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Abstract ment protocol in which each vote is cast using an instance of

Distributed transaction processing hinges on enforc-
ing agreement among the involved resource managers on
whether to commit or abort transactions (atomicity) and on
making their updates permanent (durability). This paper in-
troduces a log service which abstracts these tasks. The ser-
vice logs commit and abort votes as well as the updates per-
formed by each resource manager. Based on the votes, the
log service outputs the transaction’s outcome. The service
also totally orders non-concurrent transactions and makes
the sequence of updates performed by each resource man-
ager available as a means to consistently recover resource
managers without relying on their local state. Besides the
specification, we overview two highly available implemen-
tations of this service and present an experimental perfor-
mance evaluation.

1. Introduction

The need to atomicaly commit transactions in distributed
management systems is recurrent. Briefly, to terminate a
distributed transaction, each participating resource manager
votes to either commit or abort it. The transaction’s outcome
is then determined based on these votes: commit, if all re-
source managers vote to commit the transaction, or abort,
otherwise. If the vote from each participant is always nec-
essary, the procedure may block in the absence of some re-
source manager. To avoid this scenario, a weaker version of
atomic commitment allows the outcome to be abort if some
participant is suspected to have failed. Commit will be guar-
anteed only if all participants vote to commit the transaction
and none is suspected. This weaker problem is known as
non-blocking atomic commitment.

In a recent paper, Gray and Lamport have introduced
Paxos Commit (PC) [9], a non-blocking atomic commit-
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the Paxos consensus algorithm [12]. To handle failures, re-
source managers conservatively vote abort on behalf of (sup-
posedly) crashed resource managers by proposing ABORT
in their consensus instances. Consensus ensures that all
involved parts agree on each single vote in spite of possi-
bly different proposals. PC has the same expected latency
as the Two-Phase Commit (2PC) protocol. In fact, it is
a generalization of 2PC that tolerates failures both of re-
source managers and of the transaction manager, the pro-
cess that triggers and coordinates the protocol. Compared to
Three-Phase Commit (3PC) [1], PC has fewer communica-
tion steps and is simpler in case of a coordinator failure.

Besides ensuring atomicity, a transaction termination
protocol should also guarantee the durability of commit-
ted transactions. Once committed, the changes made by a
transaction should not be forgotten despite failures. In con-
ventional protocols this is achieved by having each resource
manager store its updates on a local stable media before vot-
ing. Should a resource manager fail, it can, at recovery time,
read the updates from the local storage and replay them to
recover its previous state. A drawback of this approach is
that it couples the availability of the resource manager with
the availability of the server hosting it. In a clustered en-
vironment, for example, one could recover a resource man-
ager on a different node, should its current host fail. But
obviously, this can only be done if the state of the resource
manager is not stored on the crashed node. PC suggests that
information critical to transaction termination should not re-
side at the transaction participants, but at a separate entity,
such as the acceptors—the processes agreeing on the deci-
sion in the Paxos consensus protocol— whose availability
can be easily tuned.

This paper proposes abstracting transaction termination
in terms of a log service. The log service has a very simple
interface, through which resource managers vote and receive
the outcome of transactions. In addition to storing the partic-
ipant votes, the service may be also used to store transaction
updates. As a consequence, crashed resource managers can
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be restarted on any operational node, relying only on the log
service to recover their prior state. The power of the service
is reflected on its simplicity of use: once the termination is
triggered, transaction participants submit their votes to the
log service and wait for the outcome. Should a resource
manager be suspected of having crashed, others can submit
abort votes on its behalf to the log service. If multiple votes
are received for the same resource manager, the service will
ignore all but the first vote received to determine the trans-
action’s outcome, properly ensuring consistency.

Defining transaction termination in terms of our log ser-
vice has two advantages. First, transaction termination
becomes oblivious to particularities of the system, taken
care of or explored by the log service implementation in a
transparent way. For example, the service could be imple-
mented using message passing, as we illustrate in this paper,
or shared memory, e.g., in a multiprocessor environment.
Moreover, if enough nodes can be relied upon not to crash
simultaneously, then the service could be implemented in
main memory only, removing disk access times from the
termination of transactions. Second, the overall availability
of resource managers is improved by using a highly avail-
able implementation of the log service. As mentioned ear-
lier, the service can be used to migrate crashed or slow re-
source managers to functional and more dependable hosts.
As a consequence, resource managers may choose to asyn-
chronously store their state locally for later recovery or rely
solely on the state kept at the log service.

We have designed two implementations of the log ser-
vice, both relying on consensus to provide high availability,
but in different ways. In the first, uncoordinated, voting is
completely distributed (this approach abstracts PC). In the
second, coordinated, voting is centralized, managed by a
coordinating process. This difference has performance im-
plications on both the termination of transactions and on the
recovery of resource managers. The two approaches abstract
the tradeoff “message complexity versus number of com-
munication steps” between atomic commit protocols. Our
coordinated implementation has linear message complexity,
similarly to 3PC, but needs 5 steps to terminate a transac-
tion; the uncoordinated approach, similarly to PC and other
proposals (e.g., [10, 11]), reduces the number of steps to
3, at the expense of a quadratic message complexity. Due to
space constraints, we just overview each approach in this pa-
per. For an in-depth description, the reader is referred to the
extended version of this paper [3]. Our experiments show
that the coordinated solution outperforms the uncoordinated
one by 8x when transactions are short, what typically hap-
pens in performance-critical systems. The performance gain
is mainly due to batching of concurrently issued votes by the
coordinator, saving on network and disk utilization.

In summary, this paper makes three contributions: First,
it introduces and specifies the log service abstraction for
transaction termination. Second, it presents two highly
available implementations of the service, namely coordi-
nated and uncoordinated. Third, it compares both ap-
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proaches analytically and experimentally to previous work
in the area and shows that reducing the number of commu-
nication steps at the expense of increasing the message com-
plexity not always leads to better performance.

2. Problem statement

A resource manager (RM) is the owner of some resource
that can be read or written, such as a file, a region of mem-
ory, or a table in a relational database. We define RMs not
as processes, but as roles that can be “incarnated” by dif-
ferent processes at different points in time. We assume the
availability of infinitely many processes and, therefore, that
there is always a process to incarnate an RM. This model al-
lows an RM to be incarnated at an operational host, should
its previous host crash, without waiting for the crashed node
to recover. Hence, RMs have crash-recovery failure pattern.

A distributed transaction is a partially ordered set of read
and write operations executed by RMs on their resources.
An RM is a participant of transactions for which it has been
requested to execute operations. Each transaction is man-
aged by a transaction manager (TM), another role in our
model. To terminate a transaction, the TM asks its partic-
ipants to agree on committing or aborting the transaction
through a non-blocking atomic commit (NBAC) protocol.
An RM can only vote to commit a transaction after receiv-
ing a request from the TM along with the complete list of
participants of the transaction. Abort votes, however, may
be sent by RMs at any time, even before receiving the re-
quest and the participant’s list.

Formally, NBAC is defined by the following properties.

Validity If a participant decides to commit a transaction,
then all participants voted to commit the transaction.

Agreement No two participants decide differently.

Nontriviality If all participants vote to commit the trans-
action and none is suspected of failing throughout the
execution of the protocol, then the decision is commit.

Termination All non-faulty participants eventually decide.

Nontriviality implies that RMs may be “suspected” of
failing. The only assumption we make about failure detec-
tion is that if an RM fails (actually, the process incarnating
it), then it will eventually be suspected by the other pro-
cesses.! Hence, transactions may be unnecessarily aborted
due to incorrect failure suspicions. TM failures are handled
with RM unilateral aborts.

NBAC defines proper transaction termination but not
durability, i.e., making the effects of committed transaction
last in spite of RM crashes. We define durability as fol-
lows [14]:

IThis property is similar to the completeness property of Chandra and
Toueg’s failure detectors [5].



Durability After a transaction commits, its changes to the
database persist despite system failures.

Durability can be ensured, for example, by reinitializing
the database and replaying the updates of committed trans-
action in the commit order. RMs can store updates on a lo-
cal stable storage, as traditionally done in database systems,
or on an external and possibly replicated media to improve
availability.

3. The Log Service

In this section we specify the log service and show how
resource managers use it to atomically terminate transac-
tions and to recover crashed resource managers. In Sec-
tions 4 and 5 we show how these behaviors can be imple-
mented in a shared-nothing asynchronous distributed sys-
tem. We start by explaining the formalism used in the spec-
ifications.

