
Ring Paxos: A High-Throughput Atomic Broadcast Protocol∗

Parisa Jalili Marandi
University of Lugano

Switzerland

Marco Primi
University of Lugano

Switzerland

Nicolas Schiper
University of Lugano

Switzerland

Fernando Pedone
University of Lugano

Switzerland

Abstract

Atomic broadcast is an important communication primi-
tive often used to implement state-machine replication. De-
spite the large number of atomic broadcast algorithms pro-
posed in the literature, few papers have discussed how to
turn these algorithms into efficient executable protocols.
Our main contribution, Ring Paxos, is a protocol derived
from Paxos. Ring Paxos inherits the reliability of Paxos and
can be implemented very efficiently. We report a detailed
performance analysis of Ring Paxos and compare it to other
atomic broadcast protocols.

1. Introduction

State-machine replication is a fundamental approach to
building fault-tolerant distributed systems [18, 24]. The
idea is to replicate a service so that the failure of one or more
replicas does not prevent the operational replicas from ex-
ecuting service requests. State-machine replication can be
decomposed into two requirements regarding the dissemi-
nation of requests to replicas: (i) every nonfaulty replica
receives every request and (ii) no two replicas disagree on
the order of received requests. These two requirements
are often encapsulated in a group communication primitive
known as atomic broadcast or total-order broadcast [13].

Since atomic broadcast is at the core of state-machine
replication, its performance has an important impact on the
overall performance of the replicated service. As a conse-
quence, a lot of effort has been put into designing efficient
atomic broadcast algorithms [8]. Despite the large number
of atomic broadcast algorithms proposed in the literature,
however, few works have considered how to turn them into
efficient executable protocols. In this paper, we discuss the
implementation of a highly efficient atomic broadcast pro-
tocol. Although the discussion focuses on atomic broadcast
in a clustered system, some of the ideas are general enough
to be used as guidelines in other contexts.

∗This work was partially funded by the Swiss National Science Foun-
dation (#200021-121931), and by the Hasler Foundation (#2316).

We are interested in efficiency as a measure of through-
put. More precisely, we define the maximum throughput
efficiency (MTE) of an atomic broadcast protocol as the
rate between its maximum achieved throughput per receiver
and the nominal transmission capacity of the system per re-
ceiver. For example, a protocol that has maximum delivery
throughput of 500 Mbps in a system equipped with a giga-
bit network has an MTE of 0.5, or 50%. An ideal proto-
col would have an MTE of 1. Due to inherent limitations
of an algorithm, implementation details, and various over-
heads (e.g., added by the network layers), ideal efficiency is
unlikely to be achieved.

This paper presents Ring Paxos, a highly efficient atomic
broadcast protocol. Ring Paxos is based on Paxos and inher-
its many of its characteristics: it is safe under asynchronous
assumptions, live under weak synchronous assumptions,
and resiliency-optimal, that is, it requires a majority of non-
faulty processes to ensure progress. We revisit Paxos in
light of a number of optimizations and from these we derive
Ring Paxos. Our main design considerations result from
a careful use of network-level multicast (i.e., ip-multicast)
and a ring overlay.

Network-level multicast is a powerful communication
primitive to propagate messages to a set of processes in a
cluster. As shown in Figure 1, ip-multicast can provide
high message throughput when compared to unicast com-
munication (point-to-point). This happens for two reasons.
First, ip-multicast delegates to the interconnect (i.e., ether-
net switch) the work of transferring messages to each one
of the destinations. Second, to propagate a message to all
destinations there is only a single system call and context
switch from the user process to the operating system, as op-
posed to one system call and context switch per destination,
as with unicast. For example, with 10 receivers, ip-multicast
provides almost 10 times the throughput of unicast.

However, ip-multicast communication is unreliable, i.e.,
subject to message losses. In modern networks, unrelia-
bility comes mostly from messages dropped due to buffer
overflow. By carefully configuring maximum ip-multicast
sending rates and communication buffer sizes, one can min-
imize such losses. The situation becomes more problematic

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

M
ax

im
um

 th
ro

ug
hp

ut
 (

M
bp

s)
 p

er
 r

ec
ei

ve
r

Number of receivers

ip-multicast
unicast

Figure 1. ip-multicast versus unicast (udp) with
one sender (hardware setup c.f. Section 6)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Pe
rc

en
ta

ge
 o

f
lo

st
 p

ac
ke

ts

Aggregated sending rate (Mbps)

1 sender
2 senders
5 senders

Figure 2. one versus multiple simultaneous ip-
multicast senders (14 receivers)

if multiple nodes can simultaneously use ip-multicast since
synchronizing distributed senders, to reduce collisions and
avoid buffer overflow, is a difficult task, if possible at all.

Figure 2 illustrates the problem with concurrent ip-
multicast senders. The figure shows experiments with 1, 2
and 5 senders; the aggregated sending rate is uniformly dis-
tributed among the senders. Although ip-multicast is quite
reliable with a single sender, reliability decreases quickly
with two and five senders (e.g., more than 15% of packets
lost with five senders at high sending rates). Notice that
even low percentages of packet loss can negatively impact
the system since they will result in retransmissions, which
will make the situation worse.

Ring Paxos is motivated by the observations above. It
uses a single ip-multicast stream to disseminate messages
and thus benefit from the throughput that ip-multicast can
provide without falling prey to its shortcomings. To evenly
balance the incoming and outgoing communication needed
to totally order messages, Ring Paxos places f + 1 nodes
in a logical ring, where f is the number of tolerated fail-
ures. Ring Paxos is not the first atomic broadcast protocol
to place nodes in a logical ring (e.g., Totem [2], LCR [21]
and the protocol in [10] have done it before), but it is the
first to achieve very high throughput while providing low
latency, almost constant with the number of receivers.

We have built a prototype of Ring Paxos and compared
it to other atomic broadcast protocols. In particular, Ring
Paxos can reach an MTE of 90% in a gigabit network, while
keeping delivery latency below 5 msec. Moreover, both
throughput and latency remain approximately constant with
an increasing number of receivers (up to 25 receivers in
our experiments). Previous implementations of the Paxos
protocol, based either on ip-multicast only or on unicast
only, have an MTE below 5%. The only other protocol that

achieves a high MTE we know of is LCR [21], a pure ring
based protocol. With 5 nodes in the ring LCR has an MTE
of 95%, but it has a latency that increases linearly with the
number of receivers and relies on stronger synchronous as-
sumptions than Ring Paxos.

Briefly, this paper makes the following contributions:
First, it proposes a novel atomic broadcast algorithm for
clustered networks derived from Paxos. Second, it describes
an implementation of this algorithm. Third, it analyses its
performance and compares it to other atomic broadcast pro-
tocols.

The remainder of the paper is structured as follows.
Section 2 describes our system model and the definition
of atomic broadcast. Sections 3 and 4 review Paxos and
present Ring Paxos, respectively. Section 5 comments on
related work. Section 6 evaluates the performance of Ring
Paxos and compares it quantitatively to a number of other
protocols. Section 7 concludes the paper.

2. Model and definitions

2.1. System model

We assume a distributed crash-recovery model in which
processes communicate by exchanging messages. Pro-
cesses can fail by crashing but never perform incorrect ac-
tions (i.e., no Byzantine failures). Processes have access to
stable storage whose state survives failures.

Communication can be one-to-one, through the primi-
tives send(p, m) and receive(m), and one-to-many, through
the primitives ip-multicast(g,m) and ip-deliver(m), where
m is a message, p is a process, and g is a group of processes.
Messages can be lost but not corrupted. In the text we refer
sometimes to ip-multicast messages as packets.

Ring Paxos, like Paxos, ensures safety under both asyn-
chronous and synchronous execution periods. The FLP im-
possibility result [11] states that under asynchronous as-
sumptions consensus and atomic broadcast cannot be both
safe and live. We thus assume the system is partially syn-
chronous [9], that is, it is initially asynchronous and even-
tually becomes synchronous. The time when the system be-
comes synchronous is called the Global Stabilization Time
(GST) [9], and it is unknown to the processes.

Before GST, there are no bounds on the time it takes for
messages to be transmitted and actions to be executed. Af-
ter GST, such bounds exist but are unknown. Moreover, in
order to prove liveness, we assume that after GST all re-
maining processes are correct—a process that is not correct
is faulty. A correct process is operational “forever” and can
reliably exchange messages with other correct processes.
Notice that in practice, “forever” means long enough for
consensus to terminate.

2.2. Consensus and atomic broadcast

Consensus and atomic broadcast are two distributed
agreement problems at the core of state-machine replica-
tion. The problems are related: atomic broadcast can be
implemented using a sequence of consensus executions [5].
Consensus is defined by the primitives propose(v) and de-
cide(v), where v is an arbitrary value; atomic broadcast
is defined by the primitives broadcast(m) and deliver(m),
where m is a message.

Consensus guarantees that (i) if a process decides v then
some process proposed v; (ii) no two processes decide dif-
ferent values; and (iii) if one (or more) correct process pro-
poses a value then eventually some value is decided by all
correct processes. Atomic broadcast guarantees that (i) if
a process delivers m, then all correct processes deliver m;
(ii) no two processes deliver any two messages in different
orders; and (iii) if a correct process broadcasts m, then all
correct processes deliver m.

3. Paxos

Paxos is a fault-tolerant consensus algorithm intended
for state-machine replication [19]. We describe next how
a value is decided in a single instance of consensus.

Paxos distinguishes three roles: proposers, acceptors,
and learners. A process can execute any of these roles, and
multiple roles simultaneously. Proposers propose a value,
acceptors choose a value, and learners learn the decided
value. Hereafter, Na denotes the set of acceptors, Nl the
set of learners, and Qa a majority quorum of acceptors (m-
quorum), that is, a subset of Na of size d(|Na|+ 1)/2e.

The execution of one consensus instance proceeds in a
sequence of rounds, identified by a round number, a posi-

tive integer. For each round, one process, typically among
the proposers or acceptors, plays the role of coordinator of
the round. To propose a value, proposers send the value to
the coordinator. The coordinator maintains two variables:
(a) c-rnd is the highest-numbered round that the coordina-
tor has started; and (b) c-val is the value that the coordinator
has picked for round c-rnd . The first is initialized to 0 and
the second to null.

Acceptors maintain three variables: (a) rnd is the
highest-numbered round in which the acceptor has partic-
ipated, initially 0; (b) v -rnd is the highest-numbered round
in which the acceptor has cast a vote, initially 0—it follows
that rnd ≤ v -rnd always holds; and (c) v -val is the value
voted by the acceptor in round v -rnd , initially null.

