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Abstract—This paper presents a recovery architecture for in-
memory data management systems. Recovery in such systems
boils down to solving two problems: retrieving and installing
the last committed image of the crashed database on a new
server and replaying the updates missing from the image.
We improve recovery time with a novel technique called On-
Demand Recovery, which removes the need to replay all missing
updates before new transactions can be accepted. We have
implemented and thoroughly evaluated the technique. We show
in the paper that in some cases On-Demand Recovery can
reduce recovery time by more than 50%.
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I. INTRODUCTION

In the past years middleware-based data management
systems have become very popular. At the back-end of
most such systems lies a database engine. To meet the ever
growing demand for performance and scalability in these
environments, some researchers in the database community
have come out to voice criticism to the one-size-fits-all
model of modern-day databases and argued for a redesign,
which would take into account application-specific charac-
teristics and hardware trends [1], [2].

On the one hand, application programs in multi-tier archi-
tectures create transactions typically by instantiating param-
eterized templates, defined offline, as opposed to submitting
ad hoc statements defined on-the-fly. As a consequence,
some workload characteristics can be inferred before the
execution (e.g., transaction access patterns). On the other
hand, plummeting hardware prices have made powerful
clustered environments largely affordable. In what concerns
data management systems, it is believed that in some years
all but the largest databases will fit in the aggregated memory
of the servers of medium-size clusters [3]. Accounting for
application and hardware specifics requires revisiting key
database concepts, such as recovery.

This paper presents a recovery architecture for clustered
in-memory databases. Recovery in such systems boils down
to solving two problems: (i) retrieving and installing the last
committed image of the crashed database on an available
server and (ii) replaying the updates missing from the image.
Different recovery protocols may solve these problems in
different ways, trading their inherent overheads. In Sprint,
for example, a middleware-based in-memory data manage-
ment system [4], database images and logs are created

and stored by remote servers—in fact, in-memory database
servers do not even have to be attached to a disk unit.

Recovering a crashed database server requires retrieving
and installing its last committed image on a new server,
and replaying the log of missing updates. Despite the larger
size of the database image, with respect to the log of
missing updates, a substantial fraction of recovery time
in Sprint involves bringing the recovered image up-to-date
by processing missing updates—in part this is due to the
fact that replaying missing updates requires re-executing
statements. An obvious solution to this problem is to create
remote images more often. Creating an image, however,
interferes with the normal system execution and therefore
should be done sparingly.

To reduce recovery time, this paper introduces an On-
Demand Recovery protocol, which exploits application in-
formation (i.e., pre-defined transaction templates) to avoid
replaying all missing updates before new transactions can be
accepted. The idea is conceptually simple: a new transaction
can be executed as soon as all the missing updates it depends
on have been replayed. On-Demand Recovery identifies such
dependencies and selectively replays the missing updates
only. As a result, the system can receive and execute new
transactions earlier, increasing its availability.

Performance experiments reported in the paper show that
On-Demand Recovery can reduce recovery time by more
than two times. In one scenario, for example, we show that
it takes 12 seconds to recover a database of 2.5 GBytes
running TPC-C transactions. In this context, even if one
conservatively assumes that a server is rebooted a dozen
times a year, the resulting availability will still be larger
than “five nines” (i.e., five minutes of downtime per year).
Although we illustrate On-Demand Recovery in Sprint, the
technique is general enough and could be used in different
contexts. For example, On-Demand Recovery could be also
used to speed up the recovery of a traditional standalone
database server, although we do not develop this point
further in the paper.

The remainder of the paper is structured as follows.
Section II describes the system architecture. Section III
introduces On-Demand Recovery and Section IV discusses
how it was implemented. Section V contains the perfor-
mance evaluation. Section VI reviews related work, and
Section VII concludes the paper. The appendix discusses
the correctness of On-Demand Recovery.



II. SYSTEM ARCHITECTURE

The recovery system we propose is based on the Sprint
architecture [4] (see Figure 1). In this section we present the
main assumptions and components of this architecture.

A. Background

The system is composed of a cluster of servers that
communicate by message passing only (i.e., there is no
shared memory). Communication assumes FIFO channels:
messages are received in the order they are sent.