3.1. Terminology and notation

We describe our algorithms in terms of actions and oper-

ators as the following:

IF(a, b, c) = if a then b else ¢

ADDVALTOB(val) £ B — B + val
According to these definitions, the operator IF(a, b, ¢) eval-
uates to b if @ is true and to c¢ otherwise. Action
ADDVALTOB (val) increments the variable B by the value
val. We use let and in to limit the scope of a definition for
conciseness. In the expression,

let SUM(a,b) £ a+ b in SUM(SUM(1,2), SUM(3,4))
for example, SUM(a, b) is defined as a + b within the scope
of Sum(Sum(1,2),Sum(3,4)).

For simplicity we assume that, except for action TERMI-
NATE of Algorithm 1, all actions presented in the paper are
performed atomically. In [3] we give and extended specifi-
cation with atomic actions only.

When comparing sequences in the algorithm, the symbol
“_” matches any value. For example, (a,b) = (_,b) and
(-, b) = {c, b) even though c and a are different. The length
of sequence s is given by Len(s), and its 7-th element by s[4].
a <s b (resp. >;) holds iff (i)a and b happen only once in
s and (ii)s[i] = a and s[j] = b implies ¢ < j (resp. i > j).
s @ e is defined as the sequence s appended by the element
e (e.g., {a,b)ec = (a,b,c)). If ssis asequence of sets, then
ss @ e adds element e to the last set in ss, ss[Len(ss)], (e.g.,

({a,b},{c}) & d = ({a, b}, {c, d})).
3.2. The log service specification

‘We now present the log service specification, which may
be seen as a single process accessed by the RMs through re-
mote procedure calls. The service manipulates the following
five data structures:
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V The set of all votes received by the service. Votes are se-
quences of the form (rm, t, tset, vote, update), read as
“rm voted vote on transaction ¢, with updates update,
if any (i.e., the empty set, if vote = ABORT)”. tset
is the possibly incomplete list of RMs involved in .
Initially, V = {}.

T The partially ordered set (S, <), where S is the set of
committed transactions and = is a partial order on S
such that for any two transactions ¢;, &2 € S such that
their commit are not seen as overlapping by the log ser-
vice, then ¢; <X 3. We say that such transactions are
“non-concurrent”. For simplicity we represent 7 as a
sequence of sets of committed transactions such that,
given two sets 7 [i] and T [7] in 7, ¢ < j implies that
for all transactions ¢ € 7[¢] and u € T[j], t < u. Ini-
tially, 7 = ().

C The set of committing transactions, that is, the set of non-
terminated transactions for which votes have been is-
sued. Initially, C = {}.

LastC The subset of C with transactions known to be con-
current with the last committed transaction, i.e., their
termination was concurrent. Initially, LastC = {}.

R A map from RMs to the processes currently “incarnat-
ing” them. An RM is mapped to L (not a valid pro-
cess) if it has never been incarnated. Initially, all RMs
are mapped to L.

The first part of Algorithm 1 (lines 1-40) initializes the
data structures and defines the operators OUTCOME, ISIN-
VOLVED, and UPDATES, and the action VOTE.

OUTCOME(t) evaluates to the outcome of transaction ¢:
ABORT, if at least one vote for ¢ is ABORT; COMMIT, if
all votes are present and equal COMMIT; and UNDEFINED,
if all known votes for ¢ are COMMIT but there are missing
votes, which could turn out to be of either kind.

ISINVOLVED(?, rm) evaluates to TRUE if 7m is a partic-
ipant of ¢, i.e., if rm is in the list of participants (tset) of
any known vote for ¢t. Because ABORT votes may not carry
the complete participants’ list, they are not enough to give
negative answers. That is, if only ABORT votes are known
and none has rm in the tset field, then ISINVOLVED(¢, rm)
evaluates to UNKNOWN, but if a COMMIT vote is known
and rm is not in the ¢set field, then it evaluates to FALSE.

VOTE(v) adds vote v to V. A vote is added only if no
other vote for the same resource manager and transaction
is already in V. This ensures that if conflicting votes are
issued by mistake for the same participant, only one vote
per participant is considered.

UPDATES(rm) evaluates to the sequence of sets of up-
dates performed by resource manager rm, partially ordered
accordingly to 7. The evaluation is done by recursively iter-
ating over the sets of committed transactions to find the ones
in which rm took part and with which updates.



Algorithm 1 Log service specification

1:Initially:

2 V0 < The history of votes.
T — ) < Sequence of sets of committed trans.
w C—10 < Set of concurrent trans.
s: LastC «+— () < Set of trans. concurrent to the last committed.
6 Vr € RM,R[r] — L < Processes incarnating RMs.