1: Algorithm 1: Paxos
2: Task 1 (coordinator)
3: upon receiving value v from proposer
4: increase c-rnd to an arbitrary unique value
5: for all p ∈ Na do send (p, (PHASE 1A, c-rnd))

6: Task 2 (acceptor)
7: upon receiving (PHASE 1A, c-rnd) from coordinator
8: if c-rnd > rnd then
9: let rnd be c-rnd

10: send (coordinator, (PHASE 1B, rnd , v -rnd , v -val))

11: Task 3 (coordinator)
12: upon receiving (PHASE 1B, rnd , v -rnd , v -val) from Qa

such that c-rnd = rnd
13: let k be the largest v -rnd value received
14: let V be the set of (v -rnd ,v -val) received with v -rnd =k
15: if k = 0 then let c-val be v
16: else let c-val be the only v -val in V
17: for all p ∈ Na do send (p, (PHASE 2A, c-rnd , c-val))

18: Task 4 (acceptor)
19: upon receiving (PHASE 2A, c-rnd , c-val) from coordinator
20: if c-rnd ≥ rnd then
21: let v -rnd be c-rnd
22: let v -val be c-val
23: send (coordinator, (PHASE 2B, v -rnd , v -val))

24: Task 5 (coordinator)
25: upon receiving (PHASE 2B, v -rnd , v -val) from Qa

26: if for all received messages: v -rnd = c-rnd then
27: for all p ∈ Nl do send (p, (DECISION, v -val))

Algorithm 1 provides an overview of Paxos. The algo-
rithm has two phases. To execute Phase 1, the coordina-
tor picks a round number c-rnd greater than any value it
has picked so far, and sends it to the acceptors (Task 1).
Upon receiving such a message (Task 2), an acceptor checks
whether the round proposed by the coordinator is greater
than any round it has received so far; if so, the acceptor
“promises” not to accept any future message with a round
smaller than c-rnd . The acceptor then replies to the coordi-
nator with the highest-numbered round in which it has cast

a vote, if any, and the value it voted for. Notice that the
coordinator does not send any proposal in Phase 1.

The coordinator starts Phase 2 after receiving a reply
from an m-quorum (Task 3). Before proposing a value in
Phase 2, the coordinator checks whether some acceptor has
already cast a vote in a previous round. This mechanism
guarantees that only one value can be chosen in an instance
of consensus. If an acceptor has voted for a value in a pre-
vious round, then the coordinator will propose this value;
otherwise, if no acceptor has cast a vote in a previous round,
then the coordinator can propose the value received from
the proposer. In some cases it may happen that more than
one acceptor have cast a vote in a previous round. In this
case, the coordinator picks the value that was voted for in
the highest-numbered round. From the algorithm, two ac-
ceptors cannot cast votes for different values in the same
round.

An acceptor will vote for a value c-val with correspond-
ing round c-rnd in Phase 2 if the acceptor has not received
any Phase 1 message for a higher round (Task 4). Voting
for a value means setting the acceptor’s variables v -rnd and
v -val to the values sent by the coordinator. If the acceptor
votes for the value received, it replies to the coordinator.
When the coordinator receives replies from an m-quorum
(Task 5), it knows that a value has been decided and sends
the decision to the learners.

In order to know whether their values have been decided,
proposers are typically also learners. If a proposer does not
learn its proposed value after a certain time (e.g., because its
message to the coordinator was lost), it proposes the value
again. As long as a nonfaulty coordinator is eventually se-
lected, there is a majority quorum of nonfaulty acceptors,
and at least one nonfaulty proposer, every consensus in-
stance will eventually decide on a value.

Algorithm 1 can be optimized in a number of ways [19].
The coordinator can execute Phase 1 before a value is re-
ceived from a proposer. In doing so, once the coordinator
receives a value from a proposer, consensus can be reached
in four communication steps, as opposed to six. Moreover,
if acceptors send Phase 2B messages directly to the learn-
ers, the number of communication steps for a decision is
further reduced to three (see Figure 3(a)).

4. Ring Paxos

Ring Paxos is a variation of Paxos, optimized for clus-
tered systems. In Section 4.1 we explain Ring Paxos assum-
ing a fixed coordinator, no process crashes, and no message
losses. In Section 4.2 we revisit these assumptions, and in
Section 4.3 we describe a number of optimizations. A proof
of correctness sketch is presented in the Appendix.

4.1. Normal operation

Algorithm 2 presents Ring Paxos; statements in gray are
the same for Paxos and Ring Paxos. As in Paxos, the exe-
cution is divided in two phases. Moreover, the mechanism
to ensure that only one value can be decided in an instance
of consensus is the same as in Paxos.

