
Multicoordinated Agreement Protocols for Higher Availability

Lásaro Camargos †?

lasaro@ic.unicamp.br

Rodrigo Schmidt ‡

rodrigo.schmidt@epfl.ch

Fernando Pedone ?

fernando.pedone@unisi.ch

† Universidade Estadual de Campinas (Unicamp), Brazil
‡ École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

? University of Lugano (USI), Switzerland

Abstract

Adaptability and graceful degradation are important
features in distributed systems. Yet, consensus and other
agreement protocols, basic building blocks of reliable dis-
tributed systems, lack these features and must perform ex-
pensive reconfiguration even in face of single failures. In
this paper we describe multicoordinated mode of execu-
tion for agreement protocols that has improved availability
and tolerates failures in a graceful manner. We exemplify
our approach by presenting a Generic Broadcast algorithm.
Our protocol can adapt to environment changes by switch-
ing to different execution modes. Finally, we show how
our algorithm can solve the Generalized Consensus and its
many instances (e.g., consensus, atomic broadcast, reliable
broadcast).

1. Introduction

Distributed systems can provide higher availability than
centralized ones by remaining functional despite failures of
some of their components. Ensuring application-level con-
sistency in a distributed system often requires agreement
among the components.

Consensus is a common denominator of many agreement
problems. Given a set of processes, some of which willing
to make a proposal (e.g., what step to take next, what value
set a variable to), solving consensus requires them to agree
on one of the proposals. Despite the multitude of consensus
algorithms, they all have similar execution patterns: They
run successive rounds, each of which tries to reach the deci-
sion. When a round fails to lead to a decision, or so it seems

to some processes, a new round is started to continue the
procedure. If a decision is reached in a round, then succes-
sive rounds can only abide to such decision.

Some protocols execute their rounds in a coordinated
way, resorting to a leader process to start and control each
round [7, 12, 13]. Leaders must be monitored and replaced
in case of failures to prevent blocking. On the one hand,
aggressive failure detection allows skipping stuck rounds
rapidly. On the other hand, it may incur in unnecessary
rounds being started, an expensive approach since, for each
new round, the leader must poll other processes to detect
previous decisions.

To avoid handling leader failures, some protocols let pro-
cesses skip the leader when proposing (e.g., [13, 4]). In the
absence of failures and if a single proposal is issued, then
such protocols can implement fast rounds, which save one
communication step with respect to classic rounds. If mul-
tiple proposals are issued in parallel, however, real or ap-
parent ties may prevent processes from deciding in a fast
round even in the absence of failures. Moreover, the simple
possibility of conflicts, as we call such concurrent propos-
als, imposes a lower resilience to failures if compared to
classic rounds, because more processes are required to be
functional to brake a tie [15].

Hence, both classic and fast protocols may pose prob-
lems to availability in that they are either too sensitive to the
failure or suspicion of leaders or impose a lower overall re-
silience. In this paper we advocate a third approach which
removes the dependency on the leader without decreasing
the resilience of the protocol by using coordinators instead
of a leader. In each round, multiple coordinators share the
job of the leader, allowing a round to continue even if some
coordinators fail. Hence, availability in these multicoordi-
nated rounds does not depend on fast reaction to failures,



and failure detection can use larger timeouts for higher pre-
cision [8] and minimize useless round changes. The price
for the improved availability is extra communication: multi-
coordinated rounds have one communication step more than
fast rounds, and each coordinator of a round may send as
many messages as the leader in a classic round. No extra
stable storage access is needed.

Although less costly than in fast rounds, collisions in
multicoordinated rounds may also prevent the round from
deciding even in stable periods of execution (i.e., no fail-
ures or suspicions). However, consensus is often used in a
sequence of instances, not individual ones (e.g.[3, 16]). On
implementing the State Machine Replication [11], for ex-
ample, one can use consensus to agree on each command
of the sequence to be executed by every replica [16, 12].
In many systems, however, commands may commute and
there is no need for totally ordering them since the final state
is the same independently of the order in which they are ap-
plied. Simple consensus, as applied to state machine repli-
cation (i.e., in a sequence), is too strong to capture this no-
tion and a collision may happen even if the two concurrent
proposals are commutable. In a different problem, namely
Generic Broadcast [18], processes can agree on sequences
of commands while taking into account the commutability
of commands to mitigate the effects of collisions.

In this paper we present a multicoordinated generic
broadcast protocol. In fact, because different round types
may suit better different scenarios (e.g, if conflicts are rare
and nodes reliable, than fast rounds may be better than clas-
sic and multicoordinated rounds), we have made generic
broadcast protocol multimode, that is, it can switch between
multicoordinated, fast, and classic modes at runtime, and
use that to adapt to changes in the environment. To the best
of our knowledge, Fast Paxos, which had classic and fast
rounds [13], was the first multimode agreement protocol.

In the next section we discuss the Generic Broadcast
problem in asynchronous systems. In Section 3 we present
our algorithm and in Section 4 we discuss some of its prac-
tical aspects. Generic Broadcast is an instantiation of the
even more general agreement problem named Generalized
Consensus [13]. We discuss how our generic broadcast al-
gorithm can be turned into a Generalized Consensus pro-
tocol in Section 5, and discuss other related works in Sec-
tion 5. We conclude the paper in Section 6.1

2. Generic Broadcast

2.1. Overview

The Generic Broadcast problem can be described in
terms of a set of learner processes progressively learning

1We stated part of the results presented here in a Brief Announce-
ment [6].

about commands broadcast by a set of proposer processes.
In the context of a distributed application, proposers can
be thought of as clients issuing commands and learners as
the application servers executing the commands they learn.
Clients might also be learners to know whether their issued
commands were accepted by the system.

In this problem, processes agree on a partially ordered
set (poset) of proposed commands. Commands are added to
the poset concurrently while learners learn increasing pre-
fixes of it. The partial order abides to a single rule: conflict-
ing commands must be ordered, where conflicts are deter-
mined by the application. If all or no commands conflict,
then generic broadcast degenerates to Atomic Broadcast or
to Reliable Broadcast [10], respectively.

Consider a replicated application in which learner repli-
cas execute commands according to the prefix they have
learned. Notice that, because processes agree on a poset,
the learned prefixes need not be prefixes of each other. If all
non-commutable commands conflict, then replicas may get
to different state, but they will always be conciliable. That
is, consistency is ensured because non-commutable com-
mands are executed in the same order by all replicas.

Briefly, the safety requirements of Generic Broadcast,
which we formally restate later, are three: only proposed
commands enter the poset (Nontriviality); no command is
removed from the poset (Stability); and, the prefixes of the
agreed poset seen by different learners at any point in time
may differ, but can always be merged into a larger prefix
(Consistency).

The first two properties are self-explanatory. The third
one, Consistency, assert that however the states of two
learners diverge by learning commands in different orders,
they can be equaled by learning about the commands seen
by the other. That is, no unsolvable conflict ever happens.

The liveness requirement is more complicated since it
should not prevent progress if any subset of proposers or
learners fail. Recall that such roles can be assigned to
clients and we cannot require them not to fail. Therefore,
we introduce another set of processes, about which we can
make reliability assumptions; we call these processes the
acceptors. We call a quorum any finite set of acceptors that
is enough to allow liveness, and define the liveness require-
ment of Generic Broadcast as follows: for any proposer
p and learner l , if p, l , and a quorum Q of acceptors are
nonfaulty and p proposes a command C , then l eventually
learns about C (Liveness).

2.2. Model

We assume an asynchronous crash-recovery model in
which processes communicate by exchanging messages
with no bounds on the time it takes for messages to be trans-
mitted or actions to be executed. Messages can be lost or

2



duplicated but not corrupted; processes can fail by stopping
only and never perform incorrect actions. Processes are as-
sumed to have some sort of local stable storage to keep part
of their state in between failures. Although we assume pro-
cesses may recover, they are not obliged to do so once they
have failed. For simplicity, a process is considered to be
nonfaulty iff it never fails.

The well-known FLP result [9] states that under such cir-
cumstances no consensus algorithm can ensure a liveness
property similar to ours if quorums are defined to tolerate
the failure of any single acceptor. Notice that by defining
all commands as conflicting in Generic Broadcast we force
all learners to learn the exact same sequence of commands.
If learners ignore all but the first command in such a se-
quence, then they will be solving the consensus problem.
Hence, the FLP result has the same implications in Generic
Broadcast. As a result, fault-tolerant algorithms must make
extra assumptions about the system. We discuss the extra
assumptions we make in Section 4.2.

To properly define Generic Broadcast in our formalism,
we must first further describe the posets that are central to
the problem and the operations we use to manipulate them.
In Section 5 we show how these posets are just an instanti-
ation of a more general data structure, C-Structs [13], and
how our algorithm can be used solve a more general prob-
lem, namely, Generalized Consensus [13].

2.3. Command Histories and Formal Defi-
nition

Let Cmd be the set of commands proposable in Generic
Broadcast and � a reflexive and symmetric conflict relation
over the commands of Cmd . That is, ∀C ,D ∈ Cmd , C
conflicts with D and vice versa iff C � D . We call the
partially ordered set (S ,≺) a command history, or c-hists
for short, iff (i)S ⊆ Cmd and (ii)∀C ,D ∈ S , C � D ⇒
(C ≺ D or D ≺ C ). We define • as an operator that
appends a command from Cmd to a command history re-
specting the conflict relation �. The operator • is defined
for sequences of commands as the ordered application of •
to each command in the sequence. More formally, if (S ,≺)
is a c-hist and 〈C1, . . . ,Cm〉 is a sequence of commands in
Cmd , then:

(S ,≺)•C =

8<:
(S ,≺) ifC ∈ S ,
(S ∪ {C},≺�) : ∧∀a, b ∈ S , a ≺ b ⇔ a ≺� b otherwise

∧ ∀a ∈ S , a � C ⇒ a ≺� C

and

(S ,≺)•〈C1, . . . ,Cm〉 =


(S ,≺) ifm = 0,
((S ,≺)•C1)•〈C2, . . . ,Cm〉 otherwise

We represent the empty c-hist by ⊥ and say that c-hist g
extends c-hist h (or that h is a prefix of g), noted h v g , if

there exists a sequence σ of commands such that g = h •σ.
Hence, ⊥ v h for any c-hist h . Moreover, given a set T of
c-hists, we say that c-hist h is a lower bound of T iff h v g
for all g in T . A greatest lower bound (glb) of T is a lower
bound h of T such that g v h for every lower bound g of
T , and we represent it by uT . In other words, uT is the
largest prefix of the c-hists in T . Similarly, we say that h
is an upper bound of T iff g v h for all g in T . A least
upper bound (lub) of T is an upper bound h of T such that
h v g for every upper bound g of T , and we represent it
by tT . That is, h is a c-hist of which all c-hists in T are
prefixes. If v is a reflexive partial order on the set of c-hists
and a glb or lub of T exists, then it is unique. For simplicity
of notation, we use g u h and g t h to represent u{g , h}
and t{g , h}, respectively. Two command histores g and h
are defined to be compatible iff they have a common upper
bound, and a set S of c-hist is compatible iff its elements are
pairwise compatible. (One could think of u and t roughly
as the intersection and the union of c-hists.) As an example
of the meaning of such definitions, consider the following
set of c-hists, where a b means a ≺ b.

T =


a c b d

a b d

a c b e


The lower bounds of T are {⊥, a, a b}, be-
ing uT = a b (the glb of T ) and tT =
a c b d e (the lub of T ).

With command histories formally defined, we can
now properly state the Generic Broadcast problem. Let
learned [l ] be the c-hist learner l has learned. Generic
Broadcast is defined by the following properties.

Non-triviality For any learner l , learned [l ] only contains
broadcast commands.

Stability For any learner l , the value of learned [l ] at any
time is always a prefix of learned [l ] at any later time.

Consistency The set {learned [l ] : l is a learner} is always
compatible.

Liveness For any proposer p and learner l , if p, l , and a
quorum Q of acceptors are nonfaulty, and p proposes
a command C , then learned [l ] eventually contains C .

3. Multicoordinated Generic Broadcast

3.1. About Rounds and Quorums

We present our Multicoordinated Generic Broadcast al-
gorithm (MGB) in the next section. It is given as a set of

3



atomic actions, organized and executed in rounds; MGB
assumes an unbounded number of rounds, totally ordered
by a relation <. For simplicity, it can be assumed that
round numbers correspond to the set of natural numbers.
We show how to benefit from different definitions of round
numbers in Section 4.3. Although there is a total order
among rounds, their execution does not have to follow it,
and actions referring to different rounds can be interleaved.

For each round, an acceptor can “accept” one c-hist and
then extend it with other commands. The purpose of a round
is to get c-hists with the same prefix accepted by a quorum
of acceptors, a situation in which we say the prefix has been
chosen. The algorithm guarantees that if a prefix is chosen
at some round, then any c-hists accepted and chosen in any
later rounds are extensions of such a prefix. Therefore, a
learner can safely learn a c-hist h as soon as it knows that h
has been chosen. To prevent two incompatible prefixes from
being chosen, we require quorums of acceptors to have non-
empty intersections.

Assumption 1 (Quorum Requirement) If Q and R are
acceptor quorums, then Q ∩ R 6= ∅.

Intuitively, this assumption forbids two unconnected parti-
tions of our acceptors to concurrently choose different c-
hists. In fact, this requirement is very general and any gen-
eral algorithm for asynchronous consensus must satisfy a
similar one, as shown in [15]. A simple way to ensure this
is to define quorums as any majority of the acceptors.

Each round is divided into two phases. The first phase
serves to identify previously chosen command histories and
the second phase to extend these histories with new com-
mands. To orchestrate rounds, MGB assumes a set of coor-
dinator processes, besides proposers, acceptors, and learn-
ers. We classify rounds in classic, fast, and multicoordi-
nated according to the role played by coordinators in the
round.

Classic rounds have a single coordinator, responsible for
starting the round by triggering the first phase, and by for-
warding the commands from proposers to be accepted by
the acceptors in the second phase. Hence, a proposal re-
quires at least three communication steps to enter a chosen
prefix and be learned in a classic round: one step to reach
the coordinator, and two to finish the second phase of the
round. Figure 1(a) illustrates the these steps.

In fast rounds, after executing phase one the coordinator
can inform the acceptors about which c-hist may already be
chosen and tell them to extend this c-hist themselves with
proposals received directly from the proposers and accept
them. This way, the latency to get a command chosen and
learned is reduced to two communication steps. Figure 1(b)
illustrates the second phase of a fast round. Since acceptors
can extend the c-hist identified in the first phase in different
ways, they may end up accepting incompatible extended c-

hists in fast rounds. Assumption 1 ensures that no two in-
compatible extensions will be chosen, but it is not enough
allow identifying if one of them has been. Figure 1(e) shows
a round in which a learner cannot determine if a or b have
been chosen after having received the acceptance informa-
tion from just two acceptors. If the third acceptor crashes
before sending this information, then no agreement can be
reached. To avoid this case we need a stronger assumption
regarding quorum intersections. To state such an assump-
tion, we must define quorums per round of the algorithm; a
quorum for round i an is i -quorum.

Assumption 2 (Fast Quorum Requirement) For any
rounds i and j :

(i) If Q is an i -quorum and S is a j -quorum, then
Q ∩ S 6= ∅.

(ii) If Q is an i -quorum, R and S are j -quorums, and j is
a fast round, then Q ∩ R ∩ S 6= ∅.

In the general case, this stronger assumption requires big-
ger quorums. These constraints are achieved, for example,
if every set of d(2n + 1)/3e acceptors is a quorum for fast
and classic rounds, or classic and fast quorums, for short. If
classic quorums are defined to be any majority of acceptors,
fast quorums must be as big as d(3n + 1)/4e acceptors.
It has been shown, however, that any asynchronous con-
sensus protocol that allows a decision to be reached in two
communication steps must satisfy similar quorum require-
ments [15] (Fast Learning Theorem). Hence, the same is
valid for Generic Broadcast, as previously noted by Pedone
and Schiper [19].

In multicoordinated rounds, multiple coordinators coop-
erate in orchestrating the execution, grouped in quorums of
coordinators per round. For simplicity, we call a quorum of
coordinators for round i an i -coordquorum and say that c is
a coordinator of round i iff it belongs to an i -coordquorum.
As in classic rounds, coordinators pre-accept commands by
extending the c-hists they had forwarded to acceptors, and
forward the extended histories to the acceptors. Acceptors
can only accept an extended c-hist if it is a prefix of the c-
hists coming from a quorum of coordinators for that round
so that no two acceptors will accept two incompatible se-
quences in the same multicoordinated round. For this to be
guaranteed, the following requirement is needed.

Assumption 3 (Coord-quorum Requirement) For any
classic round i , if L and P are i -coordquorums, then
L ∩ P 6= ∅.

Figures 1(c) and (f) show a round with three coordinators,
where any two of them form a coordquorum. It is easy to
see that a classic round is a multicoordinated round with a
single coordquorum of cardinality one.

4



a

a

P

C

A

L

a

a

P

A

L

a

a

P

A

L

C

(a) Classic Round (b) Fast Round (c) Multicoordinated
Round

!a

a

a
P

C

A

L
?

a b

P

A

L

a

a

P

A

L

C

(d) Failure in a Classic Round (e) Conflict in a Fast Round (f) Failure in a Multicoordinated
Round

Figure 1. Message patterns in different round types. P, C, A, and L respectively stand for Proposer,
Coordinator, Acceptor, and Learner. The lightning symbol and the exclamation mark represents a crash
and its detection. ”a” and ”b” are proposals sent in the messages.

Figure 2 shows a more complex run, in which we have
merged some messages not to clutter the picture. Consider
that commands with the same shape or color do commute.
In the run, the first three commands (�,O, ◦ ) are chosen
and learned without conflicts. The fourth command,H, con-
flicts with the first and second ones (H � ◦ and H � �).
Because both the first and second coordinators had seen �,
they append H after � in their c-hists. However, because
the first coordinator has not seen ◦, its c-hist will not be
compatible with the c-hist sent by the second coordinator to
the acceptors, which has ◦ before H. (The O command is
not important here, since it commutes with H.) Had both
coordinators heard of ◦, their c-hists would be compatible
and accepted by the acceptors. Since that is not the case, a
new round to solve the conflict is needed; in the example,
we have shown a classic round being started. Observe how
learners learn different but compatible prefixes. The dashed
arrows show the leader polling the acceptors for their ac-
cepted c-hists.

P

A

L

C

Figure 2. Multicoordinated round followed by
a classic round.

3.2. The Algorithm

MGB is presented in Algorithm 1. Before explaining it
we must note two things. First, to simplify the presenta-
tion, we have defined quorums in terms of their cardinal-
ities. Let n be the number of acceptors in the system, F
be the maximum number of acceptor failures that does not
prevent progress, and E be the maximum number of ac-
ceptor failures that still allows fast termination. Acceptor
quorums are defined as any set of at least n − F acceptors,
and fast acceptor quorums are defined as any set of at least
n − E acceptors. As explained in Section 3.1, as long as
2E +F < n , Assumptions 1 and 2 are satisfied [15]. As for
coordinators, we let any set with a majority of coordinators
be a coordquorum, which trivially satisfies Assumption 3.
Second, we have considered generic implementations of c-
hists. In [5] we provide an implementation of c-hists and
the • operator for this implementation.

The algorithm is given as the set of atomic actions exe-
cuted by process p. Actions are associated to roles and can
only be executed by processes playing such a role; action
Propose, for example, is executed by p if it is a proposer.
Each action defines a set of pre-conditions (cond) and a set
of sub-actions (sub). Sub-actions are only executed if all
pre-conditions are satisfied. Moreover, we assume that if an
action is enabled, i.e., all of its pre-conditions are true, then
it is eventually executed. An empty set of pre-conditions is
always satisfied. We explain each action below.

Processes keep their state in a set of variables defined
per-role. For now, we assume that all variables are stably
stored. A coordinator c keeps two variables:

crnd [c] is the current round of c, initially 0.

5



cval [c] is the latest c-hist c has sent in a phase “2a” mes-
sage (sent in round crnd [c]). It is initially ⊥ for all
coordinators.

An acceptor a keeps three variables:

rnd [a] is the current round of a , that is, the highest-
numbered round a has heard of. Initially 0.

vrnd [a] is the round at which a has accepted a value for
the last time. Initially 0.

vval [a] is the c-hist a has accepted at round vrnd [a]. Ini-
tially the empty c-hist ⊥.

According to the acceptors’ initialization, learners will
always learn command histories with ⊥ as the smallest el-
ement. Therefore, learned [l ] initially equals ⊥, for every
learner l in the system.

Proposers execute action Propose(C ) to propose a new
command C . This is done by sending the message
〈“propose”,C 〉 to acceptors and coordinators.

If a coordinator wants to start a round i , bigger than its
current round and such that it belongs to an i -coordquorum,
then it executes action Phase1a(i). The action sends a mes-
sage 〈“1a”, i〉 to all acceptors asking them to take part in
round i .

Acceptors execute action Phase1b(i) to join a round
i . The action is enabled iff the acceptor is currently
at a lower round and has received a message 〈“1a”, i〉
from a coordinator. In response, the acceptor joins the
round by setting rnd [p] to i and sending a message
〈“1b”, i , vval [p], vrnd [p]〉 to all coordinators of the round.
The pre-condition of this action ensures that after being ex-
ecuted for round i , the same acceptor will not execute it for
any round j ≤ i .

Any coordinator can execute action Phase2Start(i) if
its current round is smaller than i and it has received an
“1b” message for round i from all acceptors in a quorum
Q of n −F acceptors. In the action, the coordinator selects
a c-hist val to forward to the acceptors using the function
SelectVal(). val is selected based on the histories already
accepted by the acceptors in Q and informed in their “1b”
messages. val is chosen such that it extends any c-hist that
may have been decided in a round j < i . The exact imple-
mentation of SelectVal is discussed in Section 3.3.

Phase2Start sets cval [p] to the selected c-hist and
crnd [p] to i and, due to the action’s pre-condition, is ex-
ecuted only once per round . The coordinator then sends a
message 〈“2a”, i , cval [p]〉 to all acceptors.

After executing Phase2Start , if a coordinator receives
new commands from proposers, it can extend its c-hist
for the current round and ask the acceptors to accept
this extended history. It does so by executing action

Algorithm 1 Multicoordinated Generic Broadcast Protocol
of process p.
Propose(C ) [Proposer]

act: • send 〈“propose”,C 〉 to acceptors and coordinators
Phase1a(i) [Coordinator]

cond: • p is in some i-coordquorum and
• crnd [p] < i .

act: • send 〈“1a”, i〉 to acceptors
Phase1b(i) [Acceptor]

cond: • rnd [p] < i .
• p has received a message 〈“1a”, i〉

act: • rnd [p]← i
• send 〈“1b”, i , vval [p], vrnd [p]〉 to coords of round i .

Phase2Start(i) [Coordinator]
cond: • crnd [p] < i and

• c received a “1b” message for
round i from all acceptors
in a set Q of n − F acceptors.

act: • cval [p]← SelectVal()
• crnd [p]← i
• send 〈“2a”, i , cval [p]〉 to the acceptors

Phase2aClassic() [Coordinator]
cond: • p has received a 〈“propose”,C 〉 message.

act: • cval [p]← cval [p] • C
• send 〈“2a”, crnd [p], cval [p]〉 to acceptors

Phase2bClassic(i) [Acceptor]
cond: • rnd [p] ≤ i ,

• ∃i-coordquorum L such that:
∀c ∈ L, received a “2a” message for round i from c:

if i is multicoordinated
then L has a majority of the coordinators

if i is fast or classic
then L has size one

• vrnd [p] < i or vval [p] is compatible with uL2aVals ,
where L2aVals = {v : p received 〈“2a”, i , v〉
from c and c ∈ L}

act: • if vrnd [a] = i then vval [a] = vval [a] t (uL2aVals)
else vval [a] = uL2aVals .

• vrnd [a]← i
• rnd [a]← i
• send 〈“2b”, i , vval [a]〉 vval [a] to learners

Phase2bFast() [Acceptor]
cond: • rnd [p] is a fast round,

• rnd [p] = vrnd [a], and
• a has received a 〈“propose”,C 〉 message.

act: • vval [p]← vval [p] • C
• send 〈“2b”, vrnd [p], vval [p]〉 to learners

Learn() [Learner]
cond: • p has received “2b” messages for some round i from

all acceptors in some set Q of acceptors:
if i is classic or multicoordinated

then Q has cardinality n − F
if i is fast
then Q has cardinality n − E

act: • learned [p]← learned [p] t (uQ2bVals)
where Q2bVals is the set of values received in the
“2b”messages received from acceptors in Q .

6



Phase2aClassic(), which sets cval [p] to cval [p] • C and
sends a 〈“2a”, crnd [p], cval [p]〉 message to the acceptors.

By executing action Phase2bClassic(i), acceptors ac-
cept c-hists forwarded by the coordinators in round i . This
action is enabled iff the acceptor is not in a higher round and
has received a “2a” message for round i from all coordina-
tors in i -coordquorum L. That is, if i is a classic round, then
L has a majority of the coordinators; if i is a fast or classic
round, then L has size one. Moreover, either the acceptor
has not accepted anything in round i yet, or its previously
accepted value can be extended to a prefix of the received
command histories, that is, the accepted value is compatible
with the glb of the received c-hists. After accepting a c-hist,
acceptors inform the learners with a “2b” message so that
they can extend what they have learned.

When in a fast round, acceptors can also extend their ac-
cepted c-hists with commands received directly from pro-
posers. This is done in action Phase2bFast() which simply
appends the c-hists with a command and informs the learn-
ers, as in action Phase2bClassic.

Finally, learners execute action Learn() when they have
received “2b” messages for some round i from all accep-
tors in some quorum Q of acceptors; Q has cardinality
n − F if i is a classic or multicoordinated round and car-
dinality n − E if i is a fast round. When it executes this
action, learner p extends its learned c-hist learned [p] to
learned [p]t (uQ2bVals), where Q2bVals is the set of val-
ues received in the “2b” messages from acceptors in Q .

3.3. Selecting val in Phase2a

We now define how a coordinator c picks the value
to be forwarded to acceptors on action Phase2Start in
some round i . In the description of the procedure,
we refer to the third and fourth fields of a message
m =〈“1b”, i , vval [a], vrnd [a]〉 sent by acceptor a for
round i as m.vval and m.vrnd . We make the following
definitions.

• Q is a set of acceptors of cardinality n − F , such that
c has received a “1b” message from each acceptor in
Q , for round i .

• 1bQ is the set of “1b” messages received by c, from
all acceptors in Q , in round i .

• k is the maximum element in the set {m.vrnd :
m ∈ 1bQ} of round numbers in the received “1b”
messages.

• kacceptors is the set of acceptors in Q from which c
has received a message m such that m.vrnd = k .

• vals(S ) is the set m.vval for all messages m ∈ 1bQ
received from all acceptors in a set S .

If k is a classic or multicoordinated round, then any
subset of kacceptors with n − 2F elements could com-
bine with the acceptors from which messages were not re-
ceived to form quorum R. In this case, the acceptors in
R could have chosen any prefix of the values accepted by
the acceptors in R ∩ Q . Let InterAtk be the set of all
such subsets, that is, subsets of kacceptors with cardinal-
ity n − 2F . If InterAtk is empty, then c can choose any
message m from an acceptor in kacceptors , and forward
any extension of m.vval to the acceptors. Otherwise, c
must forward an extension of tΓ, where Γ is the longest
prefix shared by acceptors in the subsets of InterAtk , i.e.,
Γ = {uvals(e) : e ∈ InterAtK}. In the case of simple
majority quorums, that is, F = b(n − 1)/2c, n − 2F = 1
and Γ will equal the set of values in messages received from
all acceptors in kacceptors , and the calculation of glbs can
be skipped.

If k is a fast round, then the subsets of kacceptors in
InterAtk must have cardinality n − 2E , as this is the min-
imum size of an intersection of two fast quorums. The rest
of the procedure to pick a sequence to be extended remains
the same.

3.4. Correctness

We have formally specified the Multicoordinated
Generic Broadcast in the TLA+ specification language and
tested it for small setups with the TLC checker. For the
general cases we devised detailed correctness proofs manu-
ally. Due to space constraints, we do not include neither the
specification nor the proofs here. They are available in the
extended version of this paper [5].

4. Practical Aspects

4.1. Collisions

In multicoordinated rounds, a collision happens when
commands proposed concurrently arrive at the coordinators
in different orders, leading to the forwarding of incompat-
ible c-hists. If no quorum forwards c-hists whose glb can
extend the values previously accepted by the acceptors, the
round is stuck and no new command can get accepted.

This is a different type of collision than the one that may
occur in fast rounds. In fast rounds, a collision happens
when acceptors accept incompatible c-hists that cannot fur-
ther extend the values learned so far. In this case, accep-
tors pay the price of accepting commands that will never be
learned, which does not happen in collisions of multicoor-
dinated rounds. This difference has important implications
since acceptors must write on stable storage every time they
accept a value but coordinators do not have to, as we explain

7



in Section 4.3. In the following, we show a simple mecha-
nism to deal with collisions in multicoordinated rounds.

First, collision identification must be done by the ac-
ceptors when they receive the phase “2a” messages from
the coordinators. If two coordinators of the same i -
coordquorum send “2a” messages for round i with incom-
patible c-hists, acceptors execute action Phase1b(a, i + 1 )
as if they had received a phase “1a” message for round i+1.

If round i + 1 is classic or multicoordinated and
enough acceptors identify the collision, which will nor-
mally happen if messages are not lost and processes do
not crash, then the coordinators of round i + 1 will ex-
ecute action Phase2Start(i + 1) based on the received
messages, followed by one or more executions of action
Phase2aClassic(). Thus, the collision in round i will be
resolved with only two extra communication steps (as com-
pared to the usual three of a classic round). Clearly, to avoid
that another collision happens when the coordinators start
round i +1, it is advisable to have it as a single-coordinated
round. After some time of normal execution, if conflicting
commands stop being proposed, the coordinator of round
i + 1 can start a multicoordinated round again. This ap-
proach is a variation of the coordinated recovery presented
in [14].

4.2. Liveness

Message losses are the first problem to be dealt with in
order to ensure liveness. The solution to that is to have pro-
cesses keep on re-sending their last message, which can be
optimized as described in Section 2.4.1 of [14].

The possibility of starting new rounds allows the algo-
rithm to progress if a round does not succeed because of
coordinator crashes or collisions. However, their continu-
ous initialization could prevent values from being accepted.
In Classic Paxos and Fast Paxos this is prevented by using
some (unreliable) leader election algorithm that eventually
elects a single correct leader which will be responsible for
starting a higher-numbered round under its coordination. In
Multicoordinated Paxos, we use the same strategy to pre-
vent the continuous initialization of new rounds.

If the current leader starts a new classic round (of which
it is the only coordinator), liveness is ensured as long as the
leader does not crash and other coordinators do not wrongly
think they are the leader and try to start a higher-numbered
round. If other coordinators interfere, the leader must be
notified. This is done by extending the algorithm so that
an acceptor replies to phase “1a” or “2a” messages with a
round number lower than its current one. This notification
tells the coordinator that its current round number is too low
to get values accepted. When a coordinator that thinks to
be the leader receives such a notification message from an
acceptor, it can start a higher-numbered round.

If the leader starts a fast round, liveness is ensured as
long as the leader does not crash during the execution of
phase 1 and collisions do not happen during the rest of
the round execution. Collisions can be resolved by starting
a new classic single-coordinated round or using the tech-
niques described in [14].

In multicoordinated rounds, liveness is ensured if the
leader does not crash during the execution of phase 1, col-
lisions do not happen, and some quorum of coordinators is
available during the rest of the round execution. The failure
of the leader is not a problem since another correct leader is
eventually selected which will make sure that a new round
starts. As for collisions, the mechanism presented in Sec-
tion 4.1 can be used—the only restriction we make is that
the leader must be one of the coordinators for the following
round, otherwise the leader might think the round change is
an interference and try a higher-numbered round. Last, to
cope with the failure of coordinators, the leader must start a
new round if it believes that other coordinators have failed.
Their possible failure can be assessed by monitoring their
“2a” messages or some external failure detection mecha-
nism. When the leader suspects that there are not enough
coordinators in the current round to ensure progress, it starts
a new higher-numbered round with a different set of coor-
dinator quorums.

4.3. Reducing Stable Storage Writes

We have assumed so far that processes keep their vari-
ables in stable storage to allow recovery from crashes. The
most common type of stable storage is the magnetic disk,
which has access times orders of magnitude bigger than
volatile memory. Hence, it is very important to reduce the
access to stable storage as much as possible. We show now
how to reduce the stable storage requirements of our proto-
col.

Assumption 3 imposes no restriction between coordina-
tor quorums of different rounds. If it is always possible to
start new rounds with any set of coordinator quorums, co-
ordinators are not required to store their variables on stable
storage. A coordinator that crashes and later recovers could
just be seen as a new coordinator in the system, which is
easily implemented by having an “incarnation” counter as-
sociated with its identifier. In the following we explain how
new rounds can be created with any set of coordinator quo-
rums.

Round numbers can be constructed as a record of the
form 〈Count , Id ,RType,S 〉, where Count is a natural
number, Id is a coordinator’s unique identifier, RType is
a natural number, and S is a set of coordinator quorums.
Counter Count always allows the creation of a new higher-
numbered round, Id identifies the coordinator that created
the round, RType tells the round type (fast if 0, classic or

8



multicoordinated otherwise), and S identifies all valid coor-
dinator quorums for this round. A round is uniquely iden-
tified by the first three fields, and the total order relation
is given by comparing them lexicographically. Field S is
merely informative and is not taken into consideration when
comparing two rounds. Using this approach, when the cur-
rent leader wants to start a new round, it can simply define
the four fields according to its current knowledge.

Since Assumption 2 requires that quorums of different
rounds intersect, acceptors cannot lose their state after a
crash and assume a different identity upon recovery. This
happens because the values accepted by acceptors cannot
be forgotten, or the algorithm’s safety would be compro-
mised. Therefore, these values must always be stored in
stable storage, incurring a disk write (or equivalent opera-
tion) whenever an acceptor executes a Phase2b action. As
a result, acceptors are not as easily replaceable as coordina-
tors and more complex strategies must be used [12, 17].

Action Phase1b also changes the internal state of an ac-
ceptor and, at a first sight, this seems to imply that Phase1b
must also write on stable storage. However, an accep-
tor a may store rnd [a] only in volatile memory as long
as, after recovering from a crash, it manages to initialize
rnd [a] with a higher value than the previous one. This is
done as follows: Field Count described previously in this
section can be composed of a major and a minor compo-
nent, MCount and mCount . When an acceptor executes
Phase1b for some round, if MCount equals the previous
value in rnd [a], it changes rnd [a] in memory only; oth-
erwise, it writes it on stable storage. During recovery, the
acceptor simulates the reception of a “1a” message with an
MCount higher than the one it has on stable storage. To
get values accepted by the recovered acceptor, coordinators
will be forced to use higher rounds. In the normal case, ac-
ceptors write rnd [a] on stable storage only once, when they
are started. In the presence of failures, this strategy results
in one extra stable write at each acceptor, per recovery. In
this case, progress can only be ensured as long as acceptors
do not crash and recover forever.

Learners do not have to write on stable storage because
they can always ask the acceptors to resend their latest “2b”
messages. Hence, there could be infinitely many of them in
the system.

5. Generalized Consensus and other Related
Works

Generalized Consensus is a generalization of the consen-
sus problem defined in terms of command structure, or sim-
ply c-struct [13]. By using different c-structs, Generalized
Consensus reduces do different agreement problems. As ex-
plained in [13], one can define c-structs for traditional con-
sensus, total order broadcast, generic broadcast, etc. The

command histories presented in Section 2 are, in fact, an
instance of c-structs and were first presented in [13].

Generalized Paxos [13] is an extension of Fast Paxos that
solves Generalized Consensus. Generalized and Fast Paxos
are the only other agreement protocols we are aware of that
have classic and fast modes. Generalized Paxos can be fur-
ther extended with multicoordinated mode to improve avail-
ability [5]. We call the resulting protocol Multicoordinated
Paxos. The Generic Broadcast algorithm that we presented
in Section 3.2 is a simplified version of Multicoordinated
Paxos.

There are three generic broadcasts algorithms in the lit-
erature to which we can compare our protocol: GB+ [18],
AGB [1], and OptGB [22]. In specific, GB+ is roughly
equivalent to the fast mode only version of our protocol.
We say roughly because the fast mode always ignores con-
flicts between messages that have been spontaneously or-
dered, while GB+ only ignores conflicts of messages deliv-
ered distant in time. Likewise, AGB may be able to ignore
some conflicts but, in general it falls back to atomic broad-
cast when conflicting proposals happen. Differently from
GB+, AGB tolerates the crash of any minority of acceptors
and, hence, requires three steps to deliver messages in the
absence of conflicts and three more otherwise. The authors
of AGB have also described a variation of the algorithm that
tolerates less than one third of failures but decides in two or
four steps.) The protocol of [22] combines the fast and the
single-coordinated mode to terminate in two steps. It also
combines the drawbacks of both rounds, requiring bigger
acceptor quorums and relying on a correctly elected leader.
In general, these protocols consider the crash stop, do not
have a generalized version, cannot switch execution modes,
and all resort to Consensus or Atomic Broadcast to solve
conflicts. What is more, Generalized and Multicoordinated
Paxos may resort to coordinated recovery and, in the case of
Multicoordinated Paxos, an uncoordinated classic recovery
which may gradually lower the requirement for spontaneous
ordering until the instance is decided.

6. Conclusion

In this paper we discussed how to use multiple coordi-
nators concurrently to devise multicoordinated rounds for
agreement protocols. Multicoordinated rounds have better
availability than classic and fast rounds. We exemplified
the use of multicoordinated rounds with a Generic Broad-
cast algorithm, which uses a conflict relation between pro-
poses values to mitigate the problem of collisions. Our pro-
tocol implements both multicoordinated, classic, and fast
modes and allow switching between these modes to adapt
to changes in the environment. We have also discussed
more practical aspects of our protocol as how to plan for
switching round types during runtime to adapt to environ-

9



ment changes and how to minimize disk access. In future
works, we will explore the load balancing features of mul-
ticoordinated rounds.

Finally, we discussed how our Generic Broadcast pro-
tocol solves, in fact, the broader Generalized Consensus
problem and its many instances (i.e., Consensus, Reliable
Broadcast, Atomic Broadcast, Generic Broadcast, etc).

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Thrifty generic broadcast. In Proceedings of
the 14th International Symposium on Distributed Comput-
ing (DISC), number 1914, pages 268–282, Toledo, Spain,
2000. Springer-Verlag.

[2] M. Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In
PODC ’83: Proceedings of the second annual ACM sympo-
sium on Principles of distributed computing, pages 27–30,
New York, NY, USA, 1983. ACM Press.

[3] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In USENIX’06: Proceedings of the 7th
conference on USENIX Symposium on Operating Systems
Design and Implementation, pages 24–24, Berkeley, CA,
USA, 2006. USENIX Association.

[4] L. Camargos, E. R. M. Madeira, and F. Pedone. Optimal
and practical wab-based consensus algorithms. In Euro-Par
2006 Parallel Processing, volume 4128 of Lecture Notes
in Computer Science, pages 549–558, Berlin / Heidelberg,
September 2006. Springer.

[5] L. Camargos, R. Schmidt, and F. Pedone. Multicoordinated
Paxos. Technical report, EPFL and University of Lugano,
2006.

[6] L. J. Camargos, R. M. Schmidt, and F. Pedone. Multicoordi-
nated paxos. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed com-
puting, pages 316–317, New York, NY, USA, 2007. ACM
Press.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, 1996.

[8] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Comput-
ers, 51(5):561–580, May 2002.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM,
32(2):374–382, April 1985.

[10] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems, pages 97–145. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 2 edition,
1993.

[11] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565, July
1978.

[12] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[13] L. Lamport. Generalized consensus and paxos. Technical
Report MSR-TR-2005-33, MSR, 2004.

[14] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–
103, October 2006.

[15] L. Lamport. Lower bounds for asynchronous consensus.
Distributed Computing, 19(2):104–125, October 2006.

[16] B. W. Lampson. How to build a highly available system
using consensus. In Babaoglu and Marzullo, editors, 10th
International Workshop on Distributed Algorithms (WDAG
96), volume 1151, pages 1–17. Springer-Verlag, Berlin Ger-
many, 1996.

[17] M. Massa and L. Lamport. Cheap paxos. In Proc. of
the 2004 Intl. Conference on Dependable Systems and Net-
works, June 2004.

[18] F. Pedone and A. Schiper. Handling message semantics
with generic broadcast protocols. Distributed Computing,
15(2):97–107, April 2002.

[19] F. Pedone and A. Schiper. Brief announcement: on the in-
herent cost of generic broadcast. In PODC ’04: Proceedings
of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 401–401, New York, NY,
USA, 2004. ACM.

[20] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving
agreement problems with weak ordering oracles. In EDCC-
4: Proceedings of the 4th European Dependable Computing
Conference on Dependable Computing, pages 44–61, Lon-
don, UK, 2002. Springer-Verlag.

[21] M. O. Rabin. Randomized byzantine generals. In Proc.
of the 24th Annu. IEEE Symp. on Foundations of Computer
Science, pages 403–409, 1983.

[22] P. Zielinski. Optimistic generic broadcast. In Proceedings
of the 19th International Symposium on Distributed Com-
puting, pages 369–383, Kraków, Poland, 2005.

10