We assume that servers are fail-stop: each server halts
in response to a failure and a server’s halted state can
be detected by operational servers. We do not consider
malicious failures (i.e., Byzantine failures), in which servers
may present arbitrary behavior.

There are two types of servers: physical servers, part of
the hardware infrastructure, and logical servers, the software
component of the system. Logical servers can be of four
types: Edge Servers, Data Servers, Durability Servers, and
Recovery Servers.

The database is partitioned among the Data Servers. If
desired (e.g., for performance), data can be replicated in
multiple Data Servers. On-Demand Recovery, however, does
not assume that data is replicated in multiple Data Servers.

B. Edge Servers

Edge Servers receive query requests from the clients,
break them into partial queries, taking the database parti-
tioning into account, and forward the partial queries to the
appropriate Data Servers. Data Servers process the partial
queries locally and reply to Edge Servers. Edge Servers
then post-process the partial results to answer the original
queries and reply to the clients. Partitioning information is
maintained as soft state by each Edge Server; all permanent
state is stored at the Durability Servers. As a consequence,
creating a new Edge Server or recovering a crashed one is
straightforward.

C. Data Servers

Data Servers execute transactions, i.e., sequences of SQL
queries terminating with a commit or an abort statement.
Each transaction has a unique identifier. We assume the
traditional ACID properties of transactions: atomicity, con-
sistency, isolation (i.e., serializability), and durability [5].

Data Servers keep partitions of the data set in in-memory
databases for fast transaction processing. Although Data
Servers are oblivious to the global data partitioning, they are
aware of which Data Servers are involved in the transactions
they execute. To terminate a transaction consistently and
atomically, Edge Servers require all Data Servers involved
in the transaction—those which executed the transaction’s
partial queries—to run a Non-Blocking Atomic Commitment
(NBAC) protocol.

In the Atomic Commitment problem, all participants must
vote and agree on committing or aborting a transaction; the
transaction is committed iff all participants vote to commit
it. NBAC solves a relaxed version of the problem in which
the decision may be abort if some participant is suspected
to crash, despite all participants voting to commit. The
protocol is non-blocking because progress is guaranteed
despite the failure of any participant (i.e., Data Server) or the
coordinator (i.e., relevant Edge Server). If the coordinator or
a Data Server fails before committing the transaction, it will
be aborted by the remaining Data Servers.

D. Durability Servers

Durability Servers play a key role in the execution of
NBAC. Once requested by the Edge Server, Data Servers
send their votes to the Durability Servers to be ordered and
logged. Durability Servers implement the Paxos protocol [6]
to totally order all votes received. The ordered votes for a
committing transaction are seen by all Data Servers involved
in the transaction, which locally abide to the outcome of each
transaction they have taken part in. Alongside the votes for a
given transaction, Data Servers also forward the updates (i.e.,
SQL statements) that they have performed in the context of
the committing transaction to the Durability Servers. Then,
the Durability Servers, by means of the Paxos protocol,
ensure that the votes and corresponding updates are stored
in stable storage.

In case of a Data Server crash, a new Data Server is
created to replace it. In principle, the new Data Server can
be brought up-to-date by replaying all the updates that the
crashed server executed, in commit order. Missing updates
are retrieved from the Durability Servers in the right order
by scanning the Paxos logs. In practice, Durability Servers
perform several optimizations in order to speed up recovery,
as described later.

E. Recovery Servers

Recovery Servers speed up recovery without compromis-
ing normal transaction processing. Their role is twofold: (a)
minimizing the extra work that Durability Servers have to
perform during normal processing and recovery; and (b)
increasing system availability by speeding up the creation
of a new Data Server to replace a failed one. We explain
how these goals are achieved in the next section.

III. RECOVERY ARCHITECTURE

A. Baseline approach

In the baseline approach, to recover a Data Server the
new server first fetches and installs the latest image created
of the crashed server and then applies the tail of the log
corresponding to the committed transactions not included in
the image.

To reduce the work done by the Durability Servers
during normal execution and the amount of information to
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Figure 1. Transaction processing architecture

be retrieved from them upon recovery, Data Servers take
remote checkpoints of their in-memory databases. These
checkpoints are stored on the Recovery Servers and taken
asynchronously to minimize performance loss at the Data
Servers.

Since Data Servers rely on a local database engine for
transaction execution, we assume that the engine has a
mechanism to take checkpoints asynchronously (e.g., fuzzy
checkpoints [7]) and provides some control over where these
checkpoints are stored. In particular, they should be kept
remotely, and not on the server’s local disk. We discuss
in Section IV how this mechanism was implemented in
middleware, with little database support.

In addition to checkpointing their state, Data Servers
also forward to Recovery Servers mutative statements (e.g.,
update, insert, delete) of committed transactions, to which
hereafter we refer as committed updates. To recover from a
failure, a small log tail may have to be recovered from the
Durability Servers as well. This log tail contains transactions
that have been committed, but whose updates have not
reached the Recovery Servers because of the crash of the
Data Server. The log tail is expected to be small since Data
Servers forward committed updates to Recovery Servers
upon transaction commit.

During recovery, the new server installs the last check-
point of the crashed Data Server and asks the Recovery
Server for the list of committed updates—notice that since
Data Servers use FIFO channels to send updates to Recovery
Servers, the list may be incomplete, but it does not contain

holes. After receiving the list of committed updates from
a Recovery Server, the new server sends a request to a
Durability Server to fetch the log tail, which will be used to
complete the list of committed updates.

Recovery is complete and new transactions can be pro-
cessed once the checkpoint is installed and all missing
committed updates have been executed.

B. On-Demand Recovery

On-Demand Recovery reduces recovery time by accepting
new transactions before processing all updates in the list of
committed updates. To implement this, we replace the list
of committed updates by a structure called Query Index.
The Query Index is a directed acyclic graph in which
vertices represent committed updates and edges represent
their dependencies. Statements that change the same data
items are ordered in the index according to the commit order
of the transactions to which they belong. The index is kept in
memory for performance and does not grow indefinitely: on
a successful checkpoint, updates included in the checkpoint
are removed from the Query Index.

The Query Index is used to look up update operations that
must be executed before new incoming queries—precisely,
because they conflict with these queries. The motivation
for this scheme is to amortize the cost of recovery across
incoming queries. Moreover, to minimize the work to be
done for future queries and ensure that all updates in
the Query Index will be executed against the database, a
background task continuously applies queries from the index



to the database. Thus, eventually the index will be emptied,
speeding up the execution of new queries.

The design of our indexing structure was guided by
the observation that transactions in modern multi-tier ar-
chitectures are built from parameterized templates (e.g.,
SQL statements), defined before the system starts to accept
transactions and instantiated during the execution. As a
result, the query space is well-defined and dependencies
can be determined offline, either automatically, by parsing
transaction templates, or manually, if the set of templates
is reasonably small. In the case of the TPC-C benchmark,
used in the evaluation presented in this paper, we initially
extracted the needed information from the transaction tem-
plates manually, and then confirmed the results using an SQL
Inspector tool, developed in our group [8].

The Query Index builds on two concepts:
• The Query Descriptor of query Q indicates which

attributes in Q should be used for storing it in the Query
Index and retrieving its dependencies from the index.

• The Cover Graph of query Q is the set of queries
in the index upon which Q depends together with their
dependencies (i.e., it is a subgraph of the Query Index).

C. Query Index by example

We illustrate the specifics of the indexing technique with
a simple example. Assume a table Account with two fields,
account number (aid), used as the primary key, and balance
(bal). We consider the query types below, upon which the
following transaction templates are defined.

Query types:
Query SQL statement
Rate(r) update Account set bal=bal*r
Ins(x, v) insert into Account(aid,bal) values (x, v)
Add(x, v) update Account set bal=bal+v where aid=x

Transaction templates:
Transaction Defined as Description
AddInterest(r) Rate(r) increase balance of

all accounts
NewAccount(x, v) Ins(x, v) create new account
Transfer(x, y, v) Add(x,−v), transfer v from

Add(y, v) account x to y

From the query types above, the descriptors below will be
built.1 Query Rate depends on any other queries of types
Rate, Ins, and Add, despite their account numbers, if any.
Queries Ins and Add will be indexed based on their account
number. Ins depends only on Rate; Add depends on Rate
and on any other query of type Ins and Add defined on the
same account number. In more complex workloads (e.g.,

1Notice that our notion of dependency is quite conservative: one query
depends on another if they require update locks on common rows—we
assume that inserts lock the complete table. While more sophisticated
notions of dependency could be used, we observed experimentally that
even a simple one can provide good results.

TPC-C), we can also incorporate information about tables,
columns and values accessed by the queries to establish
dependencies (c.f. Section IV).

Query descriptors:
Query Index Depends on
Rate(r) – Rate(?), Ins(?, ?), Add(?, ?)
Ins(x, v) x Rate(?)
Add(x, v) x Rate(?), Ins(x, ?), Add(x, ?)

Assume now that the Query Index contains four
queries: Rate(r), Ins(y, v1), Add(x,−v2), and Add(y, v2),
created after AddInterest(r), NewAccount(y, v1), and
Transfer(x, y, v2) were executed, in this order. In the Query
Index, these queries are stored as depicted next.

Add(x,−v2)

++XXXXXXXXXXXXXXX

Ins(y, v1) // Rate(r)

Add(y, v2)

66llllll

A new transaction Transfer(z, x, v3) will create queries
Add(z,−v3) and Add(x, v3), with cover graphs Rate(r)
and Add(x,−v2) → Rate(r), respectively. Thus, before
Add(z,−v3) can be submitted, Rate(r) must be executed
against the database; Add(x, v3) can be only executed after
Rate(r) and Add(x,−v2) have been executed, in this order.

D. Synchronizing recovery sources

To restore the state of a crashed Data Server, a new server
uses information from: (a) the last checkpoint taken by the
crashed server, (b) the Query Index, and (c) the log tail.
Recovery must ensure that the combination of these data
sources will not lead to lost and duplicated transactions.

We use a lazy mechanism to remove transactions from
the Query Index after a checkpoint. While this mechanism
avoids lost transactions, it may lead to duplicates (i.e.,
transactions that are both in a checkpoint and in the Query
Index). Removing duplicates from the Query Index is based
on two characteristics of the system:
• Data Servers have a fixed pool of working tasks (i.e.,

those that submit transactions to the local in-memory
database), whose number is defined by the Data Server
concurrency level, a parameter of the system.

• Data Server checkpoints are task-prefix consistent: for
every working task, if a transaction committed by the
task is included in the checkpoint, then all transactions
previously committed by the task are also included.

Tracking duplicated transactions is a two-step procedure:
First, we augment the in-memory database with a vector
with one entry per working task, implemented as an extra
database table. Each entry in this vector stores the identifier
of the last transaction committed by the task, and is updated



by an additional operation automatically added to each
mutative transaction. Second, each update in the Query Index
contains the identifier of the task that executed it. Since there
is one entry per task in the vector and each task modifies
its own entry only, this mechanism does not introduce data
contention—although it introduces an additional small table
and one more operation per transaction.

To remove duplicates, after installing the last checkpoint,
the new Data Server retrieves the vector of transaction
identifiers and removes all updates from the Query Index
whose identifiers are in the vector, together with all the
updates that precede them in the index.

A similar procedure is used to avoid duplicates in the log
tail provided by the Durability Servers: The Query Index
keeps a vector of transaction identifiers, one per Data Server
working task, containing the identifier of the last committed
transaction whose updates have been stored in the index.
When the Data Server requests the log tail from a Durability
Server, it includes in the request its vector of transaction
identifiers.

To build the log tail for a Data Server, the Durability
Server scans its log twice: once backward looking for trans-
actions in the transaction identifiers vector, and once forward
looking for transactions that succeed those transactions in
the log; only these transactions enter the log tail.

IV. IMPLEMENTATION

We integrated our protocols and the Recovery Servers
into Sprint [4], a middleware infrastructure implemented in
Java. Data Servers run MySQL with InnoDB storage engine.
InnoDB is a disk-based storage engine. We ensure that data
processing is “in memory” by carefully selecting data sets
that fit the main memory of each Data Server and disabling
synchronous disk writes.

In order to perform remote checkpoints, we configured
Data Servers to use Recovery Server disks using ATA over
Ethernet (AoE) [9]. Each Data Server has at the Recovery
Server a separate disk partition and a dedicated AoE server
daemon (vbladed) making the partition accessible over the
network. A Data Server mounts a remote partition into its
file system and uses it as InnoDB data and log directories.

InnoDB does not provide direct control over checkpoints.
In our experiments we set the maximum log file size to
bound checkpoint intervals and periodically discard the con-
tents of the Query Index. Checkpoints can be observed by
monitoring the Log Sequence Number of the last checkpoint
with MySQL’s show engine InnoDB status command. More-
over, upon restart, we must instruct MySQL to install the last
checkpoint without applying its log tail to it, otherwise most
of the updates in the Query Index would be conservatively
executed against the database. InnoDB does not provide this
functionality. Thus, in the experiments we used a trimmed
log containing only the last checkpoint.

We divided the TPC-C database into logical data items,
each one indexed by a key composed of table, column,
and row identifiers. For vertical partitioning, we divided
tables warehouse, customer, and stock into two parts: one
with read-only columns and the other with the rest. Tables
new order, order, and order line do not make this distinc-
tion, while table district defines two columns that can be
updated as separate partitions. For horizontal partitioning,
the key is mostly based on values of warehouse id and
district id, however it is extended with additional attributes:
for the stock table the extra attribute is item id; for tables
order, order line, and new order it is order id. We consid-
ered neither table history nor table item; the former is only
modified with inserts, and the latter is a read-only table.

The Query Index uses three data structures (see Figure 2):
a linked list of committed updates, the dependency graph,
and a hash table of data items. A transaction consists of its
identifier, the identifier of its working task, and a sequence
of updates. The Query Index stores transaction updates in the
linked list, ordered according to the execution order. Vertices
in the dependency graph are pointers to the actual updates;
edges describe dependencies between them. The hash table
is the starting point for the dependency check: it maps a data
item identifier to the most recent update in the dependency
graph affecting this data item.

x

y

z

Data item
Hash Table

Dependency
Graph

〈latest update〉

Add(x,−v2)

Add(y, v2)

Ins(y, v1)

Rate(r)

〈earliest update〉

Committed
Updates

Figure 2. Query Index data structure

V. EVALUATION

A. Experimental setup

We ran all the experiments in a cluster of Dell SC1435
servers equipped with two dual-core AMD-Opteron 2.0 GHz
processors, 4 GB of main memory, and a 73 GB 15krpm
SAS disk. The servers are interconnected through an HP
ProCurve2900-48G Gigabit Ethernet switch. We used up to
18 nodes in the experiments. Each logical server ran on a
dedicated node, and Edge Servers were integrated with the
workload generator, which ran multiple client threads. There
were 3 nodes hosting Durability Servers, and these had the
on-disk write cache disabled to perform synchronous disk
writes. The remaining nodes were assigned to the Recovery



Server (1 node), Data Servers (1 to 6 nodes), Edge Servers
(1 to 7 nodes), and one additional node collected data from
the workload generators.

B. TPC-C benchmark analysis

We initially analyzed query dependencies in TPC-C. For
this purpose we created a Query Index with approximately
69000 updates, corresponding to the execution of 4800 TPC-
C transactions, and checked it against a recovery trace with
approximately 6000 new incoming TPC-C transactions. For
each transaction in the trace we counted its dependencies in
the Query Index before removing the dependencies from the
index, as it would happen in an execution of the system.

Figure 3 shows the ordered dependency ratio of transac-
tions in the trace. The dependency ratio of a transaction is
calculated as the number of dependencies the transaction has
in the Query Index divided by the total number of updates
currently in the index. The results show that less than
0.6% of the transactions in the trace (35 transactions) have
dependencies within the range of 1%–5.2%; approximately
4% are within the range of 0.1%–5.2%; and more than 95%
of new incoming transactions conflict with less than 0.1%
of the updates in the Query Index.
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In Figure 4 we considered how the Query Index evolved
during the execution. The first 1000 transactions in the
trace bring the Query Index to less than half of its original
size. We also observed that at the end of the execution,
about 11000 updates remained in the index, that is, none of
the transactions in the trace depended on these updates. It
turns out that those are insert statements accessing TPC-C’s
history table, never read nor modified by other transactions,
however required by the benchmark. In real runs of the
system (i.e., in the rest of our experiments), such statements
would be submitted to the database by the background task.
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C. Recovering a Data Server

We compared On-Demand recovery with the baseline
using four scenarios (see Table I). In each scenario we
varied the frequency of checkpoints and the size of the
Query Index. In scenario (i), for example, the index con-
tained approximately 69000 updates from 4800 transactions,
corresponding to 17.6 MBytes of data. In this configuration
we set the log size to 5 MBytes, resulting in a throughput
of approximately 73 transactions per second. Notice that al-
though more sparse checkpoints lead to better performance,
they also result in larger indexes, since garbage collection
of dependencies in the Query Index is less frequent.

Scenario (i) (ii) (iii) (iv)
Database size 2.5 GBytes
Query Index

number of transactions 4.8k 10k 30k 54k
number of updates 69k 141.6k 424.1k 762k
total size (MBytes) 17.6 36.1 108.1 194.2

Throughput (TPS) 73 81 80 84
Log file size (MBytes) 5 10 25 50
Checkpoint frequency (min) ≈ 1 ≈ 2 ≈ 6 ≈ 10

Table I
RECOVERY SCENARIOS

Table II presents the approximate recovery times in sec-
onds of each technique. The recovery time is the time it
takes for a recovering Data Server to start accepting new
transactions. For baseline we show the breakdown of its two
main activities. Installing a remote checkpoint is a relatively
quick operation: all what it takes is to instruct MySQL
to bootstrap using the remote disk located at a Recovery
Server. Consequently, retrieving the log tail amounts to
most of the time reported for this activity, which is mainly
related to serializing and de-serializing the log structure. On-
Demand Recovery addresses the main source of overhead



in recovering a Data Server. In the most favorable setup,
scenario (i), it leads to a recovery speedup of 2.1 times.
Although the technique is less effective when checkpoints
are sparse, due to the growth of the Query Index, it was
beneficial in all the scenarios we considered.

Scenario (i) (ii) (iii) (iv)
Baseline 25s 34s 109s 237s

install checkpoint and
retrieve committed updates 3s 6s 20s 37s
apply committed updates 22s 28s 89s 200s

On-Demand Recovery 12s 24s 88s 209s
Improvement 2.1× 1.4× 1.2× 1.1×

Table II
RECOVERY TIMES

D. Recovery history

We take now a closer look at a recovering Data Server.
Figures 5–8 show the throughput and response time during
recovery in scenarios (i) and (iii). The graphs also show the
number of dependencies (i.e., committed updates) applied
to the database during recovery. Notice that the graphs have
a primary and a secondary y axis; throughput and response
time are reported in the primary axis (left side of the graph);
dependencies in the secondary axis (right side of the graph).
From the graphs, performance is driven by the fact that
pages should be loaded into main memory (until we reach
the “in-memory effect”, when all pages are loaded) and
dependencies should be applied to the database. In scenarios
(i) and (iii), all dependencies are applied after 42 and 164
seconds, respectively.

The drops in throughput and corresponding spikes in
response time are related to the checkpoint mechanism
used by InnoDB. InnoDB implements a fuzzy checkpoint
technique, which means that in principle performance should
not suffer during checkpoints. In reality, however, InnoDB
flushes dirty pages to disk based on ranges of their Log
Sequence Numbers (LSNs), assuming a somehow uniform
distribution of LSNs. Under some workloads, such as TPC-
C, a large number of dirty pages fall on the same range,
leading InnoDB to flush most of its buffer pool pages.
In addition to the fuzzy checkpoint mechanism, InnoDB
uses two log files on a rotating basis. Before a file can be
reused, InnoDB has to ensure that the database image on
disk contains all pages logged in the file, forcing modified
pages to be flushed.

E. Recovery Servers

Figure 9 considers the number of Data Servers that can
be handled by a single Recovery Server in scenario (i) for
moderate (i.e., 50 TPS) and high load (i.e., 73 TPS). In these
experiments we created six disk partitions in one Recovery
Server and run up to 6 AoE servers, each one serving one
Data Server. Under moderate load a single Recovery Server

can serve up to 3 Data Servers with a loss of less than 9%
in throughput; under high load 2 Data Servers can be served
with a throughput loss of 7% at most.

VI. RELATED WORK

In this paper, we have introduced a remote recovery
architecture, which allows the recovery of a crashed Data
Server without relying on its local state. The recovered
state comes from Recovery Servers (i.e., database checkpoint
and missing updates) and Durability Servers (i.e., log tail).
Even though in principle it is possible to rebuild the state
of a Data Server from the logs stored at the Durability
Servers only, we can speed up the procedure by using remote
checkpoints and applying a small log tail. Similar ideas have
been taken by other systems, such as Big Table [10], where
major “contractions” (i.e., checkpoints) are durably stored
in GFS [11]. A major contraction (i.e., applying log tail) is
also performed on recovery, prior to restart. The difference
between our approach and these works is in how we store
and structure the log tail (i.e., in the memory of the Query
Index for faster recovery), in how we do recovery (i.e., on
demand), and in the richer query semantics that we can
support (e.g., SQL-based databases).

Several works have used group communication to imple-
ment full database replication, and some of these explicitly
discuss recovery (e.g., [12], [13], [14]). In [12] the authors
discuss how to bring a crashed site (or a brand new one) back
up without stopping transaction processing. The recovered
site can only accept new transactions once the recovery
procedure has finished. In [13] crashed sites can recover
in parallel and at the same time several active replicas can
serve them the needed data. The protocol in [14] proposes an
adaptive approach which allows a recovering server to catch
up with operational servers by transferring either the recent
values of data items or the sequence of missed updates. In
all these works, checkpoints are retrieved from operational
replicas, and hence, at least one replica must be available to
allow a database to recover. Our recovery architecture does
not preclude replication, but does not rely on it for recovery;
as presented earlier, Data Servers are not replicated.

Checkpoints often do not include all transactions executed
in the system, since checkpointing and transaction process-
ing run in parallel. Hence, a log tail with post checkpoint
updates must be applied to get the database back to its
consistent state before the crash. Much of the research
community (e.g., [15], [16], [17]) and all of commercial
database systems we are aware of take the approach of
applying the entire log tail prior to taking new queries.
We believe this should be avoided if possible in order
to decrease the downtime of the database. On-Demand
Recovery takes query traffic as soon as the database installs
the last checkpoint, thereby amortizing the replay of the log
tail across the incoming queries, increasing the availability
of our system.
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Figure 5. Throughput in scenario (i)

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300
 0

 1

 2

 3

 4

 5

 6

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
)

N
u

m
b

e
r 

o
f 

a
p

p
lie

d
 d

e
p

e
n

d
e

c
ie

s
 (

x
1

0
0

0
)

time (secs)

Dependencies
Resp. time

Figure 6. Response time in scenario (i)
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Figure 7. Throughput in scenario (iii)
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Figure 8. Response time in scenario (iii)

In [18], [19], the authors minimize the down time by
accepting new queries and using them to indicate which
items are to be applied from the log to the database: data
items are recovered only after being accessed within a new
transaction. The recovery process is done at page level.
Likewise, On-Demand Recovery also identifies updates in
the log that must be applied to the database before executing
new queries. This is done at an operation level though,
and is more appropriate for middleware solutions. Besides,
all remaining operations are opportunistically applied, as
background traffic, to speed up the execution of new queries.

The recovery scheme for in-memory databases of [20] has
some similarities with our approach: redo logs are shipped
to a database server to be stored, as done in our Durability
Servers, and the database server keeps a stable version of the
database for recovery purposes. In our approach, checkpoints

and logs are kept in different locations. The checkpoints are
used for On-Demand Recovery, and are not the only source
of recovery information in the unlikely event of a crash of
all databases. Differently, in [20] recovery information is
stored only at the database server. Finally, the system in
[20] is forced to wait until the server is recovered in the
case of a failure.

In ARIES [17], [21], the authors introduce a recovery
mechanism based on write-ahead logging and allow for some
parallelization of recovery. In their scheme several passes are
done over the log. The redo phase applies all the entries in
the log tail, even if some of the transactions are to be undone.
The undo log is analyzed to exclude aborted transactions
from being re-executed, and a redo phase is used to apply
the log tail on top of the latest checkpoint prior to restart.
Differently, On-Demand Recovery eventually executes all
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Figure 9. Data Servers per Recovery Server

redo entries; if a transaction has been committed to our
Durability Server, it will be recovered. Also, in our scheme,
we amortize the recovery of the log tail across the incoming
queries.

There has been a significant body of work on the topic
of optimal checkpointing [22], [23], [24]. These works have
primarily focused on finding the optimal checkpoint interval.
In [22] the authors show that the optimal checkpoint interval
depends on the load of the system and hence is variable.
In [23] the authors demostrate that the optimal checkpoint
interval is directly related to the failure rate and in [24]
the authors present a failure-dependent strategy, which un-
der certain assumptions results in higher availability than
previous methods. These works are complementary to our
approach. On-Demand Recovery can be used to amortize the
recovery of the remaining log tail on incoming queries.

VII. CONCLUSIONS

In recent years, some researchers in the database commu-
nity [25], [2] have argued for a need to build application-
specific solutions, which have been shown to outperform
generic approaches. We support this view and argue that
there are many gains possible, both in performance and
availability, in middleware data management systems de-
signed for specific application spaces (e.g., e-commerce)
as compared to generic database solutions. In this paper,
we presented a new recovery scheme that can speed up
recovery by more than two times in a large application space
represented by the TPC-C benchmark.

We argue that database systems should open up and
make their internal parts more easily available to middleware
developers, perhaps through APIs or novel frameworks (e.g.,
[26]), to facilitate application-specific innovations in dis-
tributed data management systems at fine-grain levels. Some
work in the systems research community has already started

moving in this direction, such as Stasis [25], a framework
that provides low-level transactional support and many of
the mechanisms typically found in databases.
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APPENDIX: ON-DEMAND RECOVERY CORRECTNESS

In the following, C is a database checkpoint, and QI and
LT are, respectively, the corresponding Query Index and log
tail received by the new Data Server. VTI is the vector of
transaction identifiers associated to C or QI .

Proposition 1: Recovery avoids lost transactions.
Proof sketch: For a contradiction, assume T is lost upon
recovery. From the database properties, T is not included
in any C. Since T committed, however, it must be in the
Durability Servers’ logs, but T is neither in QI nor in LT—
otherwise it would not be lost. In the former case, it must
be that T precedes some transaction in VTIQI , and thus, T
must be in QI , unless it was removed from the index after
being included in it. But T is only removed from QI after
it is included in a C, a contradiction. �

Proposition 2: Recovery avoids duplicated transactions.
Proof sketch: For a contradiction, assume T is executed
more than once. Thus, T must be in more than one of C,
QI , and LT . From the algorithm, the invariant next holds:
VTI C [t] ≤ VTIQI [t] ≤ T , where t is the working task
that executed T and a ≤ b means t executed a before b, or
they are the same transaction. From the algorithm, (a) only
transactions in QI that succeed transactions in VTI C are
executed, and (b) only transactions that succeed transactions
in VTIQI are included in LT . Thus, if T ∈ C, it will not
be executed even if T ∈ QI (from (a)) and T 6∈ LT (from
the invariant and (b)); if T ∈ QI , then T 6∈ LT (from (b)),
a contradiction that completes the proof. �

Proposition 3: Recovery preserves commit order of con-
flicting transactions.
Proof sketch: Let T commit before T ′ before recovery. We
consider first three cases: (a) {T, T ′} ⊆ C; (b) T ∈ C and
T ′ ∈ QI ; (c) T ∈ QI and T ′ ∈ LT . Case (a) is trivial;
cases (b) and (c) hold because after installing C, recovery
executes first transactions in QI and then in LT . Notice that
if T ′ ∈ C then T ∈ C, from database concurrency control
and recovery. The remaining cases are: (d) {T, T ′} ⊆ QI ,
(e) {T, T ′} ⊆ LT , and (f) T ∈ LT , T 6∈ QI , and T ′ ∈
QI . In case (d), since T committed before T ′, it will be
included in QI before T ′; moreover, since they conflict, T ’s
updates will precede T ′’s in QI , determining their execution
order upon recovery. In case (e), T will enter the Durability
Server logs before T ′. Since transactions in LT are replayed
following their order in LT , T ’s updates will precede T ′’s.
Finally, in case (f) notice that since T committed before T ′

and T 6∈ QI , then T must have been later removed from QI .
Only transactions included in a checkpoint are removed from
QI , thus T ∈ C, and we fall back to case (b)—additionally,
from Proposition 2, even if T ∈ LT , it will not be executed
again, upon recovery, after T ′. �


