
Conflict-Aware Load-Balancing Techniques
for Database Replication

Vaidė Zuikevičiūtė
University of Lugano (USI)

CH-6904 Lugano, Switzerland

vaide.zuikeviciute@lu.unisi.ch

Fernando Pedone
University of Lugano (USI)

CH-6904 Lugano, Switzerland

fernando.pedone@unisi.ch

ABSTRACT
Middleware-based database replication protocols are more
portable and flexible than kernel-based protocols, but have
coarser-grain information about transaction access data, re-
sulting in reduced concurrency and increased aborts. This
paper proposes conflict-aware load-balancing techniques to
increase the concurrency and reduce the abort rate of mid-
dleware-based replication protocols. Experimental evalua-
tion using a prototype of our system running the TPC-
C benchmark showed that aborts can be reduced with no
penalty in response time.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases; H.2.4
[Systems]: Transaction processing; Distributed databases

General Terms
Performance, Design

Keywords
Replication, load balancing, transactions scheduling

1. INTRODUCTION
Database replication protocols can be classified as kernel-

or middleware-based, according to whether changes in the
database engine are required or not. Kernel-based protocols
take advantage of internal components of the database to in-
crease performance in terms of throughput, scalability, and
response time. For the sake of portability and heterogene-
ity, however, replication protocols should be independent of
the underlying database management system. As a conse-
quence, middleware-based database replication has received
much attention in the last years (e.g., [4, 5, 7, 9, 10, 12,
13]). The downside of the approach is that middleware-
based database replication protocols usually have limited
information about the data accessed by the transactions,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

and may result in reduced concurrency or increased abort
rate or both.

This paper focuses on load-balancing techniques for certi-
fication-based replication protocols placed at the middle-
ware layer. In such protocols, each transaction is first exe-
cuted locally on some server. During the execution there
is no synchronization between servers. At commit time,
update transactions are broadcast to all replicas for certi-
fication. The certification test is deterministic and executed
by each server. If the transaction passes certification, its
updates are applied to the server’s database. If two con-
flicting transactions execute concurrently on distinct servers,
one of them may be aborted during certification to ensure
strong consistency (e.g., one-copy serializability). Our load-
balancing techniques build on two simple observations: (a) If
conflicting transactions are submitted to the same server,
the local replica’s scheduler serializes the conflicting opera-
tions appropriately, reducing aborts. (b) In the absence of
conflicts, however, performance is improved if transactions
execute concurrently on different replicas.

Ideally, we would like the load balancer to both minimize
the number of conflicting transactions executing on distinct
replicas and maximize the parallelism between transactions,
but unfortunately these are often opposite requirements.
For example, concentrating conflicting transactions on a few
replicas will reduce the abort rate, but it may overload some
replicas and leave others idle. We address the problem by in-
troducing conflict-aware load-balancing: a hybrid technique
that strives to address the two requirements above.

We analyze the proposed technique experimentally using
the Database State Machine replication [11] running the
TPC-C benchmark. The results show that scheduling trans-
actions with the sole goal of maximizing parallelism already
doubles the throughput obtained with random assignment of
transactions. Scheduling transactions in order to minimize
conflicts only can reduce aborts due to lack of synchroniza-
tion, but the improvements are obtained at the expense of an
increase in response time since the load balancing is unfair.
A hybrid approach allows to trade even load distribution for
low transaction aborts in order to increase throughput with
no degradation in response time.

2. BACKGROUND

2.1 Model
We consider an asynchronous distributed system com-

posed of database clients, c1, c2, ..., cm, and servers, S1, S2, ...,
Sn. Communication is by message passing. Servers can

also interact by means of a total-order broadcast, described
below. Servers can fail by crashing and subsequently re-
cover. If a server crashes and never recovers, then opera-
tional servers eventually detect the crash.

Total-order broadcast is defined by the primitives broad-
cast(m) and deliver(m), and guarantees that (a) if a server
delivers a message m then every server delivers m; (b) no
two servers deliver any two messages in different orders; and
(c) if a server broadcasts message m and does not fail, then
every server eventually delivers m.

Each server has a full copy of the database and executes
transactions according to strict two-phase locking (2PL)[3].
The database workload is composed of a set of pre-defined
parameterized transactions T = {T1, T2, ...}. To account
for the computational resources needed to execute different
transactions, each transaction Ti in the workload can be as-
signed a weight wi. For example, simple transactions could
have less weight than complex transactions.

