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Abstract—Traditional approaches to byzantine fault-tolerance
have mostly avoided the problem of confidentiality. Current
confidentiality-aware solutions rely on a heavy infrastructure
investment or depend on complex key management schemes. The
framework presented in this paper relies on a novel approach
that combines byzantine fault-tolerance, secure storage and veri-
fiable secret sharing to significantly reduce the additional infra-
structure and complexity required by confidentiality protection.
The proposed framework was compared to other solutions using
a micro-benchmark, and an implementation of TPC-B and NFS.
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I. INTRODUCTION

Byzantine fault tolerance has received a resurge of interest
in the research community. While many recent works have
improved performance (e.g., [1]) and extended failure mod-
els (e.g., Byzantine clients [2]), few works have addressed
confidentiality, that is, how to prevent information leakage
in Byzantine fault-tolerant (BFT) systems. In fact, the orig-
inal definition of Byzantine faults [3] does not encompass
information leakage, where a Byzantine server co-operates
(maliciously or not) with unauthorized clients in order to leak
information.

Confidentiality is a major issue whenever users rely on
third-party services (e.g., storage in cloud computing settings)
because of the increased risk of information leakage. Although
a majority quorum of honest servers is enough to detect and
discard invalid replies, a single malicious server can employ
several covert channels to leak information [4]], [5]. This
makes information leakage an intrinsically harder problem
than discarding invalid replies. Given the exposed nature of
modern applications [[6], confidentiality becomes an essential
requirement to deal with servers that may fail due to coding
mistakes and hardware problems, and that are also under
constant scrutiny by attackers.

There are two main classes of solutions to confidentiality
in BFT systems: obfuscation and firewalling. Obfuscation
(e.g., [71, 181, [9) is a common approach to handling confi-
dentiality of data. Obfuscating stored data involves some cryp-
tographic or secret sharing mechanism. Obfuscation schemes
based on cryptographic mechanisms present high overhead and
complexity (e.g., the data re-encryption protocols required to
revoke a client’s rights). Secret sharing schemes have been
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sparsely employed [10]. Firewalling is an architectural solu-
tion, since it prevents unauthorized communication between
Byzantine clients and servers. The only firewalling approach to
confidentiality in BFT systems we are aware of is the Privacy
Firewall proposed in [11], which allows arbitrary operations
but requires a significant hardware investment and specific
network layout.

In this paper we revisit secret sharing schemes in order to
guarantee data confidentiality in a replicated Byzantine fault-
tolerant storage service. Belisarius, the system that we de-
signed and implemented, relies on the mathematical properties
of Shamir’s secret sharing algorithm. Belisarius compares fa-
vorably to previous solutions in four aspects: First, differently
from a Privacy Firewall, its architecture is economical and
simple. Second, although in Belisarius data is obfuscated, the
performance impact of obfuscating the data is minimal. Third,
Belisarius provides confidentiality without requiring complex
and cumbersome key management systems. Fourth, it has
very good overall performance (i.e., high throughput and low
latency).

Belisarius’s performance is credited not only to avoiding
complex and computationally inefficient cryptography, but also
to its design choice of moving a significant part of the protocol
from the servers to the clients. Clients apply a novel approach
to cheater detection in secret sharing schemes in the context of
Byzantine fault-tolerance. In other words, we opportunistically
shift some of the protocol overhead to the clients, resulting in a
performance boost. To ensure confidentiality during transport,
our framework allows for, but does not mandate, point-to-point
encryption of secret data.

In summary, the contributions of this paper are:

o A simple, economical and efficient design for a BFT
storage service with confidentiality.

o The application of Shamir’s secret sharing algorithm to all
data being stored on servers while preserving its additive
homomorphism.

o The validation of the system through a detailed perfor-
mance evaluation using several application scenarios.

The remainder of the paper is structured as follows. Sec-
tion [[I] describes the system model, including our assumptions
about client and server behavior, and the handling of secret
data. Section |llI| presents the design of Belisarius. Section
details its implementation. Section [V]assesses Belisarius’s per-
formance under different setups. Section [VI| discusses related
work, and Section concludes the paper.



