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Abstract

In this paper, we propose a resource-aware solution to achieving reliable and scalable
stream diffusion in a probabilistic model, i.e., where communication links and processes are
subject to message losses and crashes, respectively. Our solution is resource-aware in the
sense that it limits the memory consumption, by strictly scoping the knowledge each process
has about the system, and the bandwidth available to each process, by assigning a fixed
quota of messages to each process. We describe our approach as gambling in the sense
that it consists in accepting to give up on a few processes sometimes, in the hope to better
serve all processes most of the time. That is, our solution deliberately takes the risk not to
reach some processes in some executions, in order to reach every process in most executions.
The underlying stream diffusion algorithm is based on a tree-construction technique that
dynamically distributes the load of forwarding stream packets among processes, based on
their respective available bandwidths. Simulations show that this approach pays off when
compared to traditional gossiping, when the latter faces identical bandwidth constraints.
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1 Introduction

Reliable stream diffusion under constrained environment conditions is a fundamental problem in
large-scale multimedia content delivery. In this context, the efficiency of a given content delivery
solution directly depends on the performance of its underlying multicast protocol. Environment
conditions are typically constrained by the reliability and the capacity, usually limited, of its
components. Nodes and communication links can fail, unexpectedly ceasing their operation and
dropping messages, respectively. Moreover, real-world deployment does not offer nodes and links
infinite memory and infinite bandwidth. Therefore, realistic solutions should use local storage
and inter-node communication sparingly, and account for node crashes and message losses.

In this paper, we investigate the problem of reliable stream diffusion in unreliable and con-
strained environments from a novel angle. Our approach is probabilistic: with high probability,
all consumers will be reached and deliver all information addressed to them; however, there is no
guarantee that this will happen. Differently from previous probabilistic algorithms found in the
literature, we resort to a “gambling approach,” which deliberately penalizes a few consumers in
rare cases, in order to benefit most consumers in common cases. We show experimentally that
the approach pays off in that it outperforms traditional gossip-based algorithms when subject
to similar environment constraints.

The key idea of our solution is to stream multimedia content according to a global propa-
gation graph. This graph approximates a global tree aiming at the maximum reachability and
efficient use of the available bandwidth. The approach is completely decentralized: nodes build
propagation trees, which we call Maximum Probability Trees (MPTs), autonomously. Several
MPTs are dynamically composed to achieve a global graph reaching most (hopefully all) con-
sumer nodes. This solution is scalable and based on a composition of local optimums, i.e., each
MPT ensures the maximum probability of reaching all processes in its subgraph when subject to
bandwidth constraints. MPTs are composed in a manner that respects bandwidth constraints,
and the MPT construction is fully parameterized. Nodes are free to define the scope of their
local knowledge, from direct neighborhood to the entire network. The scope of each process can
be defined according to its local constraints (e.g., processing power, memory capacity).

Besides discussing a new reliable stream diffusion algorithm, we also show that it can be
implemented in a very modular way, lending itself to real deployment. Our solution consists
in decomposing the problem of reliable stream diffusion into sub-problems. This separation of
concerns gives rise to an architecture composed of five layers.

The remainder of this paper is organized as follows. In Section 2 we introduce the sys-
tem model and define the problem that motivates this work. Section 3 describes our reliable
streaming solution based on a tree-construction technique. Section 4 describes a performance
evaluation of our approach, including an analysis of the costs and benefits of gambling. We
discuss related work in Section 5. Finally, in Section 6 we summarize our findings and conclude
with some final remarks.

2 Scalable Resource-Aware Streaming

Stream diffusion is a typical 3-step scenario: (1) the producer breaks the outgoing stream into
elemental messages (stream packets) and multicasts them to interested consumers, (2) inter-
mediate nodes route these messages to the consumers, and (3) each consumer recomposes the
received messages into a coherent incoming stream. This is depicted in Figure 1. In a resource-
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Figure 1: Multimedia Content Delivery – Stream diffusion scenario

constrained environment, the main challenge then consists in routing stream messages in a way
that efficiently uses available resources.

2.1 Basic system model

We consider an asynchronous distributed system composed of processes (nodes) that communi-
cate by message passing. Our model is probabilistic in the sense that processes can crash and
links can lose messages with a certain probability. More formally, we model the system’s topol-
ogy as a connected graph G = (Π, Λ), where Π = {p1, p2, ..., pn} is a set of processes of size n,
and Λ = {l1, l2, ...} ⊆ Π×Π is a set of bidirectional communication links. Process crash probabil-
ities and message loss probabilities are modeled as failure configuration C = (P1, P2, ..., Pn, L1,
L2, ..., L|Λ|), where Pi is the probability that process pi crashes during one computation step and
Lj is the probability that link lj loses a message during one communication step.

2.2 Problem statement

Intuitively, the main question addressed in this paper is the following: how can we make stream
messages reach all consumers with a high probability, in spite of unreliable processes and links,
and of the limited resources (e.g., bandwidth) available to each process?

Formally, the limited resources constraint is modeled as Q = (q1, q2, ..., qn), the set of quotas
associated to processes in the system. Each individual quota of messages qi represents the
number of messages process pi able to send in order to forward a single stream packet. A
quota may represent a set of physical constraints related to the limited hardware resources or a
dedicated percentage of these resources fixed by the peer itself. This percentage captures the fact
that the user behind a peer can voluntary limit the resources dedicated to the P2P streaming
service. In other words, a quota is a translation of both the percentage of hardware resources
a peer is willing to dedicate to forward a stream packet and the upload limit of the ISP of the
peer, which might be further limited by the percentage of that bandwidth the peer is willing to
dedicate to the streaming service. By extending the basic system model presented earlier, we
then can say that the tuple S = (Π, Λ, C,Q) completely defines the system considered in this
paper.

In order to take into account processing and memory constraints, we further assume that
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each process has only a partial view of the system, meaning that its routing decisions can only
be based on incomplete knowledge. Formally, the limited knowledge of process pi is modeled
with distance di, which defines the maximum number of links in the shortest path separating pi

from any other node in its known subgraph. Distance di implicitly defines the partial knowledge
of pi as scope si = (Πi, Λi, Ci, Qi), with Πi ⊆ Π, Λi ⊆ Λ, Ci ⊆ C, and Qi ⊆ Q. In the remainder
of this paper, any graph comprised of processes and links should be understood as also including
the corresponding configuration and quota information.

Based on the above definitions, we can now restate the problem we address in this paper
more succinctly: given its limited scope si, how should process pi use its quota qi in order to
contribute to reach all consumers with a high probability?

3 A Gambling Approach

In the absence of any constraints on resources, making stream messages reach all processes
with a high probability is quite easy, typically via some generous gossiping (or even flooding)
algorithm. In a large-scale resource-constrained system, however, such a solution is not realistic.

3.1 Diffusion trees as starting point

The starting point of our approach can be found in [1], where we proposed an algorithm to
efficiently diffuse messages in a probabilistically unreliable environment. Intuitively, the solution
consists in building a spanning tree that contains the most reliable paths connecting all processes,
using a modified version of Prim’s algorithm [32]. The algorithm is also somehow resource-aware
in that it tries to minimize the number of messages necessary to reach all processes with a given
probability.

This algorithm, however, does not limit the bandwidth: when asking the algorithm to diffuse
a message with a high probability in a very unreliable environment, the number of messages tends
to explode. Furthermore, this solution does not limit memory consumption either: in order to
achieve optimality, it requires a complete knowledge of the system topology and of the failure
probabilities associated to links and processes. Informally, the approach presented hereafter
consists in building a diffusion graph that exhibits properties similar to that of [1], while taking
into account strict constraints on resources (bandwidth, memory, etc). As presented in Section 2,
these contraints are modeled via qi and si, respectively the limited quota and the limited scope
available at each process pi.

As soon as we face resource constraints, we have to make difficult decisions. In the context
of this paper, this observation translates into deciding how high the risk we are willing to take
is, in order to increase our chances to reach all consumers. More specifically, the question we ask
ourselves is the following: does it pay off to take the risk to sacrifice a few consumer processes in
some executions, in order to reach every process in most executions? As we shall see in Section 4,
when comparing the performance of our solution to that of a typical gossiping approach, the
answer is clearly yes.

Intuitively, our approach consists in having processes make bold decisions, in spite of their
limited view of the system (scope), in the hope to better use the available resources (quota).
That is, along the paths from the producer to the consumers, a process pi may decide to build
a local propagation tree based on its limited scope si in order to maximize the probability to
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Figure 2: A layered architecture

reach everybody in si.1 In building its local propagation tree, pi also decides how processes
in si should use their quotas. Since these decisions can be made concurrently, process pi has no
guarantee that processes in si will actually follow its decisions. As we shall see in Section 4, this
approach can lead to some (fairly rare) executions in which some processes are never reached.
Experiments show however that the benefits of taking such a risk pays off in most executions.

3.2 Solution overview

Our solution is based on the five-layer architecture pictured in Figure 2. The top layer represents
a standard stream fragmentation layer. It executes the Scalable Streaming Algorithm (SSA), is
responsible for breaking the outgoing stream into a sequence of messages on the producer side,
and for assembling these messages back into an incoming stream on the consumer side. Roughly
speaking, this layer corresponds to the Transport layer in the OSI model [2]. The SSA layer
then relies on the Packet Routing Algorithm (PRA), which is responsible for routing stream
messages through a propagation graph covering the whole system; this layer corresponds to
the Network layer in the OSI model. This propagation graph results from the spontaneous
aggregation of various propagation trees concurrently computed by some intermediate routing
processes defined as responsible for this task. As suggested by Figure 2, producers and consumers
execute both the SSA and PRA layers, while pure routing processes only execute the PRA
layer. The responsibility for building propagation trees is delegated to the Propagation Tree
Algorithm (PTA), which in turn relies on the partial view delivered by the Environment Modeling
Layer (EML). The latter relies on Bayesian inference to approximate the environment within
distance di of each process pi. Explaining how the environment modeling actually works falls
beyond the scope of this paper and can be found in [1]. Finally, the Unreliable Link Layer (ULL)
allows each process pi to send messages to its direct neighbors in a probabilistically unreliable
manner. This layer corresponds to the Data Link layer of the OSI model.

1The actual criteria that determines whether pi will make such a decision or not is explained later.
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3.3 Scalable Streaming Algorithm (SSA)

The scalable streaming solution, presented in Algorithm 1, is fairly straightforward. On the
producer side, as long as some data is available from the outgoing stream (line 6), the algo-
rithm reads that data, builds up a message containing it and multicasts the message using the
multicast() primitive of the PRA layer (lines 7 to 10). On the consumer side, upon receiving
a message from PRA (line 11), the algorithm writes the data contained in that message to the
incoming stream, provided that the message is not out of sequence (lines 12 to 14). Because of
the probabilistic nature of our environment, messages can indeed be received out of sequence,
in which case they are simply dropped. This is the standard way to handle out-of-sequence
packets when streaming realtime data, such as audio or video streams. Note that this strategy
can be easily improved by a simple local buffering mechanism in order to deal with jitter and
out-of-order messages.

Algorithm 1 Scalable Streaming Algorithm at pi

1: uses: PRA
2: initialization:
3: nextSeq ← 1
4: lastSeq ← 0

5: To multicast some outgoingStream to a set of consumers:
6: while not outgoingStream.eof() do
7: m.data← outgoingStream.read()
8: m.seq ← nextSeq
9: nextSeq ← nextSeq + 1

10: PRA.multicast(m, consumers)

11: upon PRA.deliver(m) do
12: if m.seq > lastSeq then
13: incomingStream.write(m.data)
14: lastSeq ← m.seq

3.4 Packet Routing Algorithm (PRA)

The packet routing solution, presented in Algorithm 2, consists in disseminating stream messages
through a propagation graph generated in a fully decentralized manner. This propagation graph
actually results from the spontaneous aggregation of several propagation trees. Each propagation
tree is in turn the result of an incremental building process carried out along the paths from the
producer to the consumers. It is important to note however that the aggregated propagation
graph itself might well not be a tree.

On the producer. The routing process starts with producer pi calling the multicast()
primitive (line 4). As a first step, pi asks the PTA layer to build a first propagation tree pt,
using the incrementPT () primitive (line 5). This primitive is responsible for incrementing the
propagation tree passed as argument, using the scope of the process executing it (here pi). Since
pi is the producer, the initial propagation tree passed as argument is simply composed of pi and
its associated information (failure probability Pi and quota qi). As discussed in Section 3.5, the
returned propagation tree pt maximizes the probability to reach everybody in scope si, based
on available quotas. Process pi then calls the optimize() primitive, passing it pt (line 6). This
primitive is discussed in details in Section 3.7. At this point, all we need to know is that it
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Algorithm 2 Packet Routing Algorithm at pi

1: uses: PTA, ULL, EML

2: initialization:
3: r ← ...

4: procedure multicast(m)
5: pt← PTA.incrementPT( ({pi}, ∅, {Pi}, {qi}) )
6: ~m← optimize(pt)
7: propagate(m, pt, pi, ~m)

8: upon ULL.receive(m, pk, pt, ~m) do
9: if EML.distance(pk, pi) ≥ r then

10: pt← PTA. incrementPT(pt)
11: ~m← optimize(pt)
12: propagate(m, pt, pi, ~m)
13: else
14: propagate(m, pt, pk, ~m)
15: if pi is interested in m then
16: SSA.deliver(m)

17: procedure propagate(m, pt, pk, ~m)
18: for all pj such that link (pi, pj) ∈ E(pt) do
19: repeat ~m[j] times :
20: ULL.send(m, pk, pt, ~m) to pj

returns a propagation vector ~m indicating, for each link in pt, the number of messages that
should be sent through that link in order to maximize the probability to reach everybody in
scope si. Finally, pi calls the propagate() primitive (line 7), which simply follows the forwarding
instructions computed by optimize(). That is, it sends stream message m, together with some
additional information, to pi’s children in pt. As we shall see below, this additional information
is used throughout the routing process to build up the propagation graph.

On the consumer. When a consumer pi receives message m, together with the aforemen-
tioned information (line 8), it has first to decide whether to increment pt before further propa-
gating m (lines 10 to 12), or to simply follow the propagation tree pt it just received (line 14).
The propagation tree pt should be incremented if and only if the distance that separates pi

from pk, the process that last incremented pt, is equal to r ≤ dk, the increment rate. In such
a case, pi is said to be an incrementing node.

Intuitively, r defines how often a propagation tree should be incremented as it travels through
the propagation graph. The latter then spontaneously results from the concurrent and uncoor-
dinated increments of propagation trees finding their ways to the consumers. Finally, process pi

delivers message m to the SSA layer only if it is interested in it (lines 15 and 16). If this is not
the case, process pi is merely a router node.

3.5 Propagation Tree Algorithm (PTA)

The solution to increment propagation trees is encapsulated in the incrementPT () primitive,
presented in Algorithm 3. This primitive takes a propagation tree pt as argument and incre-
ments it if needed, i.e., if something changed in the environment of pi or if pt is different from the
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propagation tree that was last incremented (line 8). The conditional nature of this increment is
motivated by performance and resources concerns: during stable periods of the system, propa-
gation trees remain unchanged, cutting down the processing load of incrementing nodes. To get
an up-to-date view of its surrounding environment, pi calls the getScope() primitive provided
by EML (line 7).

To build local tree lpti, process pi first builds a Maximum Probability Tree (MPT), using
the mpt() primitive (line 11). Details about the notion of maximum probability tree, and
primitive mpt(), are provided in Section 3.7. Briefly, MPT maximizes the probability to reach
every process within a given scope, by taking into account not only the intrinsic reliability of
processes and links in scope si, but also the individual quotas available to processes in si. Note
that primitive mpt() increments pt as a whole (see discussion below), whereas Algorithm 3 is
in fact only interested in the subtree rooted at pi (line 12). This subtree is precisely the local
tree lpti.

Algorithm 3 Propagation Tree Algorithm at pi

1: uses: EML
2: initialization:
3: lpti ← ∅
4: pti ← ∅
5: si ← ∅

6: function incrementPT (pt)
7: s← EML.getScope( )
8: if pti 6= pt ∨ si 6= s then
9: pti ← pt

10: si ← s
11: myMpt← mpt(si, pti)
12: lpti ← subtree of myMpt with pi as root
13: return pt ∪ lpti

3.6 The gambling effect.

Intuitively, the approach taken by the mpt() primitive consists in augmenting pt with the best
branches in scope si, even if some of these branches are not downstream from pi. These latter
branches are said to be concurrent branches. This approach somehow consists in taking the risk
to exclude some consumers from the propagation graph by accident. Process pi has indeed no
way to inform processes located along concurrent branches about its incremental decisions, and
has no guarantee that incremental decisions will be taken coherently with respect to each other.
In order to partially mitigate this risk, Algorithm 3 merges the local tree with the original
propagation tree passed as argument (line 13), rather than directly returning the maximum
reliability tree.

Execution example. Figure 3 illustrates the incrementing of the propagation tree on a
simple example. In this scenario, the distance defining the scope and the increment rate r are
the same for all processes and equal to 2. Process p1, the producer, builds a first propagation
tree pt1 covering its scope s1; this tree is pictured in Figure 3 (a) using bold links. All nodes
in pt1 that are at a distance r = 2 from p1 are incrementing nodes, which means they have to
increment pt1 when they receive it. Process p3 being such a node, it calls the mpt() function,
passing it pt1 and its scope s3. This function adds the dashed links pictured in Figure 3 (a)
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to pt1 and returns the resulting Maximum Probability Tree (MPT); this MPT contains the local
propagation tree rooted at p3, i.e., lpt3. The latter is then extracted from the MPT, merged
with the initial propagation tree pt1 and returned. Figure 3 (b) pictures the new propagation
tree resulting from the above increment process.

3.7 Maximum Probability Tree (MPT)

The concept of Maximum Probability Tree (MPT) is at the heart of our approach, as it mate-
rializes the risk taken during the construction of the propagation graph. Intuitively, an MPT
maximizes the probability to reach all processes within a given scope by optimally using the
quotas of these processes. Before describing how the mpt() function given in Algorithm 4 builds
up an MPT, we first recall the notions of reachability probability and reachability function.

Reachability probability. The reachability function, denoted R(), computes the proba-
bility to reach all processes in some propagation tree T with configuration C(T ), given a vector
~m defining the number of messages that should transit through each link of T . We then define
the probability returned by R() as T ’s reachability probability. Equation 1 below proposes a
simplified version of the reachability function borrowed from [1] — this version assumes that
only links can fail by losing messages with a given probability, whereas processes are assumed
to be reliable.2

R(T, ~m) =
|~m|∏
j=1

1− L
m[j]
j where Lj ∈ C(T ) (1)

Using R(), we then define the maxR() function presented in Algorithm 4 (lines 8 to 10),
which returns the maximum reachability probability for T . To achieve this, maxR() first calls
the optimize() function in order to obtain a vector ~m that optimally uses the quotas available to
processes in T . It then passes this vector, together with T , to R() and returns the corresponding
reachability probability.

The optimize() function iterates through each process ps in T and divides individual quota qs

in a way that maximizes the probability to reach direct children of ps (line 14 to 20). For
2Note that this simplification causes no loss of generality; see [1] for details.
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Algorithm 4 MPT | Building Process
1: function mpt(S, T )
2: while V (S) 6⊆ V (T ) do
3: O ← {lj,k | lj,k ∈ E(S) ∧ pj ∈ V (T ) ∧ pk ∈ V (S)− V (T )}
4: let lu,v ∈ O such that ∀lr,s ∈ O :
5: maxR(T ∪ lu,v) ≥ maxR(T ∪ lr,s)
6: T ← T ∪ lu,v

7: return T

8: function maxR(T )
9: ~m← optimize(T )

10: return R(T, ~m)

11: function optimize(T )
12: let ~m : ∀lj ∈ E(T ), ~m[j] is the number of messages to be sent through link lj
13: ~m← (1, 1, · · · , 1)
14: for all ps ∈ V (T ) do
15: let Λs ⊂ E(T ) : lk ∈ Λs ⇒ (ps, pk) ∈ E(T )
16: if | Λs | > qs then
17: return (0, 0, · · · , 0)
18: while

∑
lk∈Λs

~m[k] < qs do
19: let ~mu : (lu ∈ Λs) ∧ (∀t 6=u ~mu[t] = ~m[t]) ∧ (~mu[u] = ~m[u] + 1) ∧ (R(T, ~mu) − R(T, ~m) is

max)
20: ~m← ~mu

21: return ~m

this, function optimize() allots messages of qs one by one, until all messages have been allo-
cated (line 18 to 20). That is, in each iteration step it chooses the outgoing link lu from ps that
maximizes the gain in probability to reach all ps’s children in T , when sending one more mes-
sage through lu (line 19). When all individual quotas have been allocated, optimize() returns a
vector ~m that provides the maximum reachability probability when associated with T .

MPT building process. We now have all the elements needed to present the MPT building
process carried out by mpt(), given a scope S and an initial propagation tree T . This function
simply iterates until all processes in S but not in T have been linked to T , i.e., it only stops
when T covers the whole scope S (line 2 to 6). In each iteration step, the mpt() function then
adds the link that produces a new tree exhibiting the maximum reachability probability (line 5).

Execution example. Figures 4 to 6 illustrate the MPT building process on a simple
example. In this example, the initial tree T is composed of only process p1 and S is the scope
of p1, i.e., S = s1. During the first iteration step, the algorithm simply chooses the most reliable
link, i.e., link l1,2 with failure probability L1,2 = 0.2. At this point, it means that the entirety
of p1’s quota has been allocated to reach p2. In this example, the quota is identical for all
processes and equal to 3, i.e., ∀pi : qi = 3.

At the beginning of the second step, the algorithm faces two alternatives: either adding
link l1,3 and splitting the quota of p1 between links l1,2 and l1,3, or adding link l2,4 and using
the entirety of q2, the quota of p2, to reach p4. These two alternatives are pictured in Figure 5
as trees T ′ and T ′′ respectively.

Based on the result of function maxR(), the algorithm chooses to keep T ′′, since it is the tree
that offers the maximum probability to reach everybody. Note however that this decision implies
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adding link l2,4 rather than link l1,3, although the latter is more reliable. Figure 6 pictures the
final Maximum Probability Tree returned by function mpt().

4 Performance evaluation

The performance of our scalable algorithm was evaluated through a simulation model. For
simplicity, we only considered link failures, while assuming that processes are reliable, i.e,
∀pi : Pi = 0. As mentioned in Section 3.7, this does not compromise the generality of our ap-
proach. We performed experiments with processes organized in various topologies: we started
from a ring where each process had two neighbors and then incrementally augmented the num-
ber of neighbors until reaching a connectivity of 20 neighbors per process. This provided a
spectrum of possibilities for the evaluations, starting with a worst-case topology with respect to
process distances (i.e., the ring), and gradually reducing the mean distance between processes
in the system by adding more links. Unless mentioned otherwise, we assumed topologies with
100 processes.

To facilitate the evaluation, we set the scope to be the same for all processes during the
execution, i.e., ∀pi : di = d. To avoid regular network configurations, we then defined 20% of
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processes to be hubs. A hub has twice the quota of a normal process and is connected to its
neighbors through highly reliable links, i.e., we set the message loss probability of these links
to 10−4. Our performance evaluation consists in measuring the success rate of 1000 distinct
executions. We consider an execution to be a success when the multicasted stream packet
reaches all nodes in the system, i.e., the success rate is precisely what the notion of reachability
probability tries to capture.

4.1 Benefits of gambling

Multicast protocols fall into two categories, those based on structured information dissemination
such as our Scalable Streaming Algorithm (SSA), and those based on unstructured information
dissemination, typically the case of gossip-based protocols. To measure the benefit of our gam-
bling approach, we compare SSA with a typical Gossip-Based Algorithm (GBA), modified to
implement the notion of individual quota: to propagate an incoming message m, the algorithm
repeats the following two steps until exhausting its quota: (1) randomly choose a neighbor
among those that did not yet acknowledge m and (2) send m to those neighbors. For the com-
parison, we then set the quota to 5 and the failures probability of each link3 to a random value
within [0.05, 0.55]. As for specific parameters of SSA, we set the scope to 5 and the increment
rate to 2.

Figure 7 shows the evolution of the success rate of SSA and GBA respectively, when varying
the network connectivity. As we can see, the success rate of GBA decreases as the connectivity
increases. This is due to the fact that each process randomly uses its quota of messages, without
taking into account the reliability of links. Indeed, as the connectivity increases, it becomes
more and more important to maximize the impact of each message on the overall reachability
probability.

For SSA on the contrary, the success rate tends to increase with the network connectivity be-
cause SSA has a larger choice of links when computing local Maximum Probability Trees (MPTs),
and thus more chances to build a global propagation graph with a favorable reachability proba-
bility. Furthermore, even if some processes have a number of neighbors that exceeds their quota,
our approach still tries to maximize the overall reachability probability by adapting the number

3To be more precise: each link that is not attached to a hub.
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Figure 8: Influence of probabilistic misses and gambling misses on SSA’s success rate

of children of each process to its quota. As shown in Figure 7, this has a significant impact on
the actual success rate. For a connectivity of 20 for example, which is 4 times higher than the
quota used in our experiments, the success rate is close to 100. In this figure however, we can
also see a drop of the success rate for connectivities between 10 and 16. As discussed hereafter,
this drop constitues the costs of gambling.

4.2 Cost of gambling

To evaluate the cost of our gambling approach, we introduce the notion of a missed execution
of our algorithm. Such an execution, also simply called a miss, is one where at least one node
in the system never received the multicast packet. We can further categorize such misses as
either probabilistic misses or gambling misses. Probabilistic misses are caused by unreliable
links sometimes losing messages, i.e., they are due to the probabilistic nature of the model we
consider. Gambling misses on the other hand happen when the effective propagation graph
does not cover the whole system. An effective propagation graph results from the aggregation
of effectively followed propagation trees.

In Figure 8, we show how probabilistic misses and gambling misses influence the success rate
of our algorithm, i.e., the two curves presented in this figure result from the decomposition of the
SSA curve presented in Figure 7. Considering probabilistic misses, we can observe that as the
connectivity increases, the probability of reaching all nodes also increases. This is not surprising,
since as the connectivity increases, the number of links increases and the algorithm has a larger
choice of links when computing MPT and thus more chances to get an MPT with a favorable
reachability probability. For gambling misses on the contrary, as the connectivity increases,
misses due to the structure of the effective propagation graph become more frequent because
the algorithm has a larger choice of links, which induces a higher risk to make contradictory
decisions when building distinct propagation trees. However, when reaching a high connectivity
(12 links or more in our example), gambling misses become less frequent because the scope of
each process becomes close to the whole system.4

4When the scope covers the whole system, the propagation graph corresponds to the MPT built by the producer
and covering the whole system.In this case there is no gambling involved.
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Gambling cost mitigation The good news is that many cases of gambling misses are de-
tectable and can be mitigated via a simple countermeasure, which leads to a few nodes exceeding
their quotas. As discussed in Section 2.2, we assume that a quota of a node is not defined as the
whole node propagation capacity. It can represent either a part of its capacity or the percentage
of resources the peer allocated to the streaming service. As we just saw, a gambling miss occurs
when the resulting effective propagation graph does not cover the whole system. Such misses
can be caused by two types of conflicting situations, pictured in Figure 9.

A cyclic conflict, illustrated in Figure 9(a), is caused by the inclusion of some node c into two
distinct propagation trees. When c receives a propagation tree, it uses its quota to propagate
the packet in that tree, not knowing that a second tree will reach it. So, when the second
propagation tree reaches c, the absence of remaining quota can cause some descendants of c in
the second tree to never be reached. In Figure 9(a), node c receives two conflicting propagation
trees, first one computed by node a and then one computed by node b. As a consequence, nodes
below c in the tree computed by b might never be reached. It is easy to see that upon reception
of the second tree, c is able to detect the conflict and to apply the countermeasure described
hereafter.

A mutual delegation conflict, illustrated in Figure 9(b), is caused by contradictory decisions
about how to include a given node, when incrementing two distinct propagation trees. In
Figure 9 (b), node a decides to delegates the task of reaching node x to node b, while b decides
to delegate the task of reaching x to a. As a consequence, node x will never be reached. Because
incrementing nodes do not inform each other about their respective incrementing decisions, the
mutual delegation conflict is not detected.

Cyclic conflict countermeasure. As already suggested, we can mitigate cyclic conflicts
by occasionally having some nodes exceed their quotas. It is interesting to note however that the
detection of a cyclic conflict by some node c does necessarily imply that some nodes might not
be reached. More precisely, there exists two independent cases that require node c to exceed its
quota. The first case is straightforward and occurs when a descendant node of c in the second
propagation tree is not in the first propagation tree. This case is formalized by Condition 2
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below. The second case, formalized by Condition 3, is more complex and explained thanks to
the example of Figure 10.

∃ y ∈ T2.children(c)− T1 (2)

∃ y ∈ (T2.children(c) ∩ T1)) ∧
(x ∈ T2 | c ∈ T2.children(x) ∧ (y ∈ T1.children(x))) (3)

In Figure 10, node c first receives tree T1 and later T2. When receiving T2 from node x,
c detects that node y might not be reached. Indeed, in both trees T1 and T2, y is a descendant
of c. However, x is a descendant of c in T1 and an ancestor of c in T2. So, when c receives T2

from x, it deduces that x was either not reached in T1 or reached but decided to re-transmit
though T2. In both cases, c should retransmit, hence exceeds it quota, in order to reach y or in
order to reach the node for which x decided to retransmit.

Countermeasure evaluation. When evaluating the effectiveness of our solution to miti-
gate gambling costs, we compared the final success rate of experiments implementing the pro-
posed countermeasure with experiments that do not. In doing so, we varied the network con-
nectivity c, while fixing the incrementing rate r to 2, the scope d defining the known subgraph
of each process to 5, the range of loss probability Li to [0.05, 0.55], and the quota of messages qi

to 5.
Figure 11 (a) shows the success rate of executions implementing our countermeasure by vary-

ing the network connectivity, while Figure 11 (b) shows the corresponding average number of
exceeded quotas based on 1000 distinct executions. When comparing curves of Figure 11 (a) and
Figure 8 that shows the success rate considering the gambling misses,5 we can see that our coun-
termeasure significantly improves the final result. Furthermore, as shown in Figure 11 (b), the
average number of exceeded quotas is negligible, i.e., less than one for 1000 distinct executions.

5Executions corresponding to these two curves have the same parameters.
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Figure 11: SSA with countermeasure, Li ∈ [0.05, 0.55] and qi = 5 messages.

4.3 Benefits of combined adaptiveness.

This section discusses the advantage of combining both resource and unreliability awareness
when building the propagation tree, that is, it shows the benefit of our MPT construction
technique. We compare our MPT to two relevant solutions. The first solution is inspired by
the tree defined in Overcast [12]. Overcast is targeted at bandwidth-intensive applications. It
defines a tree overlay that aims to maximize the bandwidth by placing nodes as far as possible
from the root (the source) without sacrificing bandwidth. The available bandwidth resource in
Overcast is modeled as weights assigned to links. In order to adapt the Overcast tree construction
technique to our model, we consider the link weight as the number of messages assigned to the
link, calculated by dividing the node quota by the number of its outgoing links in the tree. Thus,
when building the Overcast tree in our model, at each iteration we add the link through which
we can assign the maximum number of messages.

The second protocol is part of our previous work defined in [1] defining a reliable broadcast
taking into account nodes failures probabilities (Pi) and links message loss probabilities (Li).
This broadcast solution is also based on a tree overlay named the Maximum Reliability Tree
(MRT). This tree defines the most reliable tree of a known subgraph through which a message
will be propagated. To avoid compromising this protocol, we assume for this comparison that
each node will be able to send at least one message to each of its children in a tree. Thus, as
shown in Figure 12 (a), each node quota of messages is equal to the number of direct neighbors,
i.e., ∀qi, qi = c the network connectivity.

When it comes to the limited knowledge each node has about the system, we assume that,
in both our strategy and the compared protocols, nodes has only a partial view. Based on
this knowledge, we use our Gambling increment strategy in order to build a propagation graph
covering the whole system while using the different tree build criteria. Then, we apply our
countermeasure to mitigate the gambling misses and focus our comparison in probabilistic misses.
For fair comparison, we also apply our Optimize() function both to the Overcast tree and the
MRT. Thus, once our comparison trees are built all nodes quotas are distributed in way to
maximize the advantage of this resource.
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Figure 12: SSA reliability and bandwidth adaptiveness advantage

In this comparison, we vary the network connectivity c, while fixing the incrementing rate r
to 2, the scope d defining the known subgraph of each process to 5 and the range of loss
probability Li to [0.05, 0.55]. As shown in Figure 12, the success rate of our approach is higher
when using MPT than when using the Overcast tree and the MRT. When the quota is equal to
the network connectivity c (Figure 12 (a)), the success rate of our approach and its comparison
protocols increases as the c increases and thus as qi increases. This reflects the capacity of
available resources to hide the environment unreliability. When the quota qi is fixed to 5 messages
(Figure 12 (b)), our approach provides a higher reliability when using MPT than when using the
Overcast tree. In addition, our approach has a different behavior than when using the Overcast
tree while varying the network connectivity. Indeed, as the connectivity increases more links
in the system are created offering a larger choice of links to the MPT construction technique.
While the MPT takes advantage to include a more reliable links, the Overcast tree moves away
from the line structure which imposes more leaves and thus more lost quotas. These latter
quotas would contribute to hide the environment unreliability if not lost.

4.4 Scalability

In order to evaluate the scalability of our algorithm, we performed several experiments with our
simulation model, by drastically augmenting the number of processes in the system. In doing
so, we considered all links to have the same loss probability L ' 0.05, and we fixed the scope d
to 50, the incrementing rate r to 40 and the network connectivity c to 4. We also considered
all individual quotas qi to be the same and equal to the network connectivity, i.e. ∀qi, qi=4.
Our scalability evaluation is pictured in Figure 13 (a) and Figure 14 (a) which show the rate of
executions that succeeded to reach all nodes (100% of nodes), 99 % of nodes and 98% of nodes.
In Figure 13 (a) the number of nodes in the system is varied in a linear way while in Figure 14 (a)
it is varied in an exponential way. Figure 13 (b) and Figure 14 (b) then show the corresponding
countermeasure price, in terms of the average of exceeded quotas needed to handle detectable
gambling misses. Based on these Figures, we can conclude that our strategy provides a scalable
streaming solution, with a graceful linear decrease as the number of processes in the system
increases. We also notice that our solution requires a very small number of exceeded quotas to
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Figure 13: Scalability of SSA with linear growth of nodes, L ' 0.05 and qi = 4 messages

correct cyclic conflicts.
In each execution we have measured (1) the system diameter, computed as the number of

links in the shortest path separating the most distant nodes; (2) the average tree depth, which
represents the average distance, in terms of number of links, separating the source node to all the
leaves in the resulting propagation graph; and (3) the tree depth in the propagation graph (i.e.,
maximum distance between the source node and the leaves). These measurements are shown in
Figure 13 (c) and Figure 14 (c). Notice that the average tree depth is lower than the system
diameter. This shows that while our tree construction technique aims at using the maximum of
available resources, the resulting propagation graph is not a line, although a line is the topology
that maximizes the use of quotas. Indeed, when enough quotas are available at some nodes
(e.g., at hubs) our MPT construction algorithm assigns more than one children to those nodes,
making the global tree shorter.

5 Related Work

Several peer-to-peer streaming solutions have been proposed recently. Mainly, we can classify
them into two classes: structured [4, 5, 7, 8, 12, 17, 18, 26] and unstructured [14, 19, 20, 21,
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Figure 14: Scalability of SSA with exponential growth of nodes, L ' 0.05 and qi = 4 messages
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23, 24, 29, 31]. The unstructured approach usually relies on a gossiping protocol, which consists
in having each peer forward the data it receives to a set of randomly chosen neighbors. As a
consequence, the path followed by the disseminated data is not deterministic. By contrast, the
structured approach consists in first organizing the network peers into some overlay network
and in routing disseminated data through this virtual topology.

These two approaches focus on different goals. Initially the structured sttrategy was devised
to adapt to the underlying network characteristics, whereas the unstructured strategy, known
as network agnostic, was devised for scalability. To ensure the same reliability, a structured
dissemination uses fewer messages than an unstructured one. It however assumes that nodes
have some knowledge about the network and imposes a computation overhead, which hinders
scalability of these approaches.

Recently several researches worked to reduce the gap between the structured and the unstruc-
tured approaches. In the unstructured side, several approaches proposes a more deterministic
forward decision in order to adapt some environment constraints or to avoid wasting resources
by sending a duplicated messages. Along this line, [14, 15, 16] propose a gossip based strategies
to ensure either an optimal reliability or an optimal delay by tuning the forward decision based
on information about the neighbors received packets. That is, in order to reach some delay or
rate targets, each node tries to answer the following question: which stream packets should be
forwarded to which neighbor? Similar to our approach, [15] adresses the network links capacity
limitations, however it does not consider these components unreliability.

In the structured side, several approaches propose an overlay construction mechanism to
approach the scalability of the unstructured strategies. Our solution is part of this category.
Along this line, several solutions are based on a tree have been proposed in the literature
[7, 8, 12, 30]. Some of them define a multicast tree that aims at optimizing the bandwidth
use [7, 6, 12]. Others, also deal with scalability by limiting the knowledge each process has
about the system [8, 30]. Yet, other systems aim at increasing robustness with respect to
packet loss [10, 11, 13]. Our approach differs from these systems in that it targets the three
goals simultaneously. Our propagation structure is build collaboratively by distributed processes
using their respective partial views of system. Reliability is accounted for by each process when
building its local tree. Finally, bandwidth constraints are considered when defining how to
forward packets along the propagation graph.

Narada [7] builds an adaptive mesh that includes group members with low degrees and with
the shortest path delay between any pair of members. A standard routing protocol then is run
on the overlay mesh. This work differs from ours by considering latency as the main cost related
to links. While using the probing to change links in order to optimize the mesh, Narada does not
take into account the loss probability of added or retrieved links. Furthermore, Narada nodes
maintain a global knowledge about all group participants. In comparison, we take process and
link failure probabilities into account and maintain local information only.

Regarding the forwarding load distribution, the work closest related to ours is Overcast [12],
which leads to deep distribution trees. Such a tree would be our MPT in reliable environments,
that is, if links do not lose messages.

Reducing the number of gossip messages exchanged between processes by taking the network
topology into account is discussed in [27] and [28]. Processes communicate according to a pre-
determined graph with minimal connectivity to attain a desired level of reliability. Similarly to
our approach, the idea is to define a directed spanning tree on the processes. Differently from
ours, process and link reliabilities are not taken into account to build such trees.
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Our strategy shares some design goals with broadcast protocols such as [1]. Both rely on the
definition of a criteria for selecting the multicasting graph. In our strategy, however, we strive to
both decrease packet loss and balance the forwarding load. The notion of reachability probability
of a tree is presented in [1] to define the Maximum Reliability Tree (MRT). In our work, we
define the reachabiliy probability of the streaming differently, by considering local knowledge
only. These approaches illustrate a tradeoff in stream diffusion algorithms: while the protocol in
[1] can lead to the optimum propagation tree, it requires global topology knowledge; our current
algorithm relies on local knowledge but may not result in the optimal propagation tree.

When it comes to dealing with loops, which naturally appear in decentralized tree-based
streaming solutions, several streaming solutions propose tree computation techniques that con-
sist in dividing multicast members into groups. In such approaches, each group has a leader who
is responsible of organising group members in a subtree, while leaders are in turn also organized
in a tree [3, 5]. While this strategy prevent loops in the resulting overlay, it however penalizes
the efficiency since all optimization are done locally to each group, i.e., nodes in different groups
are unable to form overlay links.

Another set of tree-based solutions avoid loop problems by taking advantage of logical adress
techniques, traditionally dedicated to routing solutions, in order to build a tree overlay. An
example of such solutions is SplitStream [8], which builds several trees based on Scribe [4] and
Pastry [9]. This approach ensures scalability since no computation is needed to define the
tree. The routing is done implicitly by following the logical adresses assigned to members. The
drawback of this approach is the absence of match between the overlay and the underlying
physical network. That is, no efficiency guarantee can be ensured with this approach.

Our approach to detect loops, when building efficient tree overlays, differs from previous
ones in that it ensures a resulting global tree close to the one built in a centralized manner, i.e.,
the tree we would obtain if we had a global knowledge about the system. In [25], we presented
an overview of our solution focusing on the tree build technique, while providing no detail on
our loop detection mechanism nor on its handling.

6 Conclusion

This paper introduces a probabilistic algorithm for reliable stream diffusion in unreliable and
constrained environments. Differently from more traditional approaches, we resort to a “gam-
bling approach,” which deliberately penalizes a few consumers in rare cases, in order to benefit
most consumers in common cases. Experimental evaluation has shown that our protocol outper-
forms gossip-based algorithms when subject to similar environment constraints. We believe that
this main open up new directions for future work on large-scale data dissemination protocols.
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