
Reliable Communication Infrastructure for
Adaptive Data Replication
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Abstract. In this paper, we propose a data replication algorithm adap-
tive to unreliable environments. The data replication algorithm, named
Adaptive Data Replication (ADR), has already an adaptiveness mecha-
nism encapsulated in its dynamic replica placement strategy. Our exten-
sion of ADR to unreliable environments provides a data replication solu-
tion that is adaptive both in terms of replica placement and in terms of
request routing. At the routing level, this solution takes the unreliability
of the environment into account, in order to maximize reliable delivery
of requests. At the replica placement level, the dynamically changing
origin and frequency of read/write requests are analyzed, in order to
define a set of replica that minimizes communication cost. Performance
evaluation shows that this original combination of two adaptive strate-
gies makes it possible to ensure high request delivery, while minimizing
communication overhead in the system.

1 Adaptive Data Replication

Data replication is a well-known technique to increase data availability and load
balancing. A data replication system can be characterized by two key policies: a
replica placement policy, which determines how many replicas the scheme creates
and where it places them, and a replica consistency policy, which determines the
level of consistency the scheme ensures among replicas, e.g., eager consistency
or lazy consistency. These policies are typically implemented on top of a com-
munication substrate ensuring a set of properties necessary for the correctness
of the data replication system. An example of communication substrate is the
group communication abstraction [1, 5, 8]. In this case, the group communication
offers a set of guaranties including adaptiveness to membership changes, message
ordering, and multicast reliability. In this paper, we define as a communication
substrate a routing mechanism adaptive to unreliable environment in order to
use it as the basis for a replica placement solution. We are primarily concerned
with replica placement; replica consistency is out of the scope of the paper.

Regarding the replica placement policy, various replica management schemes
have been proposed, based on a fixed number of replicas placed in fixed loca-
tions [2, 15, 13]. This approach works well when the source and the frequency
of read and write requests are known in advance and remain static during the
execution, which then implies that clients accessing the replicas are themselves
static and generate a steady stream of requests. When the frequency and the
source of requests are variable, however, the ability to dynamically create, move,



and delete replicas is essential when it comes to devising efficient replication
schemes.

In a dynamic distributed environment, replica placement significantly affects
the overall performance of the replication scheme. For example, since reading a
replica locally is faster and less costly than reading it remotely, a widely dis-
tributed replication scheme is particularly well suited in read-intensive environ-
ments. On the other hand, writing to a large number of replicas may be slow
and increase communication costs. For this reason, a narrowly distributed repli-
cation scheme is more adequate in write-intensive environments. In addition,
the occurrence of node and link failures further challenges the effectiveness and
performance of the replication scheme, as it can radically compromise replica
placement decisions made before the failures occurred. The problem of placing
replicas in dynamic and unreliable distributed environments advocates integrat-
ing adaptiveness into the replication schemes.

To adapt to the dynamic behavior of the environment and the application
access patterns, various solutions have been proposed in the literature [16, 11,
12, 19]. Among these, the Adaptive Data Replication algorithm (ADR) described
in [19] is particularly interesting, as it was shown to be convergent-optimal with
respect to communication costs. That is, as soon as the read-write access pattern
changes, ADR adapts its replication scheme to minimize the communication cost
caused by the routing of access requests. Intuitively, ADR organizes replicas as
a connected graph, known as the replication scheme, which expands or contracts
as the read-write access pattern changes.

Unfortunately, this convergence towards optimality only holds under two
strict conditions: (1) the network is organized as a tree—finding an optimal
replication scheme was shown to be NP-complete for general topologies [20]—
and (2) no process or link failures occur. Condition 1 implies that one must first
build an overlay tree covering the network. Condition 2 implies that ADR ceases
to work correctly as soon as a failure happens.3 Indeed, unreliable links may
cause requests to be lost, thus misleading the replica placement strategy of ADR,
while node failures may break the connectivity of the replication scheme, an es-
sential assumption for ADR to work. Conditions 1 and 2 make ADR unsuitable
to unreliable large-scale distributed environments.
Contributions. In this paper, we propose an architecture that extends ADR to
make it capable of dynamically reorganizing itself based on changes in the appli-
cation access patterns, and on link and node failures. The new replica placement
strategy relies on a specialized routing layer, which encapsulates our adaptive
request routing strategy. The latter is based on a tree overlay that aims at max-
imizing the reliability of request routing, in spite of link and node failures. This
tree, named the Maximum Reliability Tree (MRT), is a spanning tree containing
the most reliable paths in the system [4].
Roadmap The remainder of this paper is organized as follows. Section 2 for-
mally defines our model, describes and motivates the problem solved in the pa-
per, and sketches the architecture of our solution. Section 3 presents our adaptive

3 In [19], processes switch to a special failure mode until recovery occurs. As detailed
in Section 6, this approach is quite different from ours.



request routing algorithm based on a spanning tree maximizing the reliability
of communication paths, while Section 4 describes an extension of the adap-
tive replica algorithm defined in [19], which aims at minimizing communication
costs given a read-write pattern. In Section 5, we evaluate the benefit of using
our adaptive request routing solution in terms of performance and adaptiveness,
when both the access pattern changes and failures occur. Finally, Section 6 puts
the proposed approach into perspective by comparing it with the state of the
art; Section 7 concludes the paper and discusses future work.