2.2 Database state-machine replication
The state-machine approach is a non-centralized replica-

tion technique [14]. Its key concept is that all replicas receive
and process the same sequence of requests in the same order,
ensured by total-order broadcast. Consistency is guaranteed
if replicas behave deterministically.

The Database State Machine (DBSM) [11] uses the state-
machine approach to implement deferred update replication.
Each transaction is executed locally on some server and
during the execution there is no interaction between repli-
cas. Read-only transactions are committed locally. Update
transactions are broadcast to all replicas for certification. If
the transaction passes certification, it is committed; other-
wise it is aborted. Certification ensures that the execution
is one-copy serializable (1SR) [3].

We say that two transactions Ti and Tj conflict, denoted
Ti ∼ Tj , if they access some common data item, and at
least one transaction writes it. If Ti and Tj conflict and
are executed concurrently on different servers, certification
will abort one of them. If they execute on the same replica,
however, the replica’s local scheduler will order Ti and Tj

appropriately, and thus, both can commit.

3. CONFLICT-AWARE LOAD BALANCING
In the DBSM transactions can execute at any server. If

transactions with similar access patterns execute on the same
server, the local replica’s scheduler will serialize conflicting
transactions and decrease the number of aborts. Thus, in-
stead of randomly choosing replicas for transaction execu-
tion, we assign transactions to preferred servers based on
the transaction types, their parameters, and their conflict
relation. As a consequence, we reduce the number of certi-
fication aborts.

Assigning transactions to preferred servers is an optimiza-
tion problem. It consists in distributing the transactions
over the replicas S1, S2, ..., Sn. When assigning transactions
to database servers, we aim at (a) minimizing the number
of conflicting transactions executing at distinct replicas, and
(b) maximizing the parallelism between transactions. If the
workload is composed of many conflicting transactions and
the load over the system is high, then (a) and (b) become
opposite requirements: While (a) can be satisfied by con-
centrating transactions on few database servers, (b) can be
fulfilled by spreading transactions on multiple replicas. But

if only few transactions conflict, then maximizing parallelism
becomes the priority.

3.1 MPF and MCF
We propose a hybrid load balancing technique which al-

lows to give more or less significance to minimizing con-
flicts or maximizing parallelism. We call it Maximizing Par-
allelism First(MPF). MPF prioritizes parallelism between
transactions. Consequently, it initially tries to assign trans-
actions in order to keep the servers’ load even. If more than
one option exists, the algorithm attempts to minimize con-
flicts.

The load of a server is given by the aggregated weight
of the transactions assigned to it at some given time. To
compare the load of two servers, we use factor f, 0 < f ≤ 1.
Servers Si and Sj have similar load at time t if the fol-
lowing condition holds: f ≤ w(Si, t)/w(Sj , t) ≤ 1 or f ≤
w(Sj , t)/w(Si, t) ≤ 1. For example, MPF with f = 0.5 al-
lows the difference in load between two replicas to be up to
50%. We denote MPF with a factor f as MPF f . MPF
works as follows:

1. Consider replicas S1, S2, ..., Sn. To assign each trans-
action Ti in the workload to some server at time t
execute steps 2–4, if Ti is an update transaction, or
step 5, if Ti is a read-only transaction.

2. Let W (t) = {Sk | w(Sk, t) ∗ f ≤ minl∈1..n w(Sl, t)} be
the set of replicas with the lowest aggregated weight
w(Sl, t) at time t, where w(Sl, t) =

P
Tj∈St

l
wj .

3. If |W (t)| = 1 then assign Ti to the replica in W (t).

4. If |W (t)| > 1 then let CW (Ti, t) be the set of replicas
containing conflicting transactions with Ti in W (t):
CW (Ti, t) = {Sk | Sk ∈ W (t) and ∃Tj ∈ Sk such that
Ti ∼ Tj}.

(a) If |CW (Ti, t)| = 0, assign Ti to the Sk in W (t)
with the lowest aggregated weight w(Sk, t).

(b) If |CW (Ti, t)| = 1, assign Ti to the replica in
CW (Ti, t).

(c) If |CW (Ti, t)| > 1, assign Ti to the replica Sk in
CW (Ti, t) with the highest aggregated weight of
transactions conflicting with Ti; if several replicas
in CW (Ti, t) satisfy this condition, assign Ti to
any of these.

More formally, let CTi(S
t
k) be the subset of St

k

containing conflicting transactions with Ti only:
CTi(S

t
k) = {Tj | Tj ∈ St

k ∧ Tj ∼ Ti}. Assign Ti to
the replica Sk in CW (Ti, t) with the greatest ag-
gregated weight w(CTi(S

t
k)) =

P
Tj∈CTi

(St
k
) wj .

5. Assign read-only transaction Ti to the replica Sk with
the lowest aggregated weight w(Sk, t) at time t.

The choice of f depends heavily on workload characteris-
tics: the number of conflicting transactions, their complexity
and the load over the system.

We call Minimizing Conflicts First(MCF) a special case
of MPF with a factor f = 0. MCF attempts to minimize
the number of conflicting transactions assigned to different
replicas. The algorithm initially tries to assign each transac-
tion Ti in the workload to the replica containing conflicting
transactions with Ti. If there are no conflicts, the algorithm
tries to balance the load among the replicas.

3.2 A simple example
Consider a simple example with the workload of 10 trans-

actions, T1, T2, ..., T10, running in a system with 4 replicas.
Transactions with odd index conflict with transactions with
odd index; transactions with even index conflict with trans-
actions with even index. Each transaction Ti has weight
w(Ti) = i. All transactions are submitted concurrently to
the system and the load balancer processes them in decreas-
ing order of weight.

MPF 1 will assign transactions T10, T3, and T2 to S1;
T9, T4, and T1 to S2; T8 and T5 to S3; and T7 and T6 to S4.
MCF will assign T10, T8, T6, T4, T2 to S1; T9, T7, T5, T3, T1 to
S2; and no transactions to S3 and S4. MPF 0.8 will assign
T10, T4, and T2 to S1; T9 and T3 to S2; T8 and T6 to S3;
and T7, T5, and T1 to S4. MPF 1 creates a balanced assign-
ment of transactions: w(S1) = 15, w(S2) = 14, w(S3) = 13,
and w(S4) = 13. Conflicting transactions are assigned to
all servers however. MCF completely concentrates conflict-
ing transactions on distinct servers, S1 and S2, but the ag-
gregated weight distribution is poor: w(S1) = 30, w(S2) =
25, w(S3) = 0, and w(S4) = 0, that is, two replicas would
be idle. MPF 0.8 is a compromise between the previous
schemes. Even transactions are assigned to S1 and S3, and
odd transactions to S2 and S4. The aggregated weight is
fairly balanced: w(S1) = 16, w(S2) = 12, w(S3) = 14, and
w(S4) = 13.

4. ANALYSIS OF THE TPC-C BENCHMARK
In this section we show how the TPC-C benchmark can be

mapped to our transactional model, and provide a detailed
analysis of MCF and MPF when applied to TPC-C.

4.1 Overview of the TPC-C benchmark
TPC-C is an industry standard benchmark for online trans-

action processing (OLTP) [15]. It represents a generic whole-
sale supplier workload. TPC-C defines five transaction types:
New Order(NO), Payment(P), Delivery(D), Order Stat-
us(OS) and Stock Level(SL). Since only update transac-
tions count for conflicts—read-only transactions execute at
preferred servers just to balance the load—there are only
three types to consider: D, P and NO. These three trans-
action types compose 92% of TPC-C workload. We define
the workload of update transactions as:

T = {Di, Pijkm, NOijS | i, k ∈ 1..#WH; j, m ∈ 1..10;
S ⊆ {1, ..., #WH}}

where #WH is the number of warehouses. Di stands for
a Delivery transaction accessing districts in warehouse i.
Pijkm relates to a Payment transaction which reflects the
payment and sales statistics on district j and warehouse i
and updates the customer’s balance. In 15% of the cases, the
customer is chosen from a remote warehouse k and district
m. Thus, for 85% of transactions of type Pijkm: (k = i) ∧
(m = j). NOijS is a New Order transaction referring to
a customer assigned to warehouse i and district j. For an
order to complete, some items must be chosen: 99% of the
time the item chosen is from the home warehouse i and 1%
of the time from a remote warehouse. S represents a set of
remote warehouses.

To assign a particular update transaction to a replica,
we have to analyze the conflicts between transaction types.
Throughout the paper, our analysis is based on the ware-

house and district IDs only. We define the conflict relation
∼ between transaction types as follows:

∼ = {(Di, Dx) | (x = i)} ∪
{(Di, Pxykm) | (k = i)} ∪
{(Di, NOxyS) | (x = i)} ∪
{(Pijkm, Pxyzq) | (x = i) ∨ ((z = k) ∧ (q = m))} ∪
{(NOijS , NOxyZ) |
((x = i) ∧ (y = j)) ∨ (S ∩ Z 6= ∅)} ∪
{(NOijS , Pxyzq) | (x = i) ∨ ((z = i) ∧ (q = j))}

For instance, two Delivery transactions conflict if they access
the same warehouse.

4.2 Scheduling TPC-C
We are interested in the effects of our conflict-aware load-

balancing algorithms when applied to the TPC-C workload.
For illustrative purposes in this section we present a static
analysis of the benchmark. We analyze the behavior of our
algorithms as if all TPC-C transaction types are submitted
to the system simultaneously. To keep our characterization
simple, we will assume that the weights associated with the
workload represent the frequency in which transactions of
some type may occur in a run of the benchmark.

We studied the load distribution over the servers and
the number of conflicting transactions executing on different
replicas. To measure the load, we use the aggregated weight
of all transactions assigned to the replica. To measure the
conflicts, we use the overlapping ratio OR(Si, Sj) between
database servers Si and Sj , defined as the ratio between the
aggregated weight of update transactions assigned to Si that
conflict with transactions assigned to Sj , and the aggregated
weight of all update transactions assigned to Si.

We have considered 4 warehouses (i.e., #WH = 4) and
8 database replicas in our analysis. The load balancer pro-
cesses the requests sequentially in a random order. We com-
pared the behavior of MCF, MPF 1 and MPF 0.5 with a
random assignment of transactions to replicas (dubbed Ran-
dom). The results are presented in Figure 1.

Random and MPF 1(not shown in the graphs) behaves
similarly and results in a fair load distribution but has very
high overlapping ratio. MCF minimizes significantly the
number of conflicts, but update transactions are distributed
over 4 replicas only; the other 4 replicas execute just read-
only transactions. This is a consequence of TPC-C and the
4 warehouses considered. A compromise between maximiz-
ing parallelism and minimizing conflicts can be achieved by
varying the f factor of the MPF algorithm. With f = 0.5
the overlap ratio is much lower than Random (and MPF 1).

5. PERFORMANCE RESULTS
We have built a prototype of the DBSM in Java 1.5.

The experiments were run in a cluster of Apple Xservers
equipped with a dual 2.3 GHz PowerPC G5 (64-bit) pro-
cessor, 1GB RAM, and an 80GB HDD. Each server runs
Mac OS X Server 10.4. The servers are connected through
a switched 1Gbps Ethernet LAN. We used MySQL 5.0 with
InnoDB storage engine as our database server configured
to run transactions at the serializable isolation level. Each
server stores a TPC-C database, populated with data for 8
warehouses. In all experiments clients submit transactions
as soon as the response of the previously issued transaction
is received. The assignment of transactions is computed
on-the-fly based on currently executing transactions at the

8
7

6
5

4
3

2
1

8

7

6

5

4

3

2

1

0

20

40

60

80

100

Replicas

Replicas

O
v
e
rl

a
p

p
in

g
 r

a
ti

o

8
7

6
5

4
3

2
1

8

7

6

5

4

3

2

1

0

20

40

60

80

100

Replicas

Replicas

O
v

e
rl

a
p

p
in

g
 r

a
ti

o

8
7

6
5

4
3

2
1

8

7

6

5

4

3

2

1

0

20

40

60

80

100

Replicas

Replicas

O
v

e
rl

a
p

p
in

g
 r

a
ti

o

(a) (b) (c)

Figure 1: Overlapping ratio, (a) Random (b) MCF (c) MPF 0.5

replicas. Our load balancer is lightweight: CPU usage at the
load balancer is less than 4% throughout all experiments.

5.1 Throughput and response time
Following TPC-C, we present the results based only on

New Order transactions, which represent ≈ 45% of total
workload. Payment transactions, accounting for another
43% of the workload, perform analogously. We report re-
sults of MPF with f = 1 and f = 0.5 as the most represen-
tative for the setup considered. We further assume that all
transactions in the workload have the same weight.

Figures 2(a) and 2(b) show the achieved throughput and
response time of committed New Order transactions on a
system with 4 replicas under various load conditions. MCF,
which primarily takes conflicts into consideration, suffers
from poor load distribution over the replicas and fails to im-
prove the throughput. Even though the aborts due to lack of
synchronization are reduced significantly, the response time
grows fast. Response time increases as a consequence of all
conflicting transactions executing on the same replica and
competing for the locks on the same data items. Prioritizing
parallelism (MPF 1) doubles the achieved throughput when
compared to Random. Although Random assigns transac-
tions equitably to all replicas, differently from MPF 1, it
does not account for the various execution times of transac-
tions. Under light loads MPF 1 and a hybrid load-balancing
technique, such as MPF 0.5, which considers both conflicts
between transactions and the load over the replicas, demon-
strate the same benefits in performance. If the load is low,
few transactions will execute concurrently and minimizing
the number of conflicting transactions executing at distinct
replicas becomes less effective. However, once the load is
increased, MPF 0.5 clearly outperforms MPF 1.

5.2 Abort rate breakdown
To analyze the effects of conflict-awareness we present

a breakdown of abort rate. There are four main reasons
for a transaction to abort: (i) it fails the certification test,
(ii) it holds locks that conflict with a committing transac-
tion, (iii) it times out after waiting for too long to obtain a
lock, and (iv) it is aborted by the database engine to resolve
a deadlock. Notice that aborts due to conflicts are similar in
nature to certification aborts, in that they both happen due
to the lack of synchronization between transactions during
the execution. Thus, a transaction will never be involved in

aborts of type (i) or (ii) due to another transaction executing
on the same replica.

Figure 2(c) shows the abort rate breakdown for each tech-
nique; each vertical bar per technique represents different
submitted load. Random and MPF 1 lead to aborts mainly
due to conflicts and certification, whereas aborts in MCF
are primarily caused by timeouts. Due to better precision
in load balancing and conflict-awareness, MPF 1 also re-
sults in lower abort rates when compared to Random. MCF
successfully reduces the number of aborts due to lack of syn-
chronization. However, increasing the load results in many
timeouts caused by conflicting transactions competing for
locks. MPF 0.5, which tries to account for both conflicts and
load, reduces the number of aborts from ≈ 40% to ≈ 11%.

6. RELATED WORK
We focus on related work in the area of database replica-

tion where some form of load balancing techniques are used.
In [8] the authors introduce a two-level dynamic adap-

tation for replicated databases: at the local level the algo-
rithms strive to maximize performance of a local replica by
taking into account the load and the replica’s throughput to
find the optimum number of transactions that are allowed
to run concurrently within a database system; at the global
level the system tries to distribute the load over all the repli-
cas considering the number of active transactions and their
execution times. Differently from our approach, this work
does not consider transaction conflicts for load balancing.

In [6] the authors propose a load balancing technique that
takes into account transactions memory usage. Transactions
are assigned to replicas in such a way that memory con-
tention is reduced. To lower the overhead of updates prop-
agation in a replicated system, the authors also present a
complementary optimization called update filtering. Repli-
cas only apply the updates that are needed to serve the
workload submitted, i.e., transaction groups are partitioned
across replicas. Differently from ours, the load balancer in
[6] doesn’t consider conflicts among transactions. Further,
if workload characteristics change, the assignment of trans-
action groups to replicas requires complex reconfiguration,
which is limited if update filtering is used. On the contrary,
our load-balancing decisions are made per transaction.

Clustered JDBC (C-JDBC) [4] uses round-robin, weighted
round-robin or least pending requests first for transactions
scheduling to the database replicas. Similarly, the Ganymed

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Load (number of concurrent clients)

N
e

w
O

rd
e

r
T

h
ro

u
g

h
p

u
t

(t
p

s
)

4 replicas

Random

MPF 1

MCF

MPF 0.5

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Load (number of concurrent clients)

N
e
w

O
rd

e
r

R
e
s
p

o
n

s
e
 t

im
e
 (

m
s
e
c
)

4 replicas

Random

MPF 1

MCF

MPF 0.5

Random MCF MPF 1 MPF 0.5
0

10

20

30

40

50

60

70

80

90

100

A
b

o
rt

 r
a
te

 (
%

)

4 replicas

2

6

10

20

40

2

6

10

20

40

2

6

10

20

40

2 6

10
20

40

Certification

Deadlocks

Timeouts

Conflicts

(a) (b) (c)

Figure 2: (a) throughput and (b) response time of New Order transactions, (c) abort rates; 4 replicas

scheduler [12] assigns read-only transactions to the slave
replicas according to least pending requests first rule. How-
ever, none of the approaches exploit transaction conflicts
information.

A thorough study of load balancing and scheduling strate-
gies is performed in [2]. Conflict-aware scheduling [1] is the
winning technique of all considered. The scheduler is ex-
tended to include conflict awareness in the sense that re-
quests are scheduled to replicas that are up-to-date. Unlike
in our load balancing techniques, conflict awareness is at
a coarse granularity, i.e., table. Further, if the scheduler
fails, the system needs to deal with a complicated recovery
procedure to continue functioning correctly; whereas in our
approach the load balancer is independent of the system’s
correctness—even if the load-balancer fails, transactions can
execute at any replica without hampering consistency.

7. FINAL REMARKS
To keep low abort rate despite the coarse granularity of

middleware-based replication protocols, we introduced con-
flict-aware load-balancing techniques that attempt to reduce
the number of conflicting transactions executing on distinct
database servers and seek to increase the parallelism among
replicas. MCF concentrates conflicting transactions on a few
replicas reducing the abort rate, but leaves many replicas
idle and overloads others; MPF with the sole goal of maxi-
mizing parallelism distributes the load over the replicas, but
ignores conflicts among transactions. A hybrid approach al-
lows database administrators to trade even load distribution
for low transaction aborts in order to increase throughput
with no degradation in response time.

8. REFERENCES
[1] C. Amza, A. Cox, and W. Zwaenepoel. Conflict-Aware

Scheduling for Dynamic Content Applications. In
Proceedings of USITS, March 2003.

[2] C. Amza, A. L. Cox, and W. Zwaenepoel. A
comparative evaluation of transparent scaling
techniques for dynamic content servers. In Proceedings
of IEEE ICDE, pages 230–241, April 2005.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
C-JDBC: Flexible database clustering middleware. In

Proceedings of ATEC, Freenix track, pages 9–18, June
2004.

[5] A. Correia, A. Sousa, L. Soares, J.Pereira, F. Moura,
and R. Oliveira. Group-based replication of on-line
transaction processing servers. In LADC, pages
245–260, October 2005.

[6] S. Elnikety, S. Dropsho, and W. Zwaenepoel.
Tashkent+: Memory-aware load balancing and update
filtering in replicated databases. In Proceedings of
EuroSys, pages 399–412, March 2007.

[7] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and
R. Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In Proceedings of ACM
SIGMOD, pages 419–430, June 2005.

[8] J. M. Milán-Franco, R. Jiménez-Peris,
M. Patiño-Mart́ınez, and B. Kemme. Adaptive
middleware for data replication. In Proceedings of
Middleware, pages 175–194, October 2004.

[9] F. D. Muñoz-Escóı, J. Pla-Civera, M. I. Ruiz-Fuertes,
L. Irún-Briz, H. Decker, J. E. Armendáriz-Iñigo, and
J. R. G. de Mend́ıvil. Managing transaction conflicts
in middleware-based database replication
architectures. In Proceedings of IEEE SRDS, 2006.

[10] M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme,
and G. Alonso. Consistent Database Replication at
the Middleware Level. ACM Transactions on
Computer Systems, 23(4):375–423, 2005.

[11] F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Journal of
Distributed and Parallel Databases and Technology,
14:71–98, 2003.

[12] C. Plattner and G. Alonso. Ganymed: scalable
replication for transactional web applications. In
Proceedings of Middleware, pages 155–174, October
2004.

[13] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. The GlobData fault-tolerant
replicated distributed object database. In Proceedings
of EurAsia-ICT, pages 426–433, October 2002.

[14] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299–319, 1990.

[15] Transaction Proccesing Performance Council (TPC).
TPC benchmark C. Standard Specification, 2005.