1: Algorithm 2: Ring Paxos

2: Task 1 (coordinator)
3: upon receiving value v from proposer
4: increase c-rnd to an arbitrary unique value
5: let c-ring be an overlay ring with processes in Qa

6: for all p ∈ Qa do send (p, (PHASE 1A, c-rnd , c-ring))

7: Task 2 (acceptor)
8: upon receiving (PHASE 1A,c-rnd ,c-ring) from coordinator
9: if c-rnd > rnd then

10: let rnd be c-rnd
11: let ring be c-ring
12: send (coordinator, (PHASE 1B, rnd , v -rnd , v -val))

13: Task 3 (coordinator)
14: upon receiving (PHASE 1B, rnd , v -rnd , v -val) from Qa

such that rnd = c-rnd
15: let k be the largest v -rnd value received
16: let V be the set of (v -rnd ,v -val) received with v -rnd =k
17: if k = 0 then let c-val be v
18: else let c-val be the only v -val in V
19: let c-vid be a unique identifier for c-val
20: ip-multicast (Qa∪Nl, (PHASE 2A, c-rnd , c-val , c-vid))

21: Task 4 (acceptor)
22: upon ip-delivering (PHASE 2A, c-rnd , c-val , c-vid)
23: if c-rnd ≥ rnd then
24: let v -rnd be c-rnd
25: let v -val be c-val
26: let v -vid be c-vid
27: if first(ring) then
28: send (successor, (PHASE 2B, c-rnd , c-vid))

29: Task 5 (coordinator and acceptors)
30: upon receiving (PHASE 2B,c-rnd ,c-vid) from predecessor
31: if v -vid = c-vid then
32: if not last(ring) then
33: send (successor, (PHASE 2B, c-rnd , c-vid))
34: else
35: ip-multicast (Qa ∪Nl, (DECISION, c-vid))

Differently than Paxos, Ring Paxos disposes a majority
quorum of acceptors in a logical directed ring (see Fig-
ure 3(b)(c)). The coordinator also plays the role of acceptor
in Ring Paxos, and it is the last process in the ring. Plac-
ing acceptors in a ring reduces the number of incoming
messages at the coordinator and balances the communica-
tion among acceptors. When the coordinator starts Phase 1
(Task 1), it proposes the ring to be used in Phase 2. The pro-
posed ring is stored by the coordinator in variable c-ring .

Proposer

Coordinator
Acceptor n

. . .

Acceptor 1

Acceptor 2

Learners

. . .

Proposers

Coord/Acceptor n

Acceptor 1

Learners

Acceptor 2

➀

➁⧸➄

➂

➃

v

Phase 2A

Phase 2B

Phase 2B

v

(a) (b) (c)

Phase 2A

Phase 2B

DecisionPhase 2B

ip-multicast

unicast

➀

➁

➂
➃

➄

. . .

(up to n-1)

Figure 3. Optimized Paxos (a) and Ring Paxos (b,c)

By replying to the coordinator, the acceptors implicitly ac-
knowledge that they abide by the proposed ring (Task 2).

In addition to checking what value can be proposed in
Phase 2 (Task 3), the coordinator also creates a unique iden-
tifier for the value to be proposed. Ring Paxos executes con-
sensus on value ids [10, 20]; proposed values are dissemi-
nated to the m-quorum and to the learners in Phase 2A mes-
sages using ip-multicast. Upon ip-delivering a Phase 2A
message (Task 4), an acceptor checks that it can vote for the
proposed value. If so, it updates its v -rnd and v -val vari-
ables, as in Paxos, and its v -vid variable. Variable v -vid
contains the unique identifier of the proposed value; it is
initialized with null. The first acceptor in the ring sends
a Phase 2B message to its successor in the ring. Although
learners also ip-deliver the proposed value, they do not learn
it since it has not been accepted yet.

The next acceptor in the ring to receive a Phase 2B mes-
sage (Task 5) checks whether it has ip-delivered the value
proposed by the coordinator in a Phase 2A message. This
is done by comparing the acceptor’s v -vid variable to the
value’s identifier calculated by the coordinator. If the con-
dition holds, then there are two possibilities: either the ac-
ceptor is not the last process in the ring (i.e., it is not the
coordinator), in which case it sends a Phase 2B message to
its successor in the ring, or it is the coordinator and then it
ip-multicasts a decision message including the identifier of
the chosen value. Once a learner ip-delivers this message, it
can learn the value received previously from the coordinator
in the Phase 2A message.

4.2. Handling abnormal cases

A failed coordinator is detected by the other processes,
which select a new coordinator. Before GST (see Sec-

tion 2.1) it is possible that multiple coordinators co-exist.
As Paxos, Ring Paxos guarantees safety even when multi-
ple coordinators execute at the same time, but it may not
guarantee liveness. After GST, eventually a single correct
coordinator is selected.

Lost messages are retransmitted. If the coordinator does
not receive a response to its Phase 1A and Phase 2A mes-
sages, it re-sends them, possibly with a bigger round num-
ber. Eventually the coordinator will receive a response or
will suspect the failure of an acceptor. To recover from
an acceptor failure, the coordinator re-executes Phase 1 and
lays out a new ring, excluding the failed acceptor.

When an acceptor replies to a Phase 1A or to a Phase 2A
message, it must not forget its state (i.e., variables rnd ,
ring , v -rnd , v -val , and v -vid) despite failures. There are
two ways to ensure this. First, by requiring a majority of ac-
ceptors to never fail. Second, by requiring acceptors to keep
their state on stable storage before replying to Phases 1A
and 2A messages.

Message losses may cause learners to receive only the
value proposed and not the notification that it was accepted,
only the notification without the value, or none of them.
Learners can recover lost messages by inquiring other pro-
cesses. Ring Paxos assigns each learner to a preferencial
acceptor in the ring, which the learner can ask for lost mes-
sages.