2 A Modular Approach to Adaptiveness

In this paper, we consider an asynchronous distributed system composed of pro-
cesses (nodes) that communicate by message passing. Our model is probabilistic
in the sense that processes may crash and links may lose messages with a certain
probability. More formally, the tuple S = (Π, Λ, C) completely defines the
(unreliable) environment considered in this paper. With Π the set of processes
and Λ is a set of bidirectional communication links. We only consider systems
with a connected graph topology. Process crash probabilities and message loss
probabilities are modeled as failure configuration C.

We then define object o as the data to replicate, while R ⊆ Π denotes the
replication scheme of o, i.e., the set of nodes holding a copy of o. Any request sent
to R is either a read or a write operation. Given these definitions, our approach
consists in addressing the two following questions.

Adaptive Replica Placement. Given a pattern of reads and writes to o, what
nodes should be part of R in order to minimize the communication cost?

Adaptive Request Routing. Given some failure configuration C, how should
read/write requests be routed to maximize reliable delivery, and thus provide
the replica placement layer with accurate information?

2.1 Adaptiveness to Access Patterns
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Fig. 1. Adaptive Replication Scheme – Example

The main idea of the adaptive replica placement strategy, borrowed from [19],
consists in having the replication scheme R evolve like an amoeba along the
branches of some tree-based communication overlay. The replica placement is
managed in a fully decentralized manner. Each process pk in R analyzes its
access pattern and independently decides to either:



1. expand R, by sending a copy of o to one of its neighbors in the tree that
does not yet hold a replica;

2. contract R, by quitting the replication scheme and discarding its copy of o;
3. switch R, by moving o to one of its neighbors in the tree, in case pk is the

only node holding a copy of o.
Figures 1 (a) to (c) illustrate the behavior of the adaptive replica placement
strategy on a concrete example, based on five processes. In this example, we
initially have replication scheme R = {p1}, i.e., p1 is the only node with a copy
of object o. In addition, we assume that each process periodically sends 5 reads
and 5 writes to R and that they do so in synchronized rounds.4 In the following,
we define the communication cost of a round as the total number of requests
transiting through any link in the system.

The situation after round 1 is shown in Figure 1 (a): p1 received 15 reads and
15 writes from p2 (5 reads and 5 writes from p2 + 5 reads and 5 writes from p4 +
5 reads and 5 writes from p5), 5 reads and 5 writes via p3 (5 reads and 5 writes
from p3 itself) and 5 reads and 5 writes from p1 itself. p1 notices that it received
more reads via node p2 (15 = 5 reads from p2, 5 from p4 and 5 from p5) than the
total number of writes originated from elsewhere, i.e., 10 writes (5 writes from p1

+ 5 from p3). Based on this analysis, p1 concludes that having a replica on
node p2 may improve the overall communication cost, which currently equals 60
(10 requests through link l2,4 plus 10 through link l2,5 plus 30 through link l1,2
plus 10 through link l1,3). This decision to expand R towards p2 leads to the
situation pictured in Figure 1 (b), with a communication cost of 55. To update
all existing replicas, this change imposes however that p1 and p2 inform each
other about the respective writes they received. At the end of round 2, p1 finally
decides to contract R by exiting the replication scheme. This situation is pictured
in Figure 1 (c) and leads to a communication cost of 50. At this point, R = {p2}
is the optimal replication scheme for the given access pattern.

2.2 Adaptiveness to Failures

To illustrate the need for adaptiveness to failures, let us revisit our example
when injecting some unreliability into the system. As shown in Figure 1 (d), we
inject a 33% message-loss into the link connecting p1 and p2, i.e., l1,2 roughly
loses one message out of three. So, at the end of the first round, p1 compares
the effective number of reads received via node p2, which is equal to 10, with the
number of all writes originated from elsewhere, which is also equal to 10. Based
on this analysis, p1 concludes that there is no need to expand R towards p2 nor to
switch with p2, contrary to what happened in the setting shown in Figure 1 (a).
That is, to process p1, the replication scheme R appears to be optimal for the
given access pattern, but this analysis is biased by the system unreliability, as
the cost seen at p1 is not the real cost imposed by the routing of requests. This
observation clearly shows that in order to take full advantage of the adaptive
replication scheme described earlier, we need to also adapt to the presence of
failures when routing requests.
4 Synchronized rounds are only assumed to simplify our example and are by no means

imposed by the replica placement strategy.



2.3 Solution Overview

Our solution follows the three-layer architecture pictured in Figure 2. The top
layer executes the adaptive replica placement algorithm sketched earlier, which
manages a replication scheme R changing according to the read-write pattern
produced by some distributed application on top of it. The complete algorithm
is described in Section 4.

The Replica Placement (RP) strategy relies on the adaptive request routing
layer, which offers a set of communication primitives, and relies on a low-level
system layer providing basic best-effort send and receive primitives. For the
correctness of our solution, the best-effort aspect of the send primitive is hidden
using a simple message resend/ack mechanism. For simplification, this retrans-
mission mechanism was not included in the algorithm description. As detailed
in Section 3, our routing solution permits to minimize the message overhead
induced by this resend/ack mechanism by routing messages through the overlay
including the most reliable paths covering the system: MRT. Thus, as shown
in Section 5, our routing solution based on MRT induces an message overhead
lower than when using any other tree overlay.

For each object o, the RP layer basically maps the corresponding replication
scheme R to a dedicated group G managed by the Adaptive Routing (AR) layer.
Coming to the AR layer, the latter offers the following adaptive and reliable
services: (1) creation of a new group G and its announcement to all nodes in the
system, (2) request routing from any node outside G to some node in G, and
(3) multicasting among nodes in G. The algorithm executed by AR is detailed
in Section 3.

Finally, the routing layer also relies on the system layer, not only for its send
and receive primitives, but also for its ability to provide key information about
nodes and links in the system. In particular, the system layer is responsible for
providing an approximation of the failure rates of links and nodes, in terms of
message-loss probabilities and crash probabilities respectively. That is, the sys-
tem layer is capable of providing an approximation of the tuple S = (Π, Λ, C)
modeling the system.5

On Reliability and Consistency. Since our model is probabilistic, reliability
should also be understood in probabilistic terms. Indeed, in the remainder of this
paper, when we say for instance that our routing algorithm will reliably route a
request, we actually mean that it will maximize the probability of the message
reaching its destination, given the failure probabilities of system. Furthermore, as
stated in Section 1, this paper is primarily focused on replica placement; replica
consistency is out of its scope. As a consequence, the routing layer ensures no
ordering guarantees on requests. Such a property if desired can be built on top
of our system.

3 Adaptive Request Routing

For the sake of simplicity, we start by describing the lower layer of our solution:
Adaptive Request Routing (AR). AR offers a reliable routing solution based on

5 In [4], we show how to use Bayesian statistical inference for this.
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Fig. 2. Solution Architecture

an underlying reliable overlay tree covering the whole system S named MRT.
A group represents a connected subtree of this MRT. This group changes over
time and our AR solution adapts accordingly. All group changes6 are assumed to
happen only at the group subtree leaves. That is, only a leaf of a group subtree
can leave the group and a new node becomes a leaf of this subtree.

3.1 Interface
To create or change a group, AR provides the following primitives:
– createGroup(gid) enables a node to create a group of unique identifier gid

and to be the first member of this group.
– joinGroup(gid) enables a node not in the group gid and with only one

neighbor in the group to join this group and to be able to receive messages
sent to the group members and to broadcast messages to the group members.

– leaveGroup(gid) called by a node in the group with only one neighbor in
the group, it enables such a node to leave the group of id gid and thus stop
receiving messages sent to the group.

For each group, once created, AR provides two services: (1) adaptive and reliable
message routing from any node outside the group to some node in the group,
(2) adaptive and reliable broadcasting among nodes in the group. These services
are respectively encapsulated in the routeToGroup(gid,m) and broadcastInGroup(gid,m)
primitives:
– routeToGroup(gid,m) enables a node to reliably send a message m to any

member of the group gid.
– broadcastInGroup(gid,m) enables a node in group gid to reliably broadcast

a message m to all members in the group.
– deliver(gid, m) works as a callback and enables a node to receive application

message m.
– newGroup(gid) works as a callback and enables a node to receive an an-

nouncement of the new group gid.
– resetGroup(gid) works as a callback and enables a node to receive an an-

nouncement of a reset of the group gid, such a reset is due to an environment
change.

The goal of AR is to take into account the environment unreliability by routing
messages through a reliable tree named the Maximum Reliability Tree (MRT).
It also adapts its communication services to group and environment changes.
6 By group change, we refer to an explicit leave/join to the group and not to node

failure/recovery.



3.2 Routing algorithm

Algorithm 1 describes the main primitives provided by our communication layer.
To create a group with a unique identifier gid, a process pk calls the createGroup(gid)
primitive. This primitive starts by announcing the new group to all members in
the system. To do so, it broadcasts an initial message newgroup through an un-
derlying reliable tree overlay dedicated to this group. To that end, pk first builds
a tree mrt covering the whole system S using the mrt() primitive (line 9). This
primitive is responsible for building the MRT with the root passed as argument
(here pk). If the mrt at pk was already computed to serve other groups, pk sim-
ply assigns it as the tree to serve group gid (line 10). The MRT of a process
pk contains the most reliable paths in S connecting pk to all other processes in
Π. Defined in [4] to ensure a reliable broadcast, MRT materializes the reliable
aspect of our communication model. This paper does not detail the construction
technique of MRT (see [4] for details). Then, pk calls the propagate() primitive
to launch the broadcast of the newgroup (line 11). When a process pk receives
newgroup message (line 15) from a neighbor pj , it becomes aware of the group
and knows how to route messages to it. To that end, pk saves the tree overlay
built to serve the new group gid: T [gid] and a routing direction direction[ ] to-
wards the group in T [gid], which is the neighbor that forwards the newgroup
message to it (here pj) (lines 16 & 17). Note that, at the source of the new-
group message, this direction is set as the process itself as it represents the first
member of the group (line 12). At the source and the receivers of the newgroup
message, a callback to the newGroup() primitive is performed to announce the
new group to the upper layer (lines 14 & 18). Note that at any time, each mem-
ber of a group gid knows all other members of this group. At the initialization
process, the group consists only of the process that launched the newgroup
broadcast (line 13). Such a knowledge will be updated as soon as members start
to join or leave the group.

A process pk not in the group gid aiming at routing a message to any mem-
ber of gid calls the routeToGroup() . This primitive simply sends the indi-
cated message to the pk’s direction to the aimed group: direction[gid] (line 24).
The second service provided by our communication layer is encapsulated in the
broadcastInGroup() primitive. When called, this primitive calls the broadcast()
primitive (line 21). The broadcast() primitive is called by a node in a group gid
to broadcast a message among other members of gid.

To ensure an up-to-date knowledge about the group at each of its members,
any join or leave event in this group is propagated to all members of the group.
To join group gid, a node pk calls the joinGroup() primitive. This primitive
permits to pk to obtain a view from the group it intends to join and to announce
its arrival to other group members by calling broadcast() primitive to send a
join message to other members of the group

To leave the group gid, a node pk calls the leaveGroup() primitive. To ensure
the correctness of the routing solution, each node pk leaving a group gid has to
check if it is the root of T [gid] (line 37). If yes, pk has to yield its root status to a
neighbor in the group (line 38). Finally, pk informs other members of the group
about its leaving by sending a leave message using the broadcast() primitive.



1: initialization:
2: S ← getSystem()

3: T ← ∅ {set of overlay trees}
4: mrt← ⊥
5: direction← ∅
6: group← ∅

7: procedure createGroup(gid)
8: if mrt = ⊥ then
9: mrt← mrt(S, {pk})

10: T [gid]← mrt
11: propagate(T [gid], pk, gid, newgroup)

12: direction[gid]← pk {root of gid is pk}
13: group[gid]← {pk}
14: newGroup(gid)

15: upon receive(Ti, newgroup, gid) via pj do
16: T [gid]← Ti

17: direction[gid]← pj

18: newGroup(gid)
19: propagate(Ti, pj , gid, newgroup)

20: procedure broadcastInGroup(gid,m)
21: broadcast(gid, m)
22: deliver(gid,m)

23: procedure routeToGroup(gid, m)
24: send(gid, m) to direction[gid]

25: procedure joinGroup(gid)
26: pj ← direction[gid]
27: send(fetch-group, gid) to pj

28: wait until receive(group, gid, groupj) from pj

29: group[gid]← groupj ∪ {pk}
30: broadcast(gid,join)

31: upon receive(fetch-group, gid) from pj do
32: send(group, gid, group[gid]) to pj

33: upon receive(Ti, join,gid) from pi via pj do
34: group[gid]← group[gid] ∪ {pi}
35: propagate(Ti, pj , gid, join)

36: procedure leaveGroup(gid)
37: if direction[gid] = pk then
38: let pj ∈ neighbors(gid) ∩ group[gid]
39: send(newroot, gid) to pj

40: direction[gid]← pj

41: broadcast(gid,leave)
42: group[gid]← ⊥

43: upon receive(newroot, gid) do
44: direction[gid]← pk

45: upon receive(Ti, leave,gid) from pi via pj do
46: group[oid]← group[oid] \ {pi}
47: propagate(Ti, pj , gid, leave)

48: function group(gid)
49: return group[gid]

50: function neighbors(gid)
51: return {pj : pj ∈ V (T [gid]) ∧ lj,k ∈ E(T [gid])}

Algorithm 1. Routing algorithm at pk – Basic primitives

Algorithm 2 includes the broadcast() and propagate() primitives and callbacks
delivering upper layer messages. The broadcast() primitive can be called by any
member of a group gid to diffuse a message m to other members of the group.
This primitive is used to diffuse both local messages to our communication layer



(e.g., join & leave) and messages of the upper layer given by a call to the
broadcastInGroup() primitive. This primitive first extracts T ′ as the subtree of
T [gid] covering the group (line 2). It then calls the propagate() primitive to send
m through T ′ (line 3).
1: procedure broadcast(gid, m)
2: let T ′ ⊂ T [gid] : pi ∈ T ′ ⇒ pi ∈ group[gid]
3: propagate(T ′, pk, gid, m)

4: procedure propagate(T ′, pj , gid, m)
5: for all pi : link lk,i ∈ E(T ′) ∧ j 6= i do
6: send(T ′, gid, m) to pi

7: upon receive(T ′, gid, m) from pj do
8: propagate(T ′, pj , gid, m)
9: deliver(gid, m)

10: upon receive(gid, m) from pj do
11: if (pk ∈ group[gid]) then
12: deliver(gid, m)
13: else
14: send(gid, m) to direction[gid]

Algorithm 2. Routing algorithm at pk – Dissemination mechanism

3.3 Handling failures and configuration changes
While being probabilistically reliable, the above communication algorithm does
not ensure adaptiveness to the environment changes. Its adaptiveness is focused
on group changes and on taking into account the environment unreliability. To
enhance the adaptiveness of our communication solution, we extend AR as shown
in Algorithm 3. This extension allows AR layer to adapt to failures that may
change the system topology and to take into account new configurations, i.e.,
new links and processes reliability. To adapt to environment changes, either
regarding the topology or the configuration, we assume, as shown in Figure 2,
that AR is notified by an underlying System Layer. The System Layer ensures
at each process, the availability of an up-to-date view about the system. The
details about how this layer obtains this view can be found in [4].

When a node pk is notified by a new system view (line 1), if pk is the root of
at least one tree of one group (line 5), then pk has the responsibility to define a
new tree for that group in order to cover the new system configuration.

By building the new tree, pk may break the connectivity property of the
group members. To reconnect the group members in a subtree of T [gid], pk
defines a new set of members of the group gid. This group is the set of nodes
in the smallest subtree of T [gid] including all old members of the group. Thus,
some of the new group members were previously in the group, others are added
by this mechanism only to heal the subtree connecting the group members.
Then, pk calls the propagate() primitive to disseminate the newtree message
annoucing the new tree T [gid] and the new reconnected group to all nodes in S
(line 9). When receiving a newtree message from a neighbor pj for a group gid,
a process pk assigns to its T [gid] the given new tree Tgid (line 12) and changes
its routing direction to pj (line 13). Then, pk checks if it was added to the new
group while not being previously in the old one (lines 14 & 15). In this case, pk
calls the forceJoin primitive to inform the upper layer about this forced join. For
this, pk indicates pj as the neighbor in the group. Note that pj is in the group



because it is the sender of the newtree message indicating to pk that it has
to join the group. Thus pj is either a previous member of the group or a new
member forced in its turn to join the group in order to reconnect it. Section 4.1,
details this further.

As a member of the group, pk integrates the new group in its group view
(line 17). Finally the source and the receivers of the newtree message, call
the resetGroup() primitive to announce the group change to the upper layer
(lines 10 & 19).
1: upon systemChange(S′) do
2: S ← S′

3: if ∃ gid : direction[gid] = pk then
4: mrt← mrt(S, {pk})
5: for all T [gid] ∈ T : direction[gid] = pk do
6: T [gid]← mrt
7: let T ′ be the smallest subree of T [gid] such that group[gid] ⊂ V (T ′)
8: group[gip]← V (T ′)
9: propagate(T [gid], pk, gid, newtree, group[gid])

10: resetGroup(gid)

11: upon receive(Tgid, newtree, gid, groupgid) via pj do
12: T [gid]← Tgid

13: direction[gid]← pj

14: if pk ∈ groupgid then
15: if pk /∈ group[gid] then
16: forceJoin(gid, pj)
17: group[gid]← groupgid

18: propagate(Tgid, pj , gid, newtree, groupgid)
19: resetGroup(gid)

Algorithm 3. Routing algorithm at pk – Adaptiveness to failures

Root failure. Note that in our AR solution, the root failure is problematic,
as it represents the responsible for creating new covering tree if any changes
happen. In addition, if such a root is a singleton, its failure results in the object
being inaccessible. A solution for the singleton failure was proposed in [19], which
we also retain in this paper. The idea is to impose a rule to the replica placement
algorithm so that at any time at least two replicas of an object must be available.

When it comes to the root failure, several solutions were proposed in this
context [6, 9]. Similarly, we can replicate the root to improve its reliability. Details
of this strategy could be found in [6].

4 Adaptive Replica Placement
The Replica Placement (RP) layer defines, for each object o to replicate, a repli-
cation scheme R changing according to the read-write pattern to o in order to
move R towards the center of the read-write activity. When the read-write pat-
tern is stable, R eventually converges towards the optimal replication scheme
ensuring the minimum communication cost.

4.1 Initialization and Replica access
The RP layer relies on the AR layer for each communication step. For each object
o, AR layer manages a group that corresponds to the set of processes holding a
replica of o, i.e., R. In other words, our replication scheme R at RP is seen at AR
as a group of processes to which AR provides a set of communication services. RP
refers to AR to get information about the neighborhood in the overlay defined
by AR to serve the group of one object o by calling the neighbors() primitive.



It also refers to AR to get a view of R using the group() primitive. To adapt
the underlying communication solution to the R changes (i.e., to the group
changes), RP informs AR about all changes in R by calling the joinGroup()
and leaveGroup() primitives.
1: initialization:
2: reads← ∅ {set of read counters}
3: writes← ∅ {set of write counters}
4: Ω ← ∅ {set of local objects}
5: leavePending ← ∅ {set of boolean}

6: procedure replicate(o)
7: createGroup(o.id)

8: function read(oid) : state
9: if pk ∈ group(oid) then

10: return Ω[oid].state
11: else
12: routeToGroup(oid,read)
13: wait until receive(response,o) with o.id = oid
14: return o.state

15: procedure write(oid, state)
16: if pk ∈ group(oid) then
17: broadcastInGroup(oid,write,state)
18: else
19: routeToGroup(oid,write,state)

20: upon newGroup(oid) ∨ resetGroup(oid) do
21: for all pj ∈ neighbors(oid) do
22: reads[oid, pj ]← 0
23: writes[oid, pj ]← 0
24: leavePending[oid]← false

25: upon forceJoin(oid, pj) do
26: send(fetch-object, oid) to pj

27: wait until receive(object, o) from pj with o.id = oid
28: Ω[oid]← o

29: upon receive (fetch-object, oid) from pj do
30: send(object, Ω[oid]) to pj

31: upon deliver(oid,read) from pi via pj ∈ neighbors(oid) do
32: send (response,Ω[oid]) to pi

33: reads[oid]← reads[oid] + 1
34: reads[oid, pj ]← reads[oid, pj ] + 1

35: upon deliver(oid,write,state) via pj ∈ neighbors(oid) ∪ {pk} do
36: if pj /∈ group(oid) then
37: broadcastInGroup(oid,write,state)
38: else
39: Ω[oid].state = state
40: writes[oid]← writes[oid] + 1
41: writes[oid, pj ]← writes[oid, pj ] + 1

Algorithm 4. Adaptive replication at pk – Reading & Writing
Algorithm 4 details the primitives provided by RP to any upper application.

The management of replicas of an object o starts by a call to the replicate()
primitive by the initial process pk holding o. In this initialization step, pk calls
the createGroup() primitive (line 7) of the AR by indicating oid as the identifier
of the object o for which pk wants to create a replication scheme (or a group).
As detailed in Section 3.2, the createGroup() primitive reliably announces the
object o to all processes in the system and creates a group dedicated to this
object.



The following replica placement steps (i.e., replica creation or replica dis-
carding) are then performed cooperatively based on statistics collected locally
at each process concerning the received requests. At a process pk, for each ob-
ject o of identifier oid, reads[oid] and writes[oid] respectively refer to the total
number of reads and the total number of writes pk received for the object o.
These counters also include for each neighbor pj of pk (according to the overlay
defined by AR to serve the group dedicated to o) the number of reads, reads[oid,
pj] and the number of writes, writes[oid, pj] received from pj for the object o.

When notified of a new group (line 20), process pk becomes aware of the repli-
cation scheme R of the corresponding object o and initializes its counters reads[ ]
and writes[ ] according to its set of neighbors defined by AR (lines 22 & 23).

To read or write a state at o, pk calls, respectively, the read() and write()
primitive. If pk has a replica of o, i.e., it is a member of the group dedicated
to o (lines 9 & 16), the read() function simply returns the state of the replica
extracted from the local structure Ω. The write() function, in this case, calls
the broadcastInGroup() primitive (line 37) of the AR algorithm to broadcast
the update within processes of the replication scheme of o. Otherwise, these
primitives call the routeToGroup() primitive to route the request to a process
holding a replica of o.

When a process pk receives a write or a read request for oid (lines 35 & 31),
it respectively updates its local replica (line 39) or sends back the response ex-
tracted from its replica (line 32), then updates its counters accordingly (lines 40
& 41 - 33 & 34).

To suport the adaptiveness to environment changes, our RP algorithm pro-
vides the forceJoin() primitive (line 25). This primitive permits to an underlying
communication layer to add a member to one replication scheme R. When called
at a node pk, this primitive fetches a copy of the object with the indicated unique
identifier from the indicating node pj as a neighbor in R. It then includes o to
become a member of its replication scheme (line 28).

4.2 Adaptive Placement

As soon as the requests for object o start to be submitted, the RP solution adapts
the replication scheme R to the read-write pattern in a decentralized manner.
Starting as a singleton, R may expand (by placing new replicas in appropriate
processes), switch (by changing the replica holder if R is a singleton) or contract
(by retrieving replicas from a specific process, if R is not a singleton) while
remaining connected. These actions are tested periodically by some processes in
R based on a set of statistics concerning the received requests. Algorithm 5 gives
a formalization of the adaptive replica placement detailed in [19]. Hereafter we
describe this algorithm and its interaction with AR layer.

The expansion test is executed by each process pk in R (line 3) with at
least one neighbor not in R (line 13). To do so, for each neighbor pj not in R
(line 14), pk sends a ’Join’ request to pj (line 16) if the number of reads that
pk received from pj is greater than the total number of writes received from
elsewhere (line 15). When a node pk joins R, it informs AR about the new
member of the group by calling the joinGroup() primitive (line 21).



1: periodically do :
2: for all oid ∈ Ω do
3: if pk ∈ group(oid) then
4: if ¬ tryExpanding(oid) then
5: if group(oid) = {pk} then
6: trySwitching(oid)
7: else if | neighbors(oid) ∩ group(oid) | = 1 then
8: tryContracting(oid)
9: reads[oid]← 0

10: writes[oid]← 0

11: function tryExpanding(oid) : boolean
12: success← false
13: candidates ← neighbors(oid) \ group(oid)
14: for all pj ∈ candidates do
15: if reads[oid, pj ] > writes[oid]− writes[oid, pj ] then
16: send(join,Ω[oid]) to pj

17: success← true
18: return success

19: upon receive (join,o) do
20: Ω[o.id]← o

21: joinGroup(o.id) {inform AR about the group change}

22: procedure trySwitching(oid)
23: if ∃ pj ∈ neighbors(oid) : 2 × (reads[oid, pj ] + writes[oid, pj ]) > reads[oid] + writes[oid]

then
24: send(be-singleton,Ω[oid]) to pj

25: wait until receive(ack-singleton,oid) from pj

26: leaveGroup(oid) {inform AR about the group change}
27: Ω[oid]←⊥

28: upon receive (be-singleton,o) do
29: Ω[o.id]← o

30: joinGroup(o.id) {inform AR about the group change}
31: send(ack-singleton,o.id)

32: procedure tryContracting(oid)
33: let pj ∈ neighbors(oid) ∩ group(oid)
34: if writes[oid, pj ] > reads[oid] then

35: leavePending[oid]← true {Trying to contract from oid}
36: send(request-leave,oid) to pj

37: wait until receive(reply-leave,reply,oid) from pj

38: if reply then

39: leaveGroup(oid) {inform AR about the group change}
40: Ω[oid]←⊥
41: leavePending[oid]← false

42: upon receive(request-leave,oid) from pj do
43: if ¬leavePending[oid] then

44: send(reply-leave,true,oid) {Not in contract test from oid}
45: else
46: reply ← pk > pj

47: send(reply-leave,reply,oid)

Algorithm 5. Adaptive replication at process pk – Replicas Placement

If the expansion test fails (line 4) and pk is the singleton (line 5), it executes
the switch test (line 6). To switch, pk should first find a neighbor pj such that
the number of requests received by pk from pj is greater than the number of
all other requests received by pk (line 23). Then pk sends a copy of the object
o to pj with an indication that pj becomes the new singleton of R (line 24).
Before discarding its local replica (line 27) pk must receive a confirmation from
pj to ensure a non empty replication scheme (line 25). To inform AR, pk and pj
respectively call the leaveGroup() and joinGroup() primitives (lines 26 and 30).



The contraction test is also executed after a failed expansion test but when
pk has only one neighbor in R: pj (line 7). To contract from R, pk should have
more writes from pj than all received reads (line 34), In this case, pk requests
permission from pj to leave R (line 36). If permitted (line 38), pk discards its
local replica (line 40) and informs AR (line 39). The permission request sent to
pj permits to manage a possible risk of mutual contractions. If not managed,
such a risk may induce an empty replication scheme when pk and pj constitute
all elements of R. When detected (line 45) such a conflict is resolved by a simple
mechanism permitting to the process with the lower id to leave R (line 46).

5 Evaluation

The efficiency of the adaptive replica placement algorithm has been previously
proved in [19]. In this section we are more concerned by the immersion of this
algorithm in unreliable environment. That is, we aim at evaluating the advan-
tage of using AR (based on MRT as the network overlay) as the underlying
communication model of the RP solution.
Evaluation method. To evaluate the advantage of our reliable communication
model, we define a comparison tree to MRT as a covering tree built indepen-
dently from links reliability. Such a tree could be the minimum latency tree
defined in [19]. We name this comparison tree SPT. SPT is any covering tree
built without taking into account the reliability of the system components (links
& processes). To compare the impact of MRT and SPT in our data replication
solution, we define an evaluation method that consists of measuring the cost
needed to completely hide the impact of the system unreliability. Indeed, to con-
verge towards the same replication scheme as in a reliable environment, a simple
idea is to resend each request until receiving an acknowledgement (ACK) for it.
The number of retransmissions depends on the reliability of the link through
which the request should be sent. In a reliable link, an ACK is received after the
first request, in which case no retransmission is needed.

To show the benefit of using our MRT as the overlay of our communication
model, we compare the retransmission needed when using both MRT and SPT to
hide the environment unreliability. This comparison regards the communication
cost, the number of messages retransmitted and its corresponding percentage as
the portion of sent messages that represents the retransmissions.
Simulation configuration. To evaluate our solution, we conducted a set of
experiments for various network configurations with 100 processes connected
randomly with an average connectivity of 8, i.e., 8 direct neighbors. To simplify
our results interpretation, we varied the links configuration Li while assuming
that processes are reliable i.e, ∀pi : Pi = 0. At each experiment, we simulate the
replication of one object and we assign to each process a fixed number of read
and write requests that it submits periodically. The initial copy of the object
to replicate is held by the node that initiates the replication, which is chosen
randomly among the system nodes. We then measured the number of propagated
messages (initial messages and retransmitted messages) at the convergence, i.e.,
when R stabilizes. In our simulation, we also assume that ACK messages are
subject to loss.



5.1 AR benefit
Figure 1 (a) shows the communication cost (in terms of all routed messages)
of our solution when using both MRT and SPT at the convergence. The com-
munication cost includes the number of requests submitted and the number of
retransmitted messages (request or ACK) necessary to hide the unreliability.
In Figure 1 (a), we show the average communication cost over executions, the
worst and the best cases that our executions sample detected. In the correspond-
ing executions we assigned, at each process, a periodic number of Reads in [0,
50] and a periodic number Writes in [0, 50]. When using MRT our solution
induces a lower communication cost. Globally this cost increases as the link un-
reliability increases. This shows that as the reliability worsens, more message
retransmission is needed. Note that the number of original requests (not includ-
ing retransmissions) to route at the convergence is different for MRT and SPT
since the generated replication scheme R is different. Indeed, the form of the
tree influences significantly the resulting replication scheme as each tree has a
different origin of requests reaching its replication scheme. For this reason, here-
after, we focus our evaluations on the induced retransmission to hide the system
unreliability.
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Fig. 1. Communication cost.

Figure 1 (b) shows the percentage of request messages and ACK messages
retransmitted to ensure that every inter-nodes message (e.g., forwarded requests)
is received when using the MRT and SPT trees. As shown in Figure 1 (b), this
percentage is lower when using MRT than when using SPT. This difference
increases as the links unreliability is in a larger range to reach the 15% when the
links unreliability Li is in [0 - 25%].

5.2 Varying Read/Write pattern
In this section, we vary the range of fixed Reads and Writes assigned to nodes in
order to evaluate their impacts on the retransmission cost. The indicated values
of Reads and Writes in figures below represent the lower bound of a range of
size 10. Figure 2 shows the percentage of requests retransmission needed to hide
the system unreliability using MRT and SPT. As noticeable the variation of the
Read/Write pattern has no impact on the percentage of retransmitted requests.

This is however not the case for their corresponding number of retransmis-
sions shown in Figure 3. The number of retransmissions needed to completely
hide the links unreliability when using SPT is much higher than the one needed
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when using MRT. This difference increases as the links unreliability increases to
reach 7 times more retransmissions when the links unreliability is in [0 - 25%].
Using both overlays structure, the number of retransmissions increases as the
number of requests (Reads + Writes) increases. For the same fixed number of
periodic Reads at each process, when the number of periodic Writes increases
it induces more messages retransmissions than when we increase the number of
Reads while fixing the number of Writes. This is due to a different replication
scheme at the convergence. In Figure 3 (a), we have more Reads than Writes,
which implies a large replication scheme through which each submitted Write
is broadcast. The larger the replication scheme, the higher is the cost induced
by the broadcast of Writes. And as the global number of Writes increases, this
cost increases. In Figure 3 (b), we have more Writes than Reads, which implies
a small replication scheme. For the same number of global Writes, when the
number of Reads increases the number of propagated messages increases by the
propagation of each Read through a tree branch until reaching the replication
scheme. This is less costly than a broadcast through a large replication scheme.
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6 Related Work

Research efforts have considered distributed adaptive data replication systems
from many different angles. Many previous works on adaptive data replication
have considered user requests of some sort as the parameter to adapt to. In do-
ing so, most of them formalize the problem as a cost function to optimize. The
precise interpretation of adaptive data replication depends on the cost func-
tion. In [19], the replica management adapts to the read-write pattern. Based



on the approach defined in [19], in this paper, our objective is to adapt to the
read-write pattern while coping with an unreliable environment. While handling
process and link failure-recovery the approach proposed [19] does not take into
account the environment unreliability in its communication model. In [19], the
link or process failure is handled by switching the execution in a failure mode
where the replication scheme of each object is a singleton named primary proces-
sor. The execution then returns to the normal mode when the failed component
(link or process) recovers. In our paper, however, the environment unreliability is
adressed in a preventive way since our communication model selects apriori the
most reliable paths to serve the requests routing in order to minimize the com-
ponent failures risk. In addition, when a failure happens, our replication scheme
is simply reconnected instead of being reduced to a singleton. The environment
unreliability in this context was adressed also in a preventive way in [10] but in
a different manner than ours. The approach defined in [10], distributes replicas
in locations (or servers) whose failures are not correlated in order to mitigate
the impact of correlated, shared-component failures. The adaptiveness of this
approach relies on the proposed placement strategy as the number of replicas
to place is assumed to be fixed by the storage system. Similarly to our paper,
some works [17, 18] integrate a communication model for their adaptive data-
replication solutions. Other works have also adapted to the read-write pattern,
e.g., in [7, 16]. In addition to the read-write pattern, several objectives were de-
fined to dictate the replication strategy. The approach defined in [7] also takes
into consideration storage costs and node capacity to serve requests. In [11], a
protocol dynamically replicates data so as to improve the client-server proximity
without overloading any of the replica holder. In [3], the replica allocation aims
to balance loads in terms of CPU and disk utilization in order to increase the
system throughput. In [14], the replica placement strategy aims to minimize a
cost function taking into account the average read latency, the average write la-
tency and the amount of bandwidth used for consistency enforcement. Contrary
to the distributed definition of the replication scheme of this paper, in [14] the
definition of the placement configuration is done at a central server (the origin
server) evaluating the cost of different possible configurations to select the best
placement configuration yielding the least cost. Similarly, in [12] the placement
configuration changes are decided at a central site based on statistics about the
accesses data measured in a distributed manner. The starting point in [12] is
also different than the one defined in this paper. That is, in [12], at system
start-up, a full copy is available at each edge server. Throughout execution, a
self-optimization algorithm is triggered periodically.

7 Conclusion

This paper proposed an adaptive replica placement solution for unreliable en-
vironments. The adaptiveness of this solution is at the replica placement level
and the request routing level. In our evaluation, we showed that the unreliabil-
ity impact on our replica placement algorithm could be hidden with a minor
cost using our reliable communication model. However real-world deployment in
WAN suffers from other contraints. One major constraint to be considered is the
limited memory and CPU power at processes. Thus, assuming that each process
has a global knowledge prevents this solution to scale in such environment.
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approach for replication of internet-based services. In SRDS, pages 127–136, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

13. D. Serrano, M. Patiño-Mart́ınez, R. Jiménez-Peris, and B. Kemme. Boosting
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