II. SYSTEM MODEL AND ASSUMPTIONS
A. Clients and servers

We assume an asynchronous distributed system where nodes
are connected by a network. There are no known bounds on
processing times and message delays. Links may fail to deliver,
delay, or duplicate messages, or deliver them out of order.
However, links between nodes are fair: if a message is sent
infinitely often to a receiver, then it is received infinitely often.

Nodes can be correct or faulty. A correct node follows
its specification whilst a faulty, or Byzantine, node presents
arbitrary behavior. We allow for a strong adversary that can
coordinate faulty nodes, inject spurious messages into the
network, or delay correct nodes in order to cause the most
damage to the replicated service. However, adversaries cannot
delay correct nodes indefinitely.

There is an arbitrary number of client nodes and a fixed
number n of server nodes, where clients and servers are
disjoint. Clients can be authorized or unauthorized. Authorized
clients are trusted (i.e., they are not Byzantine). Authorization
is used to limit the access scope of a given client to the
server’s functionality and data. Correct servers are responsible
for enforcing access control based on the access credentials of
clients.

We use cryptographic techniques in the communication
layer for authentication and digest calculation. We assume
that adversaries (and Byzantine nodes under their control) are
computationally bound so that they are unable, with very high
probability, to subvert the cryptographic techniques used.

Our system implements a BFT key-value store service using
state machine replication [12]. There are four operations to
manipulate entries in the store: read(key), write(key, value),
add(key,value), and cmp(key,value). Read returns the
share that a server possesses for a given key. Write sets the
share for the given key. Add tells the server to add the given
value to the value it possesses for the given key. C'mp performs
value comparison. Both key and value are of arbitrary type and
length. Our key-value store service requires total ordering of
messages, and the communication protocol is an extension of
the one proposed in [[13].

We assume that at most f servers can be Byzantine, and
therefore require n = 3f + 1 servers of which at least 2f + 2
are required for BFT execution and storage (see Section [[TI-B).

B. Secret sharing

In our model a Byzantine server cannot compromise the
confidentiality of the stored data for the simple reason that no
server possesses a complete in-the-clear version of the data.
This is achieved by employing a secret sharing scheme for all
the data stored in the servers. There are several secret sharing
algorithms in the literature [14]. In this paper, we consider
Shamir’s secret sharing algorithm (SSS). In a nutshell, the
algorithm is based on the idea that polynomial coefficients and
points on a polynomial curve are interchangeable. Therefore,
to share a secret S in a number n of shares, where at least
t shares are required to reassemble the secret, we sample n

points (x,y) from a polynomial P of degree t — 1 whose
constant coefficient is the secret and the other coefficients are
taken randomly. To reassemble the secret we need to retrieve
at least ¢ shares to interpolate the polynomial P at the origin.
To ensure that at least one share comes from a correct server,
we must have t > f.

This algorithm has been proved information-theoretically
secure, since its security relies only on the mathematical
properties of polynomial interpolation, and therefore is secure
against adversaries with unbounded computing power. More-
over, it has been proved to be additively homomorphic [[15]:
any manipulation performed on the shares by means of sums
or subtractions will be propagated to the secret once it has
been reassembled.

C. Verifying shares

Although secret sharing schemes have been proven safe
from attackers with access to unbounded computing power,
they are still vulnerable to a different class of attacks, in
which participants can disrupt the reconstruction of the secret
by providing corrupt shares (i.e., “cheating”). It becomes then
necessary to detect shares from cheaters and remove them from
the reassembly procedure. A secret sharing scheme that can
detect cheaters is called a verifiable secret sharing scheme.

The majority of methods for cheater detection either relies
on sharing algorithms that are not homomorphic (e.g., [16],
171, [18], [19], [20]), or on the introduction of additional
validation information (such as signatures or checksums) in
the secret, which removes the homomorphic property of the
sharing algorithm.

The verification of shares can also be done by using
quorums [21]. In this paper, we use this approach since it
maintains the additive homomorphism and has a very small
overhead. The details of quorum usage in Belisarius are
presented in Section [[II-B

III. SYSTEM DESIGN
A. Architecture overview

The three main components of Belisarius are the client-
side confidentiality handler, the BFT communication protocol,
and the server-side transparent manipulation of obfuscated
data (see Figure [I). The client-side confidentiality handler
is responsible for submitting operations to the servers and
applying the secret sharing scheme to the confidential data.
The communication protocol offers Byzantine fault tolerant
total ordering of requests to application clients and servers.
The server-side data manipulation component is responsible
for performing operations on the obfuscated data that can
make use of the additive homomorphism of the secret sharing
scheme.