A

7:OUTCOME(t)
s if 3(_,¢,—, ABORT,_) € V
9:  ABORT
0: elseif 3(_, ¢, tset, COMMIT,_) € V:
Vp € tset : (p,t,_, COMMIT,_) € V
1:  CoMMIT
12: else
133 UNDEFINED

< Any ABORTs?

< All COMMITs?

< Not enough commits?

14:ISINVOLVED(¢, 7m)
10 if 3(, ¢, tset,—,_) € V:rm € tset
6. TRUE

7 elseif 3(_, ¢, _,v,_) € V:v=COMMIT «Istset acomplete list?
182 FALSE

190 else

20 UNKNOWN

< ls rm in any list?

< Not enough information.
2:VOTE((rm, t, tset, vote, update)) 2
2: if OUTCOME(t) = UNDEFINED

u: C—CuU{t} <QaddittoC.

2w if-I(rm,t,_,_,_) €V < If rm has not voted for t yet
550 currState < OUTCOME(t) < Current state (ABORT or UNDEF.).
%0V VU{(rm,t, tset, vote, update)}
27: if (currState = UNDEFINED) A (OUTCOME(t) = COMMIT)

28! if ¢ € LastC < If't can be added to the last set...

< If t has not terminated yet

4 Store vote

29: T—Tdt d...do it;

30: else

31 T — Te{t} < otherwise, add it to a new set
32! LastC «— C < with a new LastC.

33 C — C\{t}

34:UPDAT1~:s(rm)A 2
350 let UPD(i) =

;. ifi=0 < Recursion end.
37 ()
3 else < Get updates and recurse.

390 UpD(i — 1) e
te Tl
{upd : (rm, t,_, COMMIT, upd) € V : ﬁISIiVO[ZJ/ED(rm, £) }

40: in UpD(Len(T)) < Return updates for rm

41:INCARNATE(rm, pid) £

21 R[rm] < pid

4: updates < UPDATES(7m)
4 for i = 1 to Len(updates)

< Get committed state.
< For all committed transactions...

4s: apply updates in updates|i) < ...apply it to the database.

46 TERMINATE(Tm, t, tset, vote, upd) 2
471 VOTE((rm, t, tset, vote, upd))

43 while OUTCOME(¢, rm) = UNDEFINED
4:  wait (OUTCOME(t, rm) 7# UNDEFINED) V (suspect r € tset)
so:  if suspected r € tset < If suspect someone to have crashed. ..
510 VOTE((r, t, tset, Abort, B)) d...vote on its behalf.
s2: if OUTCOME(¢t, rm) = ABORT

531 abort ¢ in the database

sa: else
ss: apply upd to database

< Vote for t and wait. . .

3.3. Termination and recovery

The second part of Algorithm 1 (lines 41-55) defines the
actions INCARNATE and TERMINATE.
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INCARNATE(rm, pid) is used by process pid to incar-
nate resource manager rm. First, the process sets R[rm)]
to its own identifier, pid. Second, it evaluates UPDATES,
described above, to get the updates executed by the previ-
ous incarnations of rm. Third, pid scans the updates from
the first to the last set, applying all updates in one set be-
fore those in the next set to its state; updates in the same set
need not be ordered. The action ends with pid incarnating
rm, with a state equal to the previous incarnation. pid will
accept and process new transactions as rm until it crashes
or another process incarnates rm (i.e., pid ceases equaling
R[rm]). If more than one process try to incarnate rm, a
quick succession of incarnations will happen, but only one
will remain incarnated.

TERMINATE is used by resource managers (the pro-
cesses incarnating them) to trigger or join the ter-
mination of transactions in which they participate.
To terminate ¢, a resource manager 7m executes
TERMINATE((rm, t, tset, vote, upd)), where tset is the set
of resource managers known by rm to be participants of
t, and vote is either ABORT or COMMIT, depending on
whether rm is willing to commit the transaction or not. If
vote equals COMMIT, then upd contains the updates per-
formed by rm in t. If vote equals ABORT, upd equals ().

After casting its vote, rm waits until it learns ¢’s out-
come. While waiting, rm monitors the other resource man-
agers in tset, also involved in ¢. If rm suspects that some
participant crashed, it votes ABORT on its behalf. After
learning that ¢ committed, rm will apply its updates and re-
lease the related locks, if locking is used. If rm learns that ¢
aborted, it locally aborts the transaction. Updates are made
durable by the log service. We assume that the execution of
TERMINATE is not necessarily an atomic operation, allow-
ing multiple resource managers to vote in parallel and the
same resource manager to terminate distinct transactions in
parallel, if its scheduling model allows it.

