. 2. Average bandwidth cost

The good performance of ScaleStream when facing
the geo-dependent consumption is due to the fact that
open-stream requests come in waves from one region
after the other, as consumers spread across timezones.
The replication scheme has thus enough time to expand
towards these regions, while contracting from other
regions, resulting on average in less bandwidth usage
and in shorter bootstrap time.

2) Random consumption model: We now evaluate
the performance of ScaleStream when facing a com-
pletely random consumption model. This gives us a
measure to how adaptive ScaleStream is in a com-
pletely unpredictable streaming scenario. As for the
geo-dependent consumption model, 20% of the nodes
are selected as eventual consumers at the beginning
of the simulation. Then, for 2.5 hours (900 steps),
with gaussian distribution (µ = 8pm, σ2 = (900

4)2),
eventual consumers become actual consumers but this
time they are selected purely randomly, as expressed
in Section II. Here also, actual consumers might stop
watching the movie with probability 0.5 after receiving
half of the blocks.

ScaleStream is again compared to the balanced repli-
cation scheme in terms of bootstrap time and average
bandwidth cost, only for executions where the average
memory cost for both these algorithms is roughly
equal. Results are presented in Figures 1(b) and 2(b)

5

and show that when facing identical conditions, both
algorithms reach almost the same results (the curves
overlap). This is not surprising, since consumers are
selected completely randomly and thus end up all over
the network. As a consequence, few links reach the
bandwidth threshold. In other words, ScaleStream does
not have to dramatically adapt the replication scheme,
which then remains almost static and is practically
identical to the balanced replication scheme.

VI. RELATED WORKS

To support the growth of media streaming, re-
search efforts mainly focused on routing algorithms.
Typically, a routing solution consists in building and
maintaining an overlay through which stream blocks
are routed. The majority of the overlay-based solutions
rely on a tree topology for their routing process [8],
[9], [2], [5], [10], [4], [6], [13], and many solutions [8],
[5], [9] aim at optimizing bandwidth. They however
do not handle cases where a path is overloaded and
no alternative routing path is available. Other research
efforts focused on distributed adaptive data replication.
In [16] the replication scheme adapts to the read-write
pattern, whereas in [3] the objective is to adapt to
the read-write pattern while coping with an unreliable
environment. Similar to our solution, these approaches
define the replication scheme as a connected subtree.
Besides read-write patterns, other cost functions were
defined to dictate the replication strategy. In [15]
for instance, the replica placement strategy aims at
minimizing a cost function taking into account the
average read latency, the average write latency and
the amount of bandwidth used to enforce consistency
between replicas. Similar to these previous replication
solutions, ScaleStream can be considered as a type of
adaptive replica placement.

VII. FUTURE WORK

Several simplifying assumptions were made
throughout the paper. Future work will revisit some
of these assumptions in order to make our approach
more robust and general. For example, the always-
connected nature of the replication scheme induces
many idle replicas, which would somehow defeat our
goal to minimize the memory footprint. Considering
processes and links reliable is a strong assumption.
In [3] we proposed a communication infrastructure for
supporting data replication in an environment where
processes and links fail probabilistically. We plan to
study ways to adapt the results in [3] to ScaleStream.

Acknowledgment.. This research is funded by the Swiss
National Science Foundation, in the context of Project num-
ber 200021-127352.

REFERENCES

[1] M. Allani, B. Garbinato, A. Malekpour, and F. Pedone. Quo-
cast: A resource-aware algorithm for reliable peer-to-peer
multicast. In Proceedings of The 8th IEEE International
Symposium on Networking Computing and Applications, NCA,
2009.

[2] M. Allani, B. Garbinato, F. Pedone, and M. Stamenkovic. A
gambling approach to scalable resource-aware streaming. In
Proceedings of 26th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 288 – 297, October 2007.

[3] M. Allani ans B. Garbinato, A. Malekpour, and F. Pedone.
Reliable communication infrastructure for adaptive data repli-
cation. In Proceeding of the 11th International Symposium
on Distributed Objects, Middleware, and Applications (DOA),
2009.

[4] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller. Omni: An efficient overlay multicast infrastructure
for real-time applications. Computer Networks, 50(6):826–841,
2006.

[5] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. Splitstream: high-bandwidth multicast in
cooperative environments. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles,
pages 298–313, New York, NY, USA, 2003. ACM Press.

[6] Y. Cui, B. Li, and K. Nahrstedt. oStream: asynchronous stream-
ing multicast in application-layer overlay networks. Selected
Areas in Communications, IEEE Journal on, 22(1):91–106,
2004.

[7] S. Elnikety, S. G. Dropsho, and W. Zwaenepoel. Tashkent+:
memory-aware load balancing and update filtering in replicated
databases. In EuroSys, pages 399–412, 2007.

[8] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and
Jr. J. W. O’Toole. Overcast: reliable multicasting with on over-
lay network. In OSDI’00: Proceedings of the 4th conference
on Symposium on Operating System Design Implementation,
Berkeley, CA, USA, 2000. USENIX Association.

[9] D. Kostić, A. Rodriguez, J Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh. In
Proceedings of the nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, 2003.

[10] F. Liu, X. Lu, Y. Peng, and J. Huang. An efficient dis-
tributed algorithm for constructing delay and degree-bounded
application-level multicast tree. In ISPAN ’05: Proceedings
of the 8th International Symposium on Parallel Architec-
tures,Algorithms and Networks, pages 72–77, Washington, DC,
USA, 2005. IEEE Computer Society.

[11] J. MacCormick, N. Murphy, V. Ramasubramanian, U. Wieder,
J. Yang, and L. Zhou. Kinesis: A new approach to replica
placement in distributed storage systems. ACM Transactions
on Storage (TOS), to appear.

[12] A. Malekpour, F. Pedone, M. Allani, and B. Garbinato. Stream-
line: An architecture for overlay multicast. In Proceedings of
the 8th IEEE International Symposium on Network Computing
and Applications (NCA’09), pages 44 –51, July 2009.

[13] L. Mathy, R. Canonico, and D. Hutchison. An overlay tree
building control protocol. In NGC ’01: Proceedings of the
Third International COST264 Workshop on Networked Group
Communication, pages 76–87, London, UK, 2001. Springer-
Verlag.

[14] J. Meisner. Netflix Wades Deeper Into On-Demand Stream
With CBS, Disney Deals. E-Commerce Times (online edition),
September 2008.

[15] S. Sivasubramanian, G. Alonso, G. Pierre, and M. van Steen.
GlobeDB: Autonomic data replication for web applications. In
Proc. of the 14th International World-Wide Web Conference,
pages 33–42, Chiba, Japan, may 2005.

[16] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ACM Transactions on Database Systems,
22(2):255–314, June 1997.

6