B. The client side

To execute an operation against the servers, a client de-
composes the operation parameters (i.e., the confidential data)
into shares using SSS. The operations write(key, value),
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Fig. 1. Overview of Belisarius.

add(key,value) and ecmp(key, value) are converted respec-
tively into individual write(key, share), add(key, share) and
emp(key, share) operations for each server. Once the shares
have been calculated, they are broadcast using the total order
protocol described in the next section.

In Belisarius, clients encrypt the shares using server-specific
session keys and assemble a single message to be broadcast.
This approach has the advantage of batching all the server
shares into one single message that is ip-multicast by the
total order broadcast layer. Session keys can be negotiated
using any session key negotiation protocol (e.g., the SSL/TLS
handshake protocol). If the underlying communication links
provide end-to-end confidentiality (i.e., no eavesdropping),
clients can send server shares by means of point-to-point
communication, bypassing the total order broadcast protocol.
Clients must still broadcast the operation identifier (or a digest
of the operation) for total order. The advantage of such an
approach is that it offloads the broadcast primitive.

The client then waits for the result of the operation from
the servers. In traditional BFT systems, the minimal quorum
required for completion is 2 f+1 replicas [11]. In other words,
if each server possesses a full in-the-clear copy of the data,
clients need only to perform a simple comparison between
replies and return the one that has at least a f + 1 majority.

For quorum-based secret share verification, however, 2 f 41
replies are not enough. This can be easily illustrated for
f =1 with a quorum of 2f + 1 = 3 servers (see Figure [2).
Clients need at least two replies to be able to reconstruct the
original data. There are, therefore, three possible combinations
of shares and each server’s share participates in two combina-
tions (i.e., share; with share,, shares with share; and shareq
with share; — see Figure 2(a)). The share coming from the
Byzantine server can corrupt two out of three combinations,
making it impossible to isolate the correct combination using
a majority test (see Figure 2(D)).

Since in Belisarius we strive not to modify the data by mix-
ing or appending validation information (see Section [[II-DJ,

each client must perform secret share validation using a
large enough quorum by combining shares until a majority
of identical combinations is found [21].

By introducing another correct server in the f = 1 example,
thus increasing the total number of servers to 2f + 2, clients
will receive three correct shares and one corrupt. The three
possible combinations of two shares out of the three correct
shares will have the same value, while all the combinations
involving the corrupt share will be different (see Figure 2(c)).

We capture secret share validation in Belisarius by two
observations:

Observation 1. For a system with at most [ Byzantine
servers, clients need at least 2f 4+ 2 servers to perform secret
share validation without augmenting the shares with validation
information.ﬂ

Observation 2. In a system that has at most f Byzantine
servers out of 2f + 2, the correct combination will have a
cardinality of f + 2 and corrupt combinations will have a
cardinality of at most f.

Observation |I| allows clients to distinguish correct shares,
as explained above. Observation [2] has a very pragmatic
application: clients do not need to wait until they gather f + 2
identical combinations, since a cardinality of f + 1 can only
be achieved by the correct combination.

In the general case, a client waits for a set R with f + 2
server replies and starts computing the secret for enough
subsets of R of size f + 1 until it assembles a set C of f+1
combinations with the same value. If a Byzantine share is
present, then the client may have to wait for up to 2f + 2
replies.

C. Communication protocol

Our total order broadcast protocol builds on PBFT [13]].
Like PBFT, for each client REQUEST message there is one
PRE-PREPARE message from the primary replica, responsible
for dictating the global order of requests, one PREPARE
message from each backup replica, and a COMMIT message
from each replica. The client receives at least 2f + 1 REPLY
messages from the servers. Unlike PBFT, clients always mul-
ticast their requests to the server group entirely, not only to
the primary.