4.3. Optimizations

We introduce a few optimizations in Ring Paxos, most
of which have been described previously in the literature:
when a new coordinator is elected, it executes Phase 1 for a
number of consensus instances [19]; Phase 2 is executed for
a batch of proposed values, and not for a single value (e.g.,

[16]); one consensus instance can be started before the pre-
vious one has finished [19].

Placing an m-quorum in the ring reduces the number of
communication steps to reach a decision. The remaining
acceptors are spares, used only when an acceptor in the ring
fails.1 Finally, although ip-multicast is used by the coor-
dinator in Tasks 3 and 5, this can be implemented more
efficiently by overlapping consecutive consensus instances,
such that the message sent by Task 5 of consensus instance
i is ip-multicast together with the message sent by Task 3 of
consensus instance i + 1.

5. Related work

In this section we review atomic broadcast algorithms
and compare them analytically to Ring Paxos.

Several papers argued that Paxos is not an easy algorithm
to implement [4, 16]. Essentially, this is because Paxos is
a subtle algorithm that leaves many non-trivial design de-
cisions open. Besides providing insight into these matters,
these two papers present performance results of their Paxos
implementations. In contrast to Ring Paxos, these proto-
types implement Paxos as specified in [19]; no algorithmic
modifications are considered.

Paxos is not the only algorithm to implement atomic
broadcast. In fact, the literature on the subject is abun-
dant. In [8], five classes of atomic broadcast algorithms
have been identified: fixed sequencer, moving sequencer,
destination agreement, communication history-based, and
privilege-based.

In fixed sequencer algorithms (e.g., [3, 14]), broadcast
messages are sent to a distinguished process, called the se-
quencer, who is responsible for ordering these messages.
The role of sequencer is unique and only transferred to an-
other process in case of failure of the current sequencer. In
this class of algorithms, the sequencer may eventually be-
come the system bottleneck.

Moving sequencer protocols are based on the observa-
tion that rotating the role of the sequencer distributes the
load associated with ordering messages among processes.
The ability to order messages is passed from process to pro-
cess using a token. The majority of moving sequencer al-
gorithms are optimizations of [6]. These protocols differ in
the way the token circulates in the system: in some proto-
cols the token is propagated along a ring [6, 7], in others,
the token is passed to the least loaded process [15]. All the
moving sequencer protocols we are aware of are based on
the broadcast-broadcast communication pattern. According
to this pattern, to atomically broadcast a message m, m is
broadcast to all processes in the system; the token holder

1This idea is conceptually similar to Cheap Paxos [20], although Cheap
Paxos uses a reduced set of acceptors in order to save hardware resources,
and not to reduce latency.

process then replies by broadcasting a unique global se-
quence number for m. As argued in Section 1, allowing
multiple processes to broadcast at the same time leads to
message loss, which hurts performance.

Protocols falling in the destination agreement class com-
pute the message order in a distributed fashion (e.g., [5,
12]). These protocols typically exchange a quadratic num-
ber of messages for each message broadcast, and thus are
not good candidates for high throughput.

In communication history-based algorithms, the mes-
sage ordering is determined by the message sender, that
is, the process that broadcasts the message (e.g., [17, 23]).
Message ordering is usually provided using logical or phys-
ical time. Of special interest is LCR, which arranges pro-
cesses along a ring and uses vector clocks for message or-
dering [21]. This protocol has slightly better throughput
than Ring Paxos but exhibits a higher latency, which in-
creases linearly with the number of processes in the ring,
and requires perfect failure detection: erroneously suspect-
ing a process to have crashed is not tolerated. Perfect failure
detection implies strong synchrony assumptions about pro-
cessing and message transmission times.

The last class of atomic broadcast algorithms, denoted as
privilege-based, allows a single process to broadcast mes-
sages at a time; the message order is thus defined by the
broadcaster. Similarly to moving sequencer algorithms, the
privilege to order messages circulates among broadcasters
in the form of a token; Differently from moving sequencer
algorithms, message ordering is provided by the broadcast-
ers and not by the sequencers. In [2], the authors propose
Totem, a protocol based on a group membership service,
which is responsible for reconstructing the ring and regen-
erating the token in case of process or network failures.
In [10], fault-tolerance is provided by relying on a failure
detector. However, tolerating f process failures requires
a quadratic number of processes. A general drawback of
privilege-based protocols is their high latency: before a pro-
cess p can totally order a message m, p must receive the
token, which delays m’s delivery.

Ring Paxos combines ideas from several broadcast pro-
tocols to provide high throughput and low latency. In this
sense, it fits multiple classes, as defined above. To ensure
high throughput, Ring Paxos decouples message dissemi-
nation from ordering. The former is accomplished using
ip-multicast; the latter is done using consensus on message
identifiers. To use the network efficiently, processes execut-
ing consensus communicate using a ring, similarly to the
majority of privilege-based protocols. To provide reason-
able latency, the ring is composed of only f + 1 processes,
and is reconfigured in the case of failure.

In Table 1, we compare algorithms that are closest to
Ring Paxos in terms of throughput efficiency. All these pro-
tocols use a logical ring for process communication, which

Algorithm Class Communication Number of Synchrony
steps processes assumption

LCR [21] comm. 2f f + 1 strong
history

Totem [2] privilege (4f + 3) 2f + 1 weak
Ring+FD [10] privilege (f2 + 2f) f(f + 1) + 1 weak

Ring Paxos — (f + 3) 2f + 1 weak

Table 1. Comparison of atomic broadcast al-
gorithms (f : number of tolerated failures)

appears to be the best communication pattern when optimiz-
ing for throughput. For each algorithm, we report its class,
the minimum number of communication steps required by
the last process to deliver a message, the number of pro-
cesses required as a function of f , and the synchrony as-
sumption needed for correctness.