Termination using our log service provably solves
NBAC, and recovery through the INCARNATE action prov-
ably ensures the durability property. Due to space restric-
tions, the reader is referred to [3] for detailed proof of cor-
rectness.

4. From specifications to implementations

So far we have described the log service abstractly in
terms of variables and atomic actions triggered by processes
incarnating resource managers. We now describe the build-
ing blocks we used in our implementations of the service.
We then follow with a description of the implementations.

4.1. Building blocks

Communications links We assume that processes com-
municate by message passing using quasi-reliable commu-
nication channels: channels ensuring that (a)if neither the



sender nor the receiver of a message crashes, then the mes-
sage is eventually delivered, and (b)messages are neither
corrupted nor duplicated.

Leader-election oracle We assume that processes have
access to a leader-election oracle like €2 [4]. The oracle guar-
antees that eventually all participants elect the same non-
faulty process as the leader. Obviously, this can only be
ensured if there is at least one process that eventually re-
mains operational “forever”. In practical terms, “forever” is
reduced to “long enough to accomplish some useful compu-
tation”, e.g., deciding on a transaction’s outcome.

Consensus Processes also rely on a consensus black box
to ensure consistency. In the consensus problem, a set of
processes tries to agree on a common value. As in [12],
we define the consensus problem in terms of the three roles
played by processes: proposers propose values to be agreed;
acceptors interact to choose a proposed value; and learn-
ers identify that a value was decided. A process can play
any number of these roles. Hence, a process is dubbed non-
faulty if it remains up long enough to perform the consensus
algorithm.

Let n be the number of acceptors in the system and f <
n/2 the maximum number of faulty acceptors. A correct
consensus algorithm satisfies three properties:

C-Nontriviality Only a proposed value may be learned.
C-Consistency Any two learned values must be equal.

C-Progress For any proposer p and learner [, if p, | and
more than n/2 acceptors are non-faulty, and p proposes
a value, then [ must learn a value.

4.2. Coordinated implementation

The coordinated implementation is named after a coordi-
nator process that serves as the interface for the log service
to RMs. Instead of simply accessing the service, RMs ex-
change messages with the coordinator to implement each ac-
tion in the service’s specification. To vote in a transactions,
RMs send a vote message to the coordinator, which ensures
that votes become durable. It does so by proposing them
in a sequence of consensus instances until they are decided
in some instance, at which point they are durable. The co-
ordinator analyzes durable votes to determine transactions’
outcomes and inform the RMs, which then complete the im-
plementation of action VOTE. To amortize the cost of ter-
minating each transaction, the coordinator batches as many
votes as possible in the proposal of each consensus instance.
If an RM has enough local information to implement some
action without waiting for the coordinator’s reply, then it
does so to improve performance. One such example is the
ability to abort a transaction locally when the RMs’ vote it-
self is ABORT.
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Multiple processes capable of coordinating the imple-
mentation run in parallel and, along with the RMs, they
use the leader-election oracle to elect the effective coordi-
nator. The elected coordinator is the one to which RMs send
their votes and to which non-elected coordinators forward
all votes that they may receive from mistaken RMs. Be-
cause all coordinators decide on the transactions’ outcome
based on the same sequence of consensus instances, they all
take the same decisions. Hence, safety is not violated even if
several processes become coordinator simultaneously. Live-
ness, on the other hand, may be violated in this case, be-
cause coordinators could jeopardize each other’s attempts to
reach agreement. Eventually the leader-election oracle en-
sures that a single coordinator exists, and liveness is ensured.

Incarnating a given resource manager happens in a simi-
lar way: the process trying to incarnate the RM sends a spe-
cial message to the coordinator, which proposes the change
in a consensus instance. Once an instance decides on an
incarnation change, all next instances consider the newly in-
carnated resource manager. The decision is also informed to
all processes incarnating some RM so that they can identify
if they have been replaced.

Traditionally, RMs write their logs on disk before voting.
Even when using the log service, RMs may still write lo-
cally for a number of reasons, such as (i)recovery speedup,
because reading locally is faster than reading remotely, and
(ii)minimizing network usage, by sending just empty up-
dates to the service. If the RM does not write its updates lo-
cally, then it can resort to the coordinator to obtain them. In
this case, the coordinator scans the decisions of all consen-
sus instances to determine the updates of committed transac-
tions concerning the RM when recovering. Since all coordi-
nators maintain the same state, any can be safely contacted.

4.3. Uncoordinated implementation

The uncoordinated implementation is based on the Paxos
Commit protocol. The main purpose of this implementation
is to save time by not having the votes sent to the service
through a coordinator. Instead, each vote is cast in a distinct
consensus instance.

When an RM is first contacted by a TM in the context of
a transaction, besides executing the requested operation the
RM also names the consensus instance in which it will vote
to terminate the transaction. The instances are sequentially
taken from a per-RM pool and informed to the TM along
with the reply to the first operation. The TM informs the
named instances to all participants along with its commit re-
quest so that they know which instance to use to learn votes
and to vote on behalf of each other, should they need.

Besides voting, RMs also use consensus instances to pro-
pose changes of incarnations. Because RMs cannot rely on
a total order of INCARNATE requests, as in the coordinated
implementation, the protocol must rely on some other as-
sumption to limit the scope of each incarnation. The as-
sumption we make is that at most k transactions are executed



in parallel by each RM (multiprogramming level).

Let p be a process incarnating RM rm and ¢ a process
not incarnating any RM. If ¢ suspects p to have crashed and
wants to takeover the role of rm, it proposes the change in
the smallest consensus instance in rm’s pool that g believes
not to be decided yet. ¢ repeats this step with subsequent
instances until one of them decides on the INCARNATE re-
quest.

When ¢’s proposal to incarnate rm is decided, ¢ still
needs to ensure that all consensus instances in which p had
possibly voted have been decided. Otherwise, ¢ might at-
tribute one of such instances to a transaction different from
the one p had originally done. There are at most k¥ — 1 such
transactions. That is, if the incarnation change was decided
in instance 4, then ¢ knows that p can only have voted on in-
stances up to ¢ + k — 1, and ¢’s incarnation effectively starts
at instance 7 + k. To avoid blocking, ¢ conservatively votes
ABORT on all instances in the range [i + 1, + k].

To recover the state of p, ¢ must recover the updates sent
along with votes for all instances smaller than ¢ + k& — 1.
These updates are learned along the decisions of such in-
stances and applied to the database. To desambiguate the
order of transactions that had votes issued in instances ¢ and
j such that ¢ > j and i — 5 < k, each vote also carries
a counter of how many transactions have been committed
before issuing such a vote, what is enough to reorder them.
(See [3] for more details.)

5. Evaluation

In this section we compare the coordinated implementa-
tion of the log service with other relevant commit protocols
in the literature. In Section 5.1 we give a brief overview of
such approaches, compare them in terms of communication
steps, number of messages, and resilience. In Section 5.2,
we experimentally compare the coordinated implementation
with an uncoordinated one.

5.1. Analytical evaluation

In the 2-Phase Commit protocol (2PC) [8], the TM asks
RMs to vote, collects their votes, decides on the transac-
tion’s outcome, and informs the RMs. The protocol there-
fore requires three communication steps and sends up to 3 R
messages, where R is the number of RMs. If the TM crashes
during the second step, the protocol blocks until the process
is recovered.

In the commit protocol of Guerraoui et al. [10] (GLS),
the RMs do not centralize the decision on the TM: on the
second step, they exchange their votes and, on the third step,
they communicate their decisions to each other, using a total
of N + 2N?2 messages—to simplify the analysis, we count
messages sent by processes to themselves. Hence, in good
runs, all RMs see the decision after three communication
steps but, in case of suspicions of failures, they must re-
sort to a consensus instance to ensure correct termination,
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what adds at least one step to the execution. Assuming an
unreliable failure detector to solve consensus, the protocol
tolerates any minority of RM crashes.

Paxos Commit (PC) [9] has the same communication
complexity and, in some cases, the same communication
pattern as GLS in good runs. In PC, however, the second and
third steps are used to run the Paxos consensus protocol [12]
to agree on the vote of each RM. In the case of suspicions, an
RM proposes ABORT on behalf of the suspected RM using
its Paxos instance. In PC, the role of deciding on the trans-
action’s outcome is logically dissociated from the RMs; they
are played by the acceptors. PC is non-blocking in the pres-
ence of crashes of any minority of acceptors. When there
is a single acceptor, PC can be configured to have the same
communication pattern and resilience as 2PC. If every RM
acts also as an acceptor, then it equals GLS. We report this
latter case in Table 1, which summarizes aspects of each ap-
proach.

The Uncoordinated Log Service (Uncoord) is an exten-
sion of PC to cope with the ordering of transactions, dura-
bility of updates, and replacement of failed resource man-
agers. These aspects, however, to not enter in our analytical
evaluation, where PC and Uncoord are regarded as the same.

While the previous approaches try improve the resilience
of 2PC by reducing and distributing the role of the TM, other
protocols tried to handle its failure by other means. In the 3-
Phase Commit (3PC) [9] protocols, the TM is replaced once
it has crashed. Problems may arise, though, if the TM has
not in fact crashed, possibly leading to inconsistent termina-
tion [1]. Besides, to be replaceable, the TM cannot be the
only one to keep data essential for the termination, and dis-
seminating this data introduces more communication steps
to the termination (See Table 1).

In the Coordinated Log Service, the replacement of a
non-crashed TM may lead to unnecessary aborts, but it does
not break the consistency of the protocol. By using Paxos
in the coordinated log service, the protocol takes the same
number of communications steps to terminate as 3PC: five.
Because the same coordinator is used on many transactions,
the cost of terminating them is amortized by aggregating
votes to be proposed, reducing the number of instances exe-
cuted in parallel. Parallel instances, in practice, impact neg-
atively on each other due to resource contention.

Jiménez-Peres et al. [11] proposed a commit service ab-
straction and a set of implementations. Different from our
abstraction, their commit service is defined for single com-
mit instances. Their implementations provide an optimistic
outcome after three steps, and a confirmation after the fourth
step, when the transaction can be committed. As we have
done with RMs and acceptors in PC, we analyse their proto-
col co-locating the commit servers and the RMs.

Table 1, below, compares the discussed approaches in
terms of number of communication steps required by each
protocol, the number of messages sent on each one, and their
resilience, that is, the number of resouce manager failures
that does not prevent the protocols from terminating.



Cs"tgb%l' Messages | Resilience
2-PC 3 3R 0
GLS [10] 3 2R+ R < R/2
PC [9]/Uncoord. 3 2R’ + R < R/2
Commit Service [11] 3)4 3R+ 2R < R/2
3-PC[1] 5 5R —
Coord. Log Service 5 5R < R/2

Table 1. The cost of some commit protocols

5.2. Experimental evaluation

We have implemented a variant of PC in which votes
carry RMs’ updates. Moreover, we also augmented it with a
procedure to recover RMs based on the acceptors state. We
used this Uncoordinated Log Service implementation in our
experimental evaluation to show the cost of storing updates
on the acceptors instead of locally at the RMs. Analytically,
this approach has the same costs and resilience of PC.

We have prototyped the Uncoordinated and the Coordi-
nated log service in Java, as well as the Paxos consensus
protocol that underlies both of them, and compared them us-
ing the Sprint infrastructure. More details on the prototype
can be found in [2]. The evaluation consisted of two bench-
marks, explained below, run in the Emulab testbed [16]. All
nodes used were equipped with 64-bit Xeon 3GHz proces-
sors, interconnected through a Gigabit Ethernet switch.

Micro-benchmark In the first experiment we used a
micro-benchmark of non-conflicting transactions, each
comprising one write operation executed by one RM; each
operation writes 0, 1000, or 7000 bytes of data, allowing
us to evaluate the impact of the size of updates carried by
votes. To assess the impact of disk writes on the log service,
we have run experiments in which consensus acceptors have
disk writes enabled and disabled (i.e., consistency relies on
at most a minority of acceptors crashing simultaneously).

To compare the different configurations, we first deter-
mined the workload needed on each of them to reach a 10ms
latency per transaction execution. Each entry in Table 2
presents the throughput, in transactions per second, of the
coordinated and the uncoordinated techniques, and their ra-
tio (number between parenthesis). The differences in the
first and second lines evidences the cost of writing on stable
storage: both approaches benefit from disabling the disk, but
the effects are more significant with the uncoordinated ap-
proach. The reason is that the coordinated approach already
optimizes disk access by using the same consensus instance
and a single disk write for multiple transactions.

Going from the left to the right columns in Table 2 we
see the effects of update sizes in the log service. As the size
grows, fewer votes can fit in the same proposal, increasing
the number of Paxos instances needed until each vote re-
quires one full instance, as in the uncoordinated version. At

Disk 0 bytes 1000 bytes 7000 bytes

On 1539/184 (8.36) 771/189 (4.08) 96/97 (0.99)

Off | 2936/1249 (2.35) | 1559/1181 (1.32) | 370/357 (1.04)

Table 2. Coord/Uncoord throughput

this point, the benefits of the coordinator are minimal. Like-
wise, the gains of not writing on disk are smaller for bigger
updates, because more time is spent transferring the data.

TPC-C based benchmark We also evaluated our imple-
mentations with a variant of the TPC-C [6] benchmark in
which clients submit requests without think times. The
transactions and their frequencies, however, are those speci-
fied by TPC-C. All tables but one (the read only Items table)
were range partitioned among RMs according to their pri-
mary keys; the read-only table was replicated on all RMs.
As a result, at most 15% transactions involved more than
one RM (up to all RMs). Update transactions were 92% of
the workload and produced data to be logged not exceeding
1500 bytes. In the experiments, we varied the load by in-
creasing the number of clients, and measured the resulting
throughput in transactions per second and their respective
response times. Each dotted curve in Figure 1 gives the the-
oretical relation between throughput and response time for
different numbers of clients, as defined by the Little’s Law:
number of clients = throughput X response time.

As Figure 1 shows, very small loads (dotted curve with
2 clients) do not significantly differ in performance between
configurations. With higher loads, the coordinated version
outperforms the uncoordinated one and scales better. Al-
though in 85% of the cases a single transaction requires one
consensus instance regardless of the termination protocol,
the coordinated version can group at least five simultane-
ous requests, and even when a single RM could perform the
batching on its own, the coordinator is still better off as it
can combine data from different RMs.

6. Final remarks

In this paper we have introduced the specification of a
log service for transaction processing systems, which pro-
vides atomicity and durability to transactions through a non-
blocking termination protocol. The service totally orders
non-concurrent transactions. Should a resource manager
fail, the service can be used to recover the resource man-
ager’s state prior to the crash and start a copy of it on a dif-
ferent and functional node. Moreover, it safely copes with
multiple copies of a resource manager. Due to its general
design and simple specification, we believe it can serve as
basis for further work.

Some works in the literature have similarities with our
service. In Stamus and Cristian’s approach [15], for exam-
ple, the log records of resource managers are aggregated and



500 T T T T T T T
uncoordinated 8 RMs —x—
uncoordinated 16 RMs ---<%---
coordinated 8 RMs A
400 | coordinated 16 RMs —6— |
S
[0
E
o 300 % A b
£
® 0. 96
2
g 2 o 7]
3 & A
o
100 A © 36
O
& 18
0 1 1 1 1 L I 1 2
0 50 100 150 200 250 300 350 400 450

Throughput [tps]

Figure 1. Maximum throughput versus re-
sponse time of TPC-C transactions. The num-
ber of clients is shown next to the curves.
Disk writes at acceptors were enabled.

stored at the transaction manager, which is relied upon to
implement the service. Their protocol, though, uses a byzan-
tine agreement abstraction and makes strong synchrony as-
sumptions. Besides, it does not consider the recovery of re-
source and transaction managers on different nodes in case
of malfunctioning. Conversely, the log service of Daniels
et al. [7] does allow recovery on different machines but, in-
stead, lacks the transaction termination feature. Also Mohan
et al. [13] used byzantine tolerant agreement abstractions.
Their extended 2PC protocol can be seen as a byzantine un-
coordinated log service implementation.

We also presented two highly available implementations
of our log service, namely coordinated and uncoordinated,
and provided a comparative experimental performance eval-
uation. As we have shown in the previous section, these
implementations are representative of several well-known
protocols in the literature. Although in theory the uncoor-
dinated approach outperforms the coordinated one by two
communication steps, in our experimental evaluation the co-
ordinated approach has led to a much higher transaction
throughput and smaller response times for small transac-
tions. This result is explained by the higher number of mes-
sages sent in parallel in the uncoordinated version, nega-
tively effecting on each other, and by the coordinator being
able to terminate possibly many transactions using a single
instance of consensus.

As in other consensus-based commit protocols, resource
managers and acceptors (consensus deciding processes) can
be co-located to minimize the number of nodes in the sys-
tem. However, we see a strong reason to decouple these two
roles in practical scenarios: resource managers are generally
more complex software artifacts and, therefore, more error
prone than acceptors; the latter must be available for the sake
of all transactions in the system and should not risk crash-
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ing because of a resource manager error. Besides, by de-
coupling these roles, the availability of the system becomes
determined by the availability of quorum of acceptors, and
more easily assessed.
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