For services that do not employ secret sharing, the client
has to collect at least f + 1 unique REPLY messages with
equal content (e.g., at the byte level). As soon as the client
has received f + 1 identical results from different senders, it
can deliver the result to the client application. In Belisarius,
additional steps are needed, as detailed in Section [[II-B

D. The server side

Confidentiality of the data stored on servers is guaranteed
by the fact that no single server contains any usable data

! Although [21]] defines 3 types of attacks on share verification, in Belisarius
only types 1 (single server failure) and 2 (Byzantine servers collusion) apply,
since servers distrust each other and therefore do not have access to each
others’ shares.
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by itself. In fact, due to the properties of the secret sharing
algorithm, we setup the system so that there will always be
a correct replica participating in any execution quorum. This
will prevent information leakage by making it impossible for
Byzantine clients to reconstruct leaked data by requesting it
only to the Byzantine servers.

Obfuscated data on the servers cannot be as easily ma-
nipulated as plain data. For example, in the case of systems
that obfuscate their data using traditional encryption schemes
(i.e., non-homomorphic encryption schemes) arbitrary changes
to the obfuscated data cause the loss of the original data.
This has the unfortunate side-effect of preventing any kind of
server-side data manipulation. We enable additive operations
to be performed on the server-side. As a proof of concept, we
exploited additive homomorphism in the TPC-B benchmark
(see Section [V). Multiplicative server-side operations could
also be implemented [22].

One difficulty with data obfuscation through secret sharing
is that it makes state transfer between servers more compli-
cated. As in PBFT, servers in Belisarius can checkpoint their
state. In case of recovery, however, a Belisarius server cannot
simply ask the state of another server. A simple solution is for
authorized clients to intermediate the recovery process. More
complex techniques could also be used [23]]. A full description
of Belisarius’s recovery protocol lies outside the scope of this

paper.
IV. IMPLEMENTATION

We implemented a prototype of Belisarius in Java using
the client/server socket framework Netty [24]. Our prototype
implements all the features described in Section The
prototype does not yet implement the checkpoint and view
change protocols of PBFT [13].

We have organized the nodes in two multicast groups. Both
contain all replicas, but one is used by clients to send requests,
and the other is used only for inter-replica communication
of protocol-related control messages. Replies are sent directly
back to the client using UDP.

Our BFT total order broadcast layer behaves as an
application-agnostic communication library. We also imple-
mented Shamir’s secret sharing scheme ourselves, since the
available libraries either did not support arbitrary-length pay-
loads or were not implemented in Java. Our implementation
uses the Horner scheme to evaluate polynomials, and an
optimized version of Lagrange interpolation where the basis
polynomials ¢;(x) are precomputed for z = 0.

For the purposes of performance comparison, we also
implemented the “Privacy Firewall” proposed in [11]]. We build
it on top of the total order broadcast communication library
provided by Belisarius and using ThreshSig [25] to provide
the RSA threshold signature algorithm [26].

V. PERFORMANCE EVALUATION

We evaluated the performance of Belisarius with four
benchmarks:

« Belisarius no-op throughput and latency: we measured the
throughput and latency of “null operations” for different
sizes of payload and number of clients to stress test our
BFT total order broadcast communication protocol.

o Privacy Firewall comparison: we compared the through-
put and latency of Belisarius’s confidentiality stack to the
Privacy Firewall.

o« TPC-B: we implemented two versions of a TPC-B-
like benchmark, comparing client-side and server-side
execution.

o NFS: we compared the performance of NFS version 2
when implemented on top of Belisarius to a native Linux
implementation.

We ran all the tests on a cluster of Dell SC1435 servers
equipped with two dual-core AMD Opteron processors run-
ning at 2.0 GHz and 4 GB of main memory. The servers
are interconnected through an HP ProCurve 2900-48G gigabit
network switch. The servers ran Ubuntu Linux 10.04 LTS 64-
bit with kernel 2.6.32-21. We used the OpenJDK Runtime
version 1.6.0_18 with the 64-Bit Server VM (build 16.0-b13).



A. No-op throughput and latency

We implemented a no-op server (i.e., the server simply
returns the data sent by clients, without secret sharing) on top
of Belisarius to measure throughput and latency under different
combinations of payload sizes and numbers of clients. The
number of clients started with one, and doubled until 512.
The payload size started at 4 bytes, and doubled until 8 kB.
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Fig. 3. Belisarius’s total order broadcast library for payload sizes from 4 to
8192 bytes.

A summary of throughput vs. latency for different payload
sizes is presented in Figure [3] Each curve represents a payload
size and each point in a curve represents a different number
of clients. The maximum throughput is around 32 kops/s for
a latency of 16 ms. For payloads between 4 and 64 bytes,
the break-point is around 256 clients for a latency between
9 and 10 ms. For payloads up to 64 bytes, the throughput
scales almost linearly with the number of clients until it
reaches 256 clients. After this number of clients the throughput
saturates at around 32 kops/s for payloads between 4 and
16 bytes. The latency remains under 5 ms for up to 64 clients
with 64-bytes payloads, and under 10 ms for up to 256 clients
with 64-bytes payloads. Even for 8 kB payloads, the latency
remains under 10 ms for up to 16 clients.

For payloads larger than 64 bytes, we have a much sharper
increase in latency. This is explained by network traffic over-
load: in these configurations, the number of clients multiplied
by the size of the payload generates enough traffic to overload
incoming network links, causing packet loss at the receivers,
a fact that was confirmed by operating system counters.

We also compared the throughput of Belisarius’s approach
to confidentiality (i.e., secret sharing) to the traditional ap-
proach (i.e., encryption). We extended clients and servers to
support both confidentiality approaches, using AES with 128-
bit keys, for f = 1, and with the same number of replicas.
The performance difference is minimal for most cases, ranging
from about the same performance for up to two clients and
messages of up to 128 bytes and stabilizes at about half the
throughput for about twice the latency for larger messages and
number of clients. The throughput difference can be explained
by the fact that servers in our implementation receive n times

as much information as they need, due to secret sharing via
multicast. The response time difference is explained by the
fact that clients need to wait for f + 2 replies in the secret
sharing case instead of f + 1 replies in the encryption case.

B. Privacy Firewall comparison

We compared Belisarius to the Privacy Firewall system
(PFW) proposed in [11], the only Byzantine fault-tolerant
system that provides confidentiality and allows full server-side
functionality. A more detailed qualitative analysis of PFW is
presented in Section

We implemented a prototype of PFW as closely as possible
to the specification presented in the original paper. Since
in Belisarius we use AES with 128-bit keys for transport
authentication and encryption, we first tried to use an equiv-
alently secure RSA key size for PFW. Since the key size is
not reported in [11], we followed NIST’s recommendation of
a 3072-bit RSA key [27]. Using that key length, however,
resulted in latencies of at least 1500 ms, for a single client.
These latencies are much larger than the ones published
in [11], and thus we experimented with a shorter, 128 bit RSA
key.
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Fig. 4. Belisarius vs. Privacy Firewall. Each curve represents a different
payload (in bytes)

We have found that even using 128-bit keys, PFW reaches
its saturation point with relatively few clients (less than 5, see
“PFW” curves on Figure [). Further investigation indicated
that the threshold signing procedure is very CPU-intensive,
and quickly becomes the predominant activity inside the JVM.
The maximum throughput is 480 ops/s for a latency of 65 ms.
The breakpoint seems to be around 4 clients for a latency
between 10 and 12 ms. In comparison, although the payload
size does have an impact on the throughput of Belisarius, even
at its worst saturation point, it is still one order of magnitude
faster than PFW.

We conclude that the advantage presented by PFW over
Belisarius (e.g., each server contains a full, in-the-clear copy of
the data, allowing server-side data manipulation while preserv-
ing confidentiality) presents a serious performance compro-
mise. In our tests, a Belisarius-based system could execute at



least 10 times as many operations as an equivalent PFW-based
system in the same time. In other words, the performance
impact caused by PFW is acceptable if the services provided
involve a large number of operations or if they involve a
large amount of data, such as stored procedures on database
servers. Even in such a case, though, the execution of such
stored procedures would have some important restrictions (see
Section [VI)).

C. TPC-B

We compared Belisarius’s homomorphic capabilities against
a system without such functionality. In practice, we executed
a test using the same operations as the TPC-B benchmark,
but in one case performing additive operations on the server
side, and on the other case first retrieving the data to the client,
performing the additive operations and then sending the results
back to the servers. In the TPC-B-like benchmark, this means
that each transaction (16 bytes) is broken into two parts: the
first one reads data (16 bytes request and 12 bytes reply), and
the second one writes the results (28 bytes request).
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Fig. 5. Client- vs. server-side computation for TPC-B-like benchmark.