With Ring-Paxos, message delivery occurs as soon as
messages make one revolution around the ring. Its latency is
f + 3 message delays since each message is first sent to the
coordinator, circulates around the ring of f + 1 processes,
and is delivered after the final ip-multicast is received. In
contrast, LCR requires two revolutions and thus presents a
two-fold increase in latency. In Totem, each message must
also rotate twice along the ring to guarantee “safe-delivery”,
a property equivalent to uniform agreement: if a process
(correct or not) delivers a message m then all correct pro-
cesses eventually deliver m. Moreover, Totem puts twice
as many processes in the ring as Ring-Paxos, its latency is
thus multiplied by a factor of four. The atomic broadcast
protocol in [10] has a latency that is quadratic in f since a
ring requires more than f2 nodes.

6. Performance evaluation

In this section we comment on our Ring Paxos proto-
type, and then detail its experimental evaluation. We con-
sider the performance of Ring Paxos in the presence of mes-
sage losses and in the absence of process failures. Process
failures are hopefully rare events; message losses happen
relatively often because of high network traffic.

We ran the experiments in a cluster of Dell SC1435
servers equipped with 2 dual-core AMD-Opteron 2.0 GHz
CPUs and 4GB of main memory. The servers were in-
terconnected through an HP ProCurve2900-48G Gigabit
switch (0.1 msec of round-trip time). Each experiment (i.e.,
point in the graph) was repeated 3 to 10 times, with a few
million messages broadcast in each one.

6.1. Implementation

Each process maintains a circular buffer of packets;
each packet is 8 kbytes long and the buffer is 160 Mbytes

long. The coordinator uses this buffer to re-transmit lost
ip-multicast messages; the acceptors and the learners use
it to match proposal ids to proposal contents, as these are
decomposed by the coordinator. Messages received out of
sequence (e.g., because of transmission losses) are stored in
the buffer until they can be delivered (i.e., learned) in order.

Each packet ip-multicast by the coordinator is composed
of two parts. In one part the coordinator stores the ids of de-
cided values, and in the second part it stores new proposed
values with their unique ids. The coordinator implements a
flow control mechanism, which depends on its buffer size.
New values are proposed as long as there is space in the
buffer. A buffer entry is freed after the coordinator has re-
ceived the entry’s corresponding Phase 2B message from its
neighbor and ip-multicast a decision message related to the
entry. The coordinator can re-use a free buffer entry if the
entries that succeed it in the buffer are also free (i.e., we
avoid holes, which would render garbage collection more
complex).

6.2. Ring Paxos versus other protocols

We experimentally compare Ring Paxos to other four
atomic broadcast protocols: LCR [21], Spread [1], Lib-
paxos [22], and the protocol presented in [16], which here-
after we refer to as Paxos4sb. LCR is a ring-based proto-
col that achieves very high throughput (see also Section 5).
Spread is one of the most-used group communication toolk-
its. It is based on Totem [2]. Libpaxos and Paxos4sb are
implementations of Paxos. The first is entirely based on ip-
multicast; the second is based on unicast.

We implemented all protocols, except for Spread and
Paxos4sb. We tuned Spread for the best performance we
could achieve after varying the number of daemons, num-
ber of readers and writers and their locations in the network,
and the message size. In the experiments that we report we
used a configuration with 3 daemons in the same segment,
one writer per daemon, and a number of readers evenly
distributed among the daemons. The performance data of
Paxos4sb was taken from [16]. The setup reported in [16]
has slightly more powerful processors than the ones used in
our experiments, but both setups use a gigabit switch. Lib-
paxos is an open-source Paxos implementation developed
by our research group.

Figure 4 shows the throughput in megabits per second
(left graph) and the number of messages delivered per sec-
ond (right graph) as the number of receivers increases. In
both graphs the y-axis is in log scale. For all protocols, with
the exception of Paxos4sb, we explored the space of mes-
sage sizes and selected the value corresponding to the best
throughput (c.f. Table 2).

The graph on the left of Figure 4 roughly places pro-
tocols into two distinct groups, one group at the top of

 1

 10

 100

 1000

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Number of receivers

Ring Paxos
LCR

Spread
Libpaxos
Paxos4sb

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

M
es

sa
ge

s
pe

r
se

co
nd

Number of receivers

Ring Paxos
LCR

Spread
Libpaxos
Paxos4sb

Figure 4. Ring Paxos and other atomic broadcast protocols (message sizes c.f. Table 2)

the graph and the other group at the middle of the graph.
The difference in throughput between protocols in the two
groups is about one order of magnitude. Notice that proto-
cols based on a ring only (LCR), on ip-multicast (Libpaxos),
and on both (Ring Paxos) present throughput approximately
constant with the number of receivers. Because it relies on
multiple ip-multicast streams, however, Libpaxos has lower
throughput (c.f. Section 1).