The usage of an homomorphic secret sharing scheme
shows a clear performance advantage (see Figure [3)). Without
server-side processing, our TPC-B-like benchmark peaked at
11.5 kops/s, with a saturation point around 128 clients and
a latency of 13 ms. By employing server-side processing
(through additive homomorphism), the peak throughput is be-
yond 24 kops/s, and the saturation point lies around 256 clients
for a latency around 12 ms.

We also tested throughput and latency for f = 2 (ie., a
total of 7 replicas). Although there is a performance impact,
the prevalent use of multicast mitigates most of the cost
of the additional replicas. For client-side computations, the
throughput loss is on average under 10%, and a latency
increase is on average around 10% (see “f = 2” curves
on Figure E]) For server-side computations, the worst case
scenario is an 18% throughput loss (average 13%) for a 22%
latency increase (average 16%).

For equivalent numbers of clients, we observe that: (1)
as expected, the latency for client-side transactions is about

twice the latency of server-side transactions, and (2) executing
transactions on the server-side doubles the throughput. Notice
that performing client-side operations with Belisarius is more
than an order of magnitude more efficient than PFW.

D. NFS

Finally, we used Belisarius to implement an NFS version
2 server with and without confidentiality, and compare it to
the NFS version 2 implementation that is provided with Linux
(referred to as “native”) on our cluster nodes. We benchmarked
the systems with /Ozone [28]. Since our implementation of
the NFS server did not offer any application-level caching,
buffering or client authentication, we configured native servers
in the same way. To minimize the influence of hardware
bottlenecks, we also disabled synchronous writes for all tests.

To establish a baseline, we compared both read and write
performances of the native NFS server against our Java imple-
mentation. As expected, the native implementation performed
significantly better than our Java implementation. Our imple-
mentation reached up to 55% of the native speed for writes and
up to 40% of the native speed for reads. We believe this is due
to the fact that our Java implementation did not have the same
level of optimization as the native version (e.g., zero-copy file
reads, JVM overhead).

It is interesting to observe that for some cases discussed
next, with or without confidentiality, we obtained significant
performance gains over the single native server. We attribute
these performance gains to two factors: (1) IOzone is a single-
thread client, and therefore lower latencies result in higher
throughput, and (2) in average, a single replica is slower than
the fastest three out of four.

The read performance of Belisarius NFS with confidentiality
peaks at 1.5 times the single native server for small block sizes,
but for larger block sizes (larger than 8 kB) the native server
overtakes our replicated service. This reversal is a consequence
of the performance gap between our Java implementation and
the native server (see Figure [6(a)).

The write performance peaks at 3.4 times the single native
server for small files, and even for large files our replicated
server keeps quite close to the native server, trailing at 90%
of the throughput (see Figure [6(b)).

We have also measured latency but for lack of space do not
report it in the paper. Belisarius NFS has lower latency than
the native implementation for write operations in all scenarios,
but higher latency for read operations.

VI. RELATED WORK

Belisarius stands in the intersection of Byzantine fault
tolerance, secure storage and verifiable secret sharing. Its
goal is to offer Byzantine fault tolerance with confidentiality
protection. BFT systems with confidentiality protection can be
based on obfuscation or firewalling.

Within the obfuscation class of BFT systems, servers can
tolerate data leakage, since all the data they host is unusable
due to the obfuscation mechanism. The obfuscation mecha-
nism can be a cryptographic scheme, a secret sharing scheme,
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or a combination of both [7], [8], [9], [29], [30], [31], [33].
Obfuscating systems are only as strong as their obfuscation
scheme. Systems that rely simply on cryptography, for ex-
ample, have to worry about key length, key revocation and
algorithm strength. Systems that rely on secret sharing have to
deal with share renewal and share validation. Data obfuscation
through encryption has been throughly investigated in [32].

The majority of traditional obfuscation schemes does not
have homomorphic properties. For instance, traditional sym-
metric and asymmetric encryption, as well as secret sharing
schemes based on XOR decomposition [30] do not offer any
kind of homomorphism. There is an active research com-
munity around the development of homomorphic encryption
algorithms, but so far the state-of-the-art in that area has severe
performance issues [34].

The usage of secret sharing for obfuscation of data has an
extensive literature. However, due to the traditional assump-
tion of poor performance for secret sharing algorithms, most
implementations limited themselves to sharing the keys for the
encryption subsystem [10]. In [33], the authors employ a hy-
brid obfuscation model, which trades homomorphic properties
for reduced storage space by applying symmetric encryption
of the data, secret sharing of the encryption key, and erasure
codes to distribute the encrypted data.

The verification of the obfuscated data is an area of intensive
research [20], [35]], [36], [37], and is usually done by intro-
ducing some token with the data (e.g., a checksum, a digest, a
previously agreed piece of information). By introducing such
a token, any homomorphic property is taken away, since token
generators are usually not homomorphic.

Belisarius’s verifiable secret sharing scheme builds on the
algorithm proposed in [21]], which does not rely on an addi-
tional token and thus preserves the homomorphic properties of
the obfuscation scheme. Belisarius shows how the algorithm
in [21] can be turned into a high performance system that
tolerates Byzantine failures and how applications can make
efficiently use of it.

Within the firewalling class of BFT systems, data leakage
is prevented by a careful isolation of the servers from the
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clients by a separation layer. This layer must guarantee that
correct requests and results are properly forwarded through,
but Byzantine replies are eliminated before they reach the
clients. The greatest advantage of firewalling systems is the
support for arbitrary commands. However, this has also been
the reason why firewalling systems were considered unfeasible
for general-purpose systems [13]. Recent developments have
changed this view. Yin et al. [11]] have presented the only
general-purpose system based on firewalling that we are aware
of. That system is based on a Privacy Firewall which separates
the ordering of requests from their execution. These two layers
are separated by several layers of filters, which are responsible
for eliminating any Byzantine replies. Byzantine replies are
detected using threshold signatures [26], which are fast to
reconstruct and verify, but are computationally expensive to
create. Besides the performance cost of threshold signatures
and increased latency caused by the filter layers, there are two
significant downsides to Privacy Firewall, as we explain next.

First, it can be applied to any system as long as the of-
fered services behave deterministically, that is, if each request
yields exactly the same bit-by-bit reply from each replica. If
replies from different replicas differ even for one bit, then the
threshold signature verification algorithm will fail at the first
filter layer and all the replies will be discarded. For example,
any service dealing with server-generated timestamps will
require either perfect clock synchronization between replicas
or compromise for less accurate timestamps. Since the first
layer of filters prevents any reply from passing through unless
it matches the shared signature (i.e., matches the majority of
replies), clients are not allowed to see non-perfectly matching
answers, even if it would be possible for clients to implement
their own logic to handle such cases (e.g., averaging the
timestamps).

Second, Privacy Firewall introduces two new sources of
Byzantine nodes. Whereas in traditional BFT systems each
node was responsible for both order and execution and thus
only one type of Byzantine node existed, in the Privacy
Firewall system there may be f Byzantine agreement nodes,
g Byzantine filter nodes, and h Byzantine execution nodes.



This causes a heavy investment in infrastructure, even if some
of these roles can be combined in the same physical node.
For example, to tolerate a single fault of each type, the
system must have at least 11 processes running in 9 nodes.
Agreement nodes require a 3 f + 1 quorum, filter nodes require
a (f + 1)? quorum, and execution nodes require a 2f + 1
quorum. Finally, the execution nodes must be on a separate
network partition from the agreement nodes, and they must
interface only through the filter nodes, which must themselves
also be partitioned in f + 1 layers.

VII. CONCLUSION

In this paper we have presented Belisarius, a lightweight
BFT storage system with confidentiality. Although a few
systems in the literature offer Byzantine fault-tolerance with
confidentiality through encryption or non-homomorphic secret
sharing schemes, Belisarius distinguishes itself by applying
a secret sharing scheme and retaining its additive homo-
morphism, which enables the implementation of multi-party
computation applications on top of a BFT total order broad-
cast. Our performance measurements indicate that Belisarius
compares favorably to other BFT systems with confidentiality.
We also observed that it compares favorably to simple BFT
storage engines with confidentiality.
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