Protocol MTE Message size
LCR 95% 32 kbytes
Ring Paxos 90% 8 kbytes
Spread 18% 16 kbytes
Paxos4sb 4% 200 bytes
Libpaxos 3% 4 kbytes

Table 2. Atomic broadcast protocols (MTE is
the Maximum Throughput Efficiency)

6.3. Impact of processes in the ring

We consider now how the number of processes affects
the throughput and latency of Ring Paxos and LCR (Fig-
ure 5). LCR does not distinguish process roles: all pro-
cesses must be in the ring. Ring Paxos places a majority
of acceptors in the ring; the remaining acceptors are spare,
used in case of failure. The x-axis of the graph shows the to-
tal number of processes in the ring of LCR and Ring Paxos.

Ring Paxos has constant throughput with the number of
processes in the ring. LCR’s throughput slightly decreases
as processes are added. With respect to latency, LCR de-
grades linearly with the number of processes. Ring Paxos
also presents a slight increase in latency as more acceptors

 0

 500

 1000

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Ring Paxos
LCR

 10

 20

 30

 40

 0 5 10 15 20 25 30

L
at

en
cy

 (
m

se
c)

Number of processes in the ring

4.6

15.6
18.7 28.4

34.6

Figure 5. Varying number of processes

are placed in the ring, however, latency values remain low
(i.e., in the range of 4.2 and 6.2 msec). The main difference
between the rings in the two protocols is that the amount
of information that circulates in the ring of Ring Paxos is
minimal. In LCR, the content of each message is sent n− 1
times, where n is the number of processes in the ring. Mes-
sage content is propagated only once in Ring Paxos (using
ip-multicast). The average CPU usage per process in LCR is
in the range of 65%–70% (see Section 6.6 for Ring Paxos).

6.4. Impact of message size

Figure 6 quantifies the effects of application message
size (payload) on the performance of Ring Paxos. Through-
put (top left graph) increases with the size of application
messages, up to 8 kbyte messages, after which it decreases.
We attribute this to the fact that in our prototype ip-multicast

packets are 8 kbytes long, but datagrams are fragmented
since the maximum transmission unit (MTU) in our net-
work is 1500 bytes. Latency is less sensitive to applica-
tion message size (top right graph). Figure 6 also shows the
number of application messages delivered as a function of
their size (bottom left graph). Many small application mes-
sages can fit a single ip-multicast packet (from Section 4.3,
Phase 2 is executed for a batch of proposed values), and
as a consequence, many of them can be delivered per time
unit (left-most bar). Small messages, however, do not lead
to high throughput since they result in high overhead, lead-
ing to a low rate of ip-multicast packets per second (bottom
right graph).

 0

 200

 400

 600

 800

 1000

0.2k 1k 2k 4k 8k

T
hr

ou
gh

pu
t (

M
bp

s)

 0

 2

 4

 6

 8

 10

0.2k 1k 2k 4k 8k

L
at

en
cy

 (
m

se
c)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

0.2k 1k 2k 4k 8km
es

sa
ge

s/
se

c
(x

10
00

)

 2

 4

 6

 8

 10

 12

 14

0.2k 1k 2k 4k 8k

pa
ck

et
s/

se
c

(x
10

00
)

packet size:
8 kbytes

Figure 6. Impact of application message size

6.5. Impact of socket buffer sizes

The reliability of unicast and ip-multicast depends on the
size of the buffers allocated to communication. Lost mes-
sages have a negative impact on Ring Paxos, as they re-
sult in retransmissions. Figure 7 shows the effect of socket
buffer sizes on the maximum throughput (left graph) and la-
tency (right graph) of Ring Paxos. We have used 16 Mbytes
as socket buffer sizes in all previous experiments, as they
provide the best tradeoff between throughput and latency.

6.6. CPU and memory usage

Table 3 shows the CPU and memory usage of Ring Paxos
for peak throughput. In the experiments we isolated the pro-
cess running Ring Paxos in a single processor and measured
its usage. Not surprisingly, the coordinator is the process
with the maximum load since it should both receive a large
stream of values from the proposers and ip-multicast these
values. Memory consumption at coordinator, acceptors and

 800

 820

 840

 860

 880

 900

0.1M 1M 4M 8M 16M 32M

T
hr

ou
gh

pu
t (

M
bp

s)

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

0.1M 1M 4M 8M 16M 32M

L
at

en
cy

 (
m

se
c)

Figure 7. Impact of socket buffer size

learners is mostly used by the circular buffer of proposed
values. For simplicity, in our prototype the buffer is stati-
cally allocated.

Role CPU Memory
Proposer 37.2% 2.2% (90 Mbytes)
Coordinator 88.0% 4.1% (168 Mbytes)
Acceptor 24.0% 4.1% (168 Mbytes)
Learner 21.3% 4.1% (168 Mbytes)

Table 3. CPU and memory usage

7. Conclusions

This paper presents Ring Paxos, a Paxos-like algorithm
designed for high throughput. Ring Paxos is based on char-
acteristics of modern interconnects. In order to show that
Ring Paxos can be effective, we implemented it and com-
pared it to other atomic broadcast protocols. Our selection
of protocols includes a variety of techniques typically used
to implement atomic broadcast. It revealed that both Ring
based and ip-multicast-based protocols have the property of
providing constant throughput with the numer of receivers,
an important feature in clustered environments. It points out
the tradeoffs with pure Ring based protocols, which result in
increasing latency, and possibly additional synchronous as-
sumptions. Protocols based on unicast only or ip-multicast
only have low latency, but poor throughput. The study sug-
gests that a combination of techniques, Ring Paxos, can lead
to the best of both: high throughput and low latency, with
weak synchronous assumptions. Ring Paxos is available for
download at [22].

8. Acknowledgements

The authors would like to thank Antonio Carzaniga,
Leslie Lamport, and Robbert van Renesse for the valuable
discussions about Ring Paxos; and the reviewers for their
suggestions to improve the paper.

References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton. The Spread toolkit: Architecture and perfor-
mance. Technical report, Johns Hopkins University, 2004.
CNDS-2004-1.

[2] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Cia-
rfella. The Totem single-ring membership protocol. ACM
Trans. Comput. Syst., 13(4):311–342, 1995.

[3] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Trans. Comput.
Syst., 9(3):272–314, Aug. 1991.

[4] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live:
An engineering perspective. In Proceedings of the twenty-
sixth annual ACM symposium on principles of distributed
computing (PODC), pages 398–407, 2007.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[6] J.-M. Chang and N. Maxemchuk. Reliable broadcast proto-
cols. ACM Trans. Comput. Syst., 2(3):251–273, 1984.

[7] F. Cristian and S. Mishra. The Pinwheel asynchronous
atomic broadcast protocols. In International Symposium on
Autonomous Decentralized Systems (ISADS), Phoenix, Ari-
zona, USA, 1995.

[8] X. Défago, A. Schiper, and P. Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Computing Surveys,, 36(4):372–421, Dec. 2004.

[9] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323,
1988.

[10] R. Ekwall, A. Schiper, and P. Urbán. Token-based atomic
broadcast using unreliable failure detectors. In Proceedings
of the International Symposium on Reliable Distributed Sys-
tems (SRDS), pages 52–65, 2004.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty processor. J. ACM,
32(2):374–382, 1985.

[12] U. Fritzke, P. Ingels, A. Mostéfaoui, and M. Raynal. Fault-
tolerant total order multicast to asynchronous groups. In
Proceedings of International Symposium on Reliable Dis-
tributed Systems (SRDS), pages 578–585, 1998.

[13] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Distributed Systems, chapter 5.
Addison-Wesley, 2nd edition, 1993.

[14] M. F. Kaashoek and A. S. Tanenbaum. Group communica-
tion in the Amoeba distributed operating system. In 11th In-
ternational Conference on Distributed Computing Systems
(ICDCS), pages 222–230, Washington, USA, 1991.

[15] J. Kim and C. Kim. A total ordering protocol using a dy-
namic token-passing scheme. Distributed Systems Engineer-
ing, 4(2):87–95, 1997.

[16] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In Proceedings of the 2nd Workshop on Large-
Scale Distributed Systems and Middleware (LADIS), pages
1–6, 2008.

[17] L. Lamport. The implementation of reliable distributed mul-
tiprocess systems. Computer Networks, 2:95–114, 1978.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[19] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[20] L. Lamport and M. Massa. Cheap Paxos. In International
Conference on Dependable Systems and Networks (DSN),
pages 307–314, 2004.

[21] R. Levy. The complexity of reliable distributed storage. PhD
thesis, EPFL, 2008.

[22] http://libpaxos.sourceforge.net.
[23] T. Ng. Ordered broadcasts for large applications. In Sym-

posium on Reliable Distributed Systems (SRDS), pages 188–
197, 1991.

[24] F. B. Schneider. What good are models and what models are
good? In S. Mullender, editor, Distributed Systems, chap-
ter 2. Addison-Wesley, 2nd edition, 1993.

A. Correctness Proof (Sketch)

We provide a proof sketch of the correctness of Ring
Paxos. We focus on properties (ii) and (iii) of consensus.
Property (i) holds trivially from the algorithm.

Proposition 1 (ii) No two processes decide different values.
Proof sketch: Let v and v′ be two decided values, and v-id
and v′-id their unique identifiers. We prove that v-id = v′-
id. Let r (r′) be the round in which some coordinator c (c′)
ip-multicast a decision message with v-id (v′-id).

In Ring Paxos, c ip-multicasts a decision message with
v-id after: (a) c receives f+1 messages of the form
(Phase 1B, r, *, *); (b) c selects the value vval = v with the
highest round number vrnd among the set M1B of phase
1B messages received, or picking a value v if vrnd = 0;
(c) c ip-multicasts (Phase 2A, r, v, v-id); and (d) c receives
(Phase2B, r, v-id) from the second last process in the ring,
say q. When c receives this message from q, it is equivalent
to c receiving f+1 (Phase 2B, r, v-id) messages directly be-
cause the ring is composed of f+1 acceptors. Let M2B be
the set of f+1 phase 2B messages. Now consider that coor-
dinator c received the same set of messages M1B and M2B

in a system where all processes ran Paxos on value identi-
fiers. In this case, c would send a decide message with v-id
as well. Since the same reasoning can be applied to coordi-
nator c′, and Paxos implements consensus, v-id = v′-id. �

Proposition 2 (iii) If one (or more) process proposes a
value and does not crash then eventually some value is de-
cided by all correct processes.
Proof sketch: After GST, processes eventually select a cor-
rect coordinator c. c considers a ring c-ring composed en-
tirely of correct acceptors, and c sends a message of the
form (Phase 1A, *, c-ring) to the acceptors in c-ring. Be-
cause after GST, all processes are correct and all messages
exchanged between correct processes are received, all cor-
rect processes eventually decide some value. �

