
Correctness Criteria for Database Replication:
Theoretical and Practical Aspects

Vaidė Zuikevičiūtė and Fernando Pedone

University of Lugano (USI),
CH-6900 Lugano, Switzerland

Abstract. In this paper we investigate correctness criteria for replicated
databases from the client’s perspective and present their uniform char-
acterization. We further study the effects of different consistency degrees
in the context of three middleware-based replication protocols: primary-
backup, optimistic update-everywhere and BaseCON, a simple yet fault-
tolerant middleware-based replication protocol that takes advantage of
workload characterization techniques to increase the parallelism in the
system. We present three variants of BaseCON, one for each correctness
criterion discussed, and analyze its behavior in case of failures and false
suspicions.
We have implemented the correctness properties in all three protocols
considered and show experimentally that stronger consistency does not
necessarily imply worse performance. On the contrary, two of the three
replication protocols evaluated show no significant performance diver-
gence under the chosen benchmark while ensuring different consistency
criterion.

1 Introduction

Middleware-based database replication protocols have recently received a lot of
attention [1–7]. The main reason for this stems from the fact that middleware
protocols require few or no changes in the database engine. As a consequence they
can be maintained independently of the database engine, and can potentially
be used in heterogeneous settings. Just like kernel-based protocols, middleware-
based database replication protocols can implement a large variety of consistency
criteria, ensuring different degrees of guarantees to the system’s clients. In this
paper we investigate the performance cost of implementing different consistency
degrees in middleware protocols.

A typical correctness criterion for replicated database systems is one-copy
serializability (1SR) [8]. Informally, 1SR requires the execution of concurrent
transactions on different replicas to appear as if transactions were executed in
some sequential order on a single replica. 1SR does not necessarily preserve the
order in which transactions are submitted to the system. It allows the situation
where transaction Tj may not see the effects of Ti, even though Ti commits
before Tj started executing. In some cases such reordering of transactions may
be unacceptable. For instance, if both transactions are sumbitted by the same

client, intuitively the client expects to read what it has written before. A stronger
correctness criterion, named strong serializability [9], requires transactions to be
serialized according to their real-time ordering. However, strong serializability
may be too restrictive, since it requires the enforcement of transaction order-
ing constraints among all transactions, which may be unnecessary and costly
to ensure. Session consistency [10] is stronger than one-copy serializability, but
weaker than strong serializability: it preserves the real-time ordering of transac-
tions submitted by the same client only; as a consequence, clients always read
their own updates.

In this paper we focus on two broad categories of replication protocols [11]:
primary-backup and update everywhere replication. Two of the protocols we
consider belong to the update-everywhere replication category, however they
differ in the execution mode: one executes transactions optimistically, the other,
conservatively. The conservative protocol, named BaseCON, is introduced in this
paper. BaseCON is a simple middleware-based protocol that makes use of atomic
broadcast primitives to provide strong consistency and fault-tolerance. False
suspicions are tolerated and never lead to incorrect behavior. BaseCON takes
advantage of workload characterization techniques to increase the parallelism in
the system. A lightweight scheduler interposed between clients and the database
servers allows the system to adapt easily to the correctness criterion required
and serves as a load-balancer for read-only transactions. If a scheduler fails or is
suspected to have failed, a backup scheduler takes over.

It has been generally believed that additional constraints on correctness de-
grades the performance of a replicated system. To verify this statement we
present a thorough experimental evaluation of the three classes of replication
protocols: optimistic and conservative update everywhere (respectively, DBSM
[12] and BaseCON), and primary-backup (Pronto [13]). Contrary to the general
believe, both BaseCON and DBSM show no significant performance difference
even if the strongest correctness criterion is ensured. Even though the implemen-
tation of strong serializability requires ordering also for read-only transactions
in all protocols studied, the overhead introduced by total order primitives is neg-
ligible in middleware-based replication. This may have surprising consequences.
For example, our implementation of session consistency in primary-backup repli-
cation exhibits worse performance than strong serializability.

To sum up, this paper makes the following contributions: (1) it revisits the
correctness criteria for replicated databases and uniformly characterizes them
within the same model; (2) it proposes a simple although fault-tolerant repli-
cation protocol that takes advantage of workload characterization techniques to
increase the parallelism in the system; (3) it shows how different correctness
criteria could be implemented in three distinct classes of replication protocols;
and (4) it evaluates experimentally the effects of different consistency criteria on
middleware-based replicated system’s performance using the three protocols.

2 System Model and Definitions

2.1 Servers, Communication and Failures

We consider an asynchronous distributed system composed of database clients,
C = {c1, c2, ..., cm}, and servers, S = {S1, S2, ..., Sn}. Communication is by mes-
sage passing. Servers can also interact by means of a total-order broadcast,
described below. Servers can fail by crashing and subsequently recover.

Total-order broadcast is defined by the primitives broadcast(m) and deliver(m),
and guarantees that (a) if a server delivers a message m then every server deliv-
ers m; (b) no two servers deliver any two messages in different orders; and (c) if
a server broadcasts message m and does not fail, then every server eventually
delivers m. The notion of uniform delivery captures the concept of durability,
that is, a server must not forget that it has delivered a message after it recovers
from a crash. After recovery the server delivers first all the messages it missed
during the crashed period.

We do not make any assumptions about the time it takes for clients and
severs to execute and messages to be transmitted. We do assume however that
the system is augmented with unreliable failure detectors [14]. Such oracles can
make an unbounded number of mistakes: servers may be incorrectly suspected
to have failed even if they are just slow to respond. In order to ensure progress
unreliable failure detectors satisfy the following two properties: there is a time
after which some operational server is never suspected by any operational server
(accuracy); and eventually every server that fails is suspected to have failed
(completeness).

2.2 Database and Transactions

Each server has a full copy of the database. Servers execute transactions ac-
cording to strict two-phase locking (2PL)[8]. Transactions are sequences of read
and write operations followed by a commit or an abort operation. A transac-
tion is called read-only if it does not contain any write operation; otherwise it
is called an update transaction. Transactions within the same client session are
submitted sequentially. The workload submitted to the database is composed of
a set of predefined, parameterized transactions T = {T1, T2, T3, ...}. Each such
transaction is identified by its type and parameters, provided by the application
program when the transaction is instantiated. From its type and parameters,
conflicts between transactions can be detected, even if conservatively, before the
transaction is executed. Transaction Ti conflicts with Tj if they have conflicting
operations. Two operations conflict if they are issued by different transactions,
access the same data item and at least one of the operations is a write.

3 Correctness Criteria for Replicated Databases

In order to discuss and uniformly define the correctness criteria considered
throughout this article, we recall some basic definitions introduced in [8].

A history H over a set of transactions T is a partial order with ordering
relation <H , where (a) H contains all the operations op of each transaction
Ti ∈ T ; (b) ∀Ti ∈ T and ∀opi ∈ Ti: if opi precedes opi

′ in Ti, then opi <H opi
′;

and (c) if Ti reads data item x from Tj , then wj [x] <H ri[x]. A history H is
serial if, for every two transactions Ti and Tj in H, either all operations of Ti

happen before all operations of Tj or vice versa. Two histories H,H ′ are view
equivalent (≡) if (a) they are over the same set of transactions; (b) for any Ti, Tj

and data item x: if wj [x] <H ri[x], then wj [x] <H′ ri[x]; and (c) for each x,
if wi[x] is the final write on x in H, then it is also the final write of x in H ′.
Transaction begin and commit events are defined from the clients perspective.

Typical correctness criterion for replicated systems is one-copy serializability.

Definition 1. History H is one-copy serializable iff there is some serial history
Hs such that H ≡ Hs.

1SR permits the situation where transaction Tj may not see the updates of
Ti even if Ti commits before Tj starts executing. Although some applications
can accept this for performance, in most cases transactions expect to read the
updates of specific preceded transactions. For example, the effect of an update
transaction should be seen by a successive read-only transaction issued by the
same client. In practice, transactions of the same client are executed within a
session. Thus, at least transactions issued in one session should see the effects of
each other.

In order to capture this additional requirement session consistency (SC) was
introduced [10].

Definition 2. History H is session consistent iff there is some serial history Hs

such that (a) H ≡ Hs (i.e., H is 1SR) and (b) for any two transactions Ti and
Tj that belong to the same session, if the commit of Ti precedes the submission
of Tj in real time, then Ti commits before Tj is started in Hs.

Even stronger properties must be defined if we require that all transactions
in the workload preserve the real-time order, i.e., any transaction reads updates
of previously committed transactions. Such real-time ordering of transactions is
captured by strong serializability (strong 1SR) introduced in [9].

Definition 3. History H is strongly serializable iff there is some serial history
Hs such that (a) H ≡ Hs and (b) for any two transactions Ti and Tj , if the
commit of Ti precedes the submission of Tj in real time, then Ti commits before
Tj is started in Hs.

Both session consistency and strong serializability strengthen the original
correctness criterion by restricting what transactions are allowed to read. Thus,
the notion of these stronger properties is valid regardless of how the original cor-
rectness criterion handles the execution of transactions. SC and strong 1SR are
not fundamentally related to 1SR and they could be applied to other correctness
criterion such as snapshot isolation (SI) [15].

4 The BaseCON Protocol

BaseCON is a conservative replication protocol which takes advantage of total-
order broadcast primitives to provide strong consistency and fault-tolerance.
False suspicions are tolerated and never lead to incorrect behavior. In this sec-
tion we first describe the behavior of the algorithm that guarantees 1SR in a
failure-free scenario and in case of failures; then we discuss two BaseCON vari-
ants, each of which ensures different consistency guarantees: SC and strong 1SR.
Correctness proofs of each variant of BaseCON can be found in [16].

4.1 One-Copy Serializability

BaseCON assumes a lightweight scheduler interposed between the clients and the
cluster of database servers. Such scheduler serves as a load-balancer for read-only
transactions and implements different consistency properties. The main challenge
is to guarantee that despite failures and false suspicions of the scheduler, required
consistency degree is still provided.

In a nutshell, BaseCON handles transactions as follows. Update transactions
are atomically broadcast to all replicas and the scheduler. Every database server
executes every update transaction. Although non-conflicting transactions can
be executed concurrently at a server, their commit order should be the same
at all replicas. As we show next, allowing inversions of transactions may violate
serializability. The response to the client is given by the scheduler once the first
reply is received from any of the replicas. Read-only transactions are sent to the
lightweight scheduler, which redirects them to the selected replica for execution.

Algorithm 1 presents the complete BaseCON when no failures or false sus-
picions occur. The algorithm is composed of five concurrent tasks and several
instances of executeTask. A new instance of executeTask is created for each up-
date or read-only transaction. Each line of the algorithm is executed atomically.
Access to all shared variables is mutually exclusive.

Clients. Transactions are issued by one or more concurrent clients. Update
transactions are atomically broadcast to all database replicas and the scheduler
(line 5); read-only transactions are just sent to the scheduler Dk(line 3).

Replicas. The algorithm uses two global variables shared among all the
tasks at each replica: a queue of update transactions to be executed, txnQ, and
an identifier of the scheduler, p. Upon delivery of an update transaction the
database server enqueues the transaction (line 33) and creates a new instance of
executeTask to process the transaction (line 34). Similarly, a new executeTask is
created once a read-only transaction is received (lines 35-36). Different instances
of executeTask can execute concurrently as long as the txnQ data structure is
thread-safe. If a transaction is read-only, it can be submitted to the database for
execution and committed straightaway (lines 39-40). If a transaction is an up-
date, the server checks whether there are any conflicts with previously received
but not yet completed transactions (stored in txnSet). If there are no conflicts,
the transaction is submitted to the database (line 43); if there are some conflicts,
the transaction has to wait until conflicting transactions commit (lines 42). To

Algorithm 1 The BaseCON Algorithm: 1SR

1: Client ck:
2: if T.isReadOnly
3: send(ReadOnly, T) to Dk

4: else
5: to broadcast(T)

6: Scheduler Dk:
7: ∀Sk ∈ S : Load[Sk]← 0
8: p← 0
9: upon receive(ReadOnly, T) {T1}
10: if p = Dk

11: Smin
k ← min(Load[Sk], Sk ∈ S)

12: Load[Smin
k]← Load[Smin

k]+
T.weight

13: T.repId← Smin
k

14: send(ReadOnly, T) to Smin
k

15: else
16: send(ReadOnly, T) to p

17: upon to deliver(T) {T2}
18: if p = Dk

19: ∀Sk ∈ S : Load[Sk]← Load[Sk]+
T.weight

20: upon receive(Result, T) {T3}
21: if p = Dk

22: Load[T.repId]←
Load[T.repId]− T.weight

23: if T.repId is the first replica to
execute T

24: send(Result, T.result) to ck

25: Replica Sk:
26: txnQ← ε
27: p← 0
28: function conflict(T , T ′)
29: return T.rs ∩ T ′.ws 6= ∅
30: upon to deliver(T) {T4}
31: T.repId← Sk

32: prTxn← txnQ
33: enqueue(txnQ, T)
34: fork task executeTask(T, prTxn)

35: upon receive(ReadOnly, T) {T5}
36: fork task executeTask(T, ∅)
37: task executeTask(T, txnSet)
38: if T.isReadOnly
39: submit(T)
40: T.result← commit(T)
41: else
42: wait until 6 ∃T ′ ∈ txnSet :

conflict(T, T ′) ∧ T ′ ∈ txnQ
43: submit(T)
44: wait until T = head(txnQ)
45: T.result← commit(T)
46: dequeue(txnQ, T)
47: send(Result, T) to p

ensure that all replicas converge to the same database state, conflicting update
transactions must commit in the order they were delivered. However, if non-
conflicting update transactions can commit in different orders at the replicas
and read-only transactions are allowed to execute at any database server, se-
rializability guarantees may be violated. Consider four transactions: T1:w1[x],
T2:w2[y], T3:r3[x], r3[y] and T4:r4[y], r4[x]. Since T1 and T2 do not conflict they
can execute and commit at database servers in different orders. Let’s assume
that T1 commits at S1 and T2 commits at S2 first. Transaction T3 is scheduled
for execution at S1 and T4 at S2; then S1 commits T2 and S2 commits T1. As a
consequence, transaction T3 sees the updates of T1, but not those of T2, while T4

sees the updates performed by T2 but not by T1, and thus, violates serializabil-
ity. To avoid situations like this, we require all update transactions to commit
in their delivery order. Therefore, a commit is sent to the database server only
after the update transaction has reached the head of txnQ, i.e., all previously
delivered update transactions have completed already (lines 44-45). As soon as
the transaction commits, the result is communicated to the scheduler (line 47).

Scheduler. We consider a primary-backup model to tolerate scheduler fail-
ures. There is only one scheduler at a time serving transactions, the primary.

If the primary scheduler fails or is suspected to have failed, a backup scheduler
takes over. Since our scheduler is lightweight, any replica can play the role of a
backup scheduler.
To ensure 1SR the scheduler can forward read-only transaction to any replica,
however, in order to balance the load we send the transaction to the least-loaded
replica. Any load balancing strategy can be applied. The scheduler maintains
current load information about each database server in Load[]. Once a read-
only transaction is received by the primary scheduler, it is redirected to the
replica with the lowest aggregated weight (lines 9-14). Upon delivery of an update
transaction at the primary scheduler the load over all servers is increased by the
weight of the transaction (line 19). The result of the transaction is communicated
to the client as soon as the corresponding response for the read-only transaction
is received; or the first response of the update transaction is received from any
server (lines 23-24). Load information is updated with every reply from the
database servers (line 22).

Dealing with failures. If a replica suspects the scheduler has failed (see
Algorithm 2), a special NewScheduler message is atomically broadcast (lines
8-9). Upon delivery of this message, a new primary scheduler is selected from the
backups (lines 11). If the scheduler was suspected incorrectly, it will also deliver
the NewScheduler message and will update its state to a backup scheduler,
thus, will stop serving read-only transactions (line 3). If a read-only transaction
is received, it is immediately forwarded to the primary scheduler. A failover
scheduler does not have any load information on the database servers. Therefore,
replicas respond to the new scheduler with their load estimates required to handle
read-only transactions (lines 12-13). Rarely, but it may happen that transaction
results are lost during scheduler failover. Hence client application should be ready
to resubmit transactions and ensure exactly-once semantics.

Algorithm 2 The BaseCON Algorithm: Scheduler failover

1: Scheduler Dk:
2: upon to deliver(NewScheduler)
3: p← (p+ 1) mod |D|
4: upon receive(State, load, Sk)
5: if p = Dk

6: Load[Sk]← load

7: Replica Sk:
8: upon scheduler suspected
9: to broadcast(NewScheduler)
10: upon to deliver(NewScheduler)
11: p← (p+ 1) mod |D|
12: load←

∑
T∈txnQ

T.weight

13: send(State, load, Sk) to p

Since we do not make any assumptions on how long it takes for messages
to be transmitted and failure detectors can make mistakes, it is possible that
for a certain time period two schedulers may be able to process transactions
simultaneously. Such scenario is depicted in Fig. 1. Client c1 submits an up-
date transaction T1 which is atomically broadcast to all members of the system.
Database server s1 executes transaction T1 and forwards the result to the sched-

uler p1. Since it is the first reply for this transaction, the result is communicated
to the client. Shortly after that, database server s2 suspects the primary sched-
uler p1 to have failed and broadcasts a NewScheduler message. Upon delivery
of this message both database servers send their load information to the newly
selected primary scheduler p2. Database server s2 executes transaction T1 and
since it has already delivered NewScheduler message, the result of T1 is for-
warded to the scheduler p2. The old scheduler was suspected incorrectly: it is
still fully functional, but since it hasn’t yet delivered a scheduler change message
it is unaware of the presence of the new scheduler. Consequently, it is unaware of
transaction’s T1 commitment at replica s2. If client c2 submits read-only trans-
action T2 to the old scheduler p1, the transaction will be scheduled based on
erroneous load information at the replicas. However, to ensure 1SR read-only
transactions can execute at any replica, thus even if a scheduler makes decisions
based on incomplete information, the consistency is still guaranteed, and only
load-balancing may be affected. We further discuss the implications of failures
on consistency in the context of SC and strong 1SR.

abcast(T
1
)

abcast(NewScheduler)

T
2

response(T
1
)

c
1

c
2

s
1

s
2

p
1

p
2 T

1

T
1

state

Fig. 1. Dealing with failures and false suspicions

We use atomic broadcast primitives just to simplify the replacement of a
suspected scheduler. It is not required to ensure consistency. Since update trans-
actions are also totally ordered, if a scheduler change occurs, all consequent
update transaction will be processed by the new scheduler, i.e., all replicas will
directly contact the new scheduler with results of processed transactions. If a
scheduler change was not totally ordered with respect to update transactions,
different schedulers would be contacted by different replicas after processing the
same update transactions, and thus, more communication messages might be
wasted for the client to receive the result of its transaction.

4.2 Session Consistency

To achieve session consistency the scheduler must forward read-only transactions
to the replica which has committed previous update transactions of the same
client.

We have modified BaseCON so that session consistency is ensured. The up-
dated part of the algorithm is presented in Algorithm 3. In addition to the load
information the scheduler also stores the identifier of the last update transaction
committed per server in Committed[] (line 6). The identifier of an update trans-
action corresponds to its delivery and consequently commit order. Since some
replicas might have fallen behind with the application of update transactions,
for read-only transactions the scheduler first determines the set of replicas I
where previous transactions of the same client have been completed. From this
set the scheduler then selects the least-loaded replica as the replica to execute
the read-only transaction (lines 13-17).

Algorithm 3 The BaseCON Algorithm: SC

1: Client ck:
2: if T.isReadOnly
3: send(ReadOnly, T , id, rep) to Dk

4: Scheduler Dk:
5: p← 0
6: ∀Sk ∈ S : Load[Sk]← 0,

Committed[Sk]← 0
7: upon receive(ReadOnly, T ,id, rep)
8: if p = Dk

9: ∀Sk ∈ S :
10: if id ≤ Committed[Sk]
11: I ← I ∪ Sk

12: if I 6= ∅
13: Smin

k ← min(Load[Sk], Sk ∈ I)
14: Load[Smin

k]← Load[Smin
k]+
T.weight

15: I ← ∅
16: T.repId← Smin

k

17: send(ReadOnly, T) to Smin
k

18: else
19: send(ReadOnly, T) to rep
20: else
21: send(ReadOnly, T) to p

22: upon receive(Result, T)
23: if p = Dk

24: Load[T.repId]←
Load[T.repId]− T.weight

25: if ¬T.isReadOnly
26: Committed[T.repId]← T.id
27: if T.repId is the first replica to

execute T
28: send(Result, T.result, T.id,

T.repId) to ck

To guarantee session consistency in case of false suspicions, when submit-
ting a read-only transaction T the client also sends information about its last
committed update transaction T ′: the identifier id of T ′ and the replica rep
which executed T ′ first (line 3). On receiving T the scheduler checks whether it
has information about T ′’s commitment (line 10). If so, it is safe to schedule T
based on data available at the scheduler; if not, the result of T ′ was given to
the client by a newly introduced primary scheduler. Thus, the scheduler has no
other choice than sending T where T ′ has executed (line 19) – no load-balancing
is performed in this case.

4.3 Strong serializability

To implement strong serializability the scheduler must ensure that read-only
transactions see all updates performed by previously committed transactions.
Let’s see how that can be guaranteed in a failure-free environment. The client

sends its read-only transaction to the scheduler. Upon reception of the trans-
action the scheduler first determines the set of replicas where preceding update
transactions of any client have already been executed and committed. Then the
scheduler chooses the least-loaded server from that set and forwards the trans-
action for execution. Unfortunately, that is not enough for consistency if failures
and false suspicions are tolerated: due to mistakes made by failure detectors two
schedulers may simultaneously schedule read-only transactions. Therefore, to
avoid inconsistent scheduler decisions, read-only transactions need to be atomi-
cally broadcast to all replicas as well. The scheduler still serves as a load-balancer:
read-only transactions are executed at a single database server.

The algorithm presented in Algorithm 4 works as in the case without failures:
read-only transactions are sent to the scheduler (line 4) and “optimistically”
dispatched to the selected replica for execution (lines 10-15). In addition to this,
the client also atomically broadcasts its read-only transaction (line 2). Further,
in order to optimize the response time of read-only transactions in the absence
of failures, we overlap the scheduling and the actual execution of the transaction
with the time it takes for a replica to deliver it. Assuming that it takes less time
to transmit a simple TCP message than an atomic broadcast message, when
the chosen replica delivers the transaction, its execution has started already. A
transaction can commit only if it passes the validation test at the time of the
delivery. The validation test checks whether the transaction was executed and
delivered during the operation of the same scheduler (line 31). If there were
scheduler changes, the transaction is re-executed (lines 32-33), otherwise the
transaction commits and its result is forwarded to the client (line 41).

4.4 Conflict detection

Conflicts between predefined transactions can be detected automatically before
their actual execution by partially parsing SQL statements. It is relatively easy
to determine tables accessed by the transaction, but table level granularity in-
evitably introduces spurious conflicts. Obviously, record level granularity is pre-
ferred, but more difficult to achieve. To avoid being too conservative, we use
table level granularity only if there is not enough information to identify records
accessed by the transaction.

A SELECT query in SQL retrieves a set of tuples from one or more tables.
It can consist of up to six clauses, but only two, SELECT and FROM, are
mandatory. Omitting the WHERE clause indicates that all tuples of the table
are read. If the WHERE keyword is present it is followed by a logical expression,
also known as a predicate, which identifies the tuples to be retrieved. If the
predicate is an equality comparison on a unique indexed attribute, the exact rows
scanned by the database can be estimated. Unique index of the table can be also
composed of several attributes. In both cases the database locks only the records
identified by such an index and thus, the accessed records can be identified easily
by their unique indices. However, there are many situations when the database
scans the whole table to retrieve a set of particular records. The WHERE clause
might contain other comparison operators (<, >,<=, >=), complex expressions

Algorithm 4 The BaseCON Algorithm: strong 1SR

1: Client ck:
2: to broadcast(T)
3: if T.isReadOnly
4: send(ReadOnly, T) to Dk

5: Scheduler Dk:
6: p← 0
7: ∀Sk ∈ S : Load[Sk]← 0,

Committed[Sk]← 0
8: upon receive(ReadOnly, T)
9: if p = Dk

10: I ← max(Committed[Sk], Sk ∈ S)
11: Smin

k ← min(Load[Sk], Sk ∈ I)
12: Load[Smin

k]← Load[Smin
k]+

T.weight
13: T.repId← Smin

k

14: T.scheduler ← p
15: send(ReadOnly, T) to Smin

k

16: else
17: send(ReadOnly, T) to p

18: Replica Sk:
19: txnQ← ε
20: p← 0

21: upon to deliver(T)
22: T.repId← Sk

23: prTxn← txnQ
24: enqueue(txnQ, T)
25: if¬T.isReadOnly
26: fork task executeTask(T, prTxn)

27: task executeTask(T, txnSet)
28: if T.isReadOnly
29: submit(T)
30: wait until T ∈ txnQ :
31: if T.scheduler 6= p
32: rollback(T)
33: submit(T)
34: T.result← commit(T)
35: else
36: wait until 6 ∃T ′ ∈ txnSet :

conflict(T, T ′) ∧ T ′ ∈ txnQ
37: submit(T)
38: wait until T = head(txnQ)
39: T.result← commit(T)
40: dequeue(txnQ, T)
41: send(Result, T) to p

that consist of extended functions (LIKE, BETWEEN, NOT NULL) or another
(nested) query. The records physically read by the database processing such
queries are DBMS implementation dependent. Since we aim at middleware-based
replication, table level granularity is used in all the situations above and the cases
not covered.

There are three SQL statements for data modification: INSERT, UPDATE
and DELETE. INSERT sets an exclusive lock on the inserted tuples, thus the
exact rows can be estimated by their primary keys.1 The tuples accessed by both,
DELETE and INSERT statements, similarly to SELECT, can be retrieved at
the record-level only if the WHERE clause contains an equality comparison on
unique identifiers. Otherwise, table-level granularity is considered.

5 Evaluation

In this section we evaluate experimentally the performance of BaseCON under
different correctness criteria and compare it with primary-backup and optimistic
update-everywhere replication solutions.

1 We assume MySQL InnoDB engine here. Other DBMSs may handle INSERT and
DELETE statements differently (e.g., using table locks).

5.1 Experimental environment

System specification. All experiments were run in a cluster of servers, each
equipped with 2 Dual-Core AMD Opteron 2GHz processors, 4GB RAM, and an
80GB HDD. The system runs Linux Ubuntu 2.6 and Java 1.5. We used MySQL
5.0 with InnoDB storage engine as the database server.
TPC-C Benchmark. TPC-C is an industry standard benchmark for online
transaction processing (OLTP) [17]. It represents a generic wholesale supplier
workload. TPC-C defines 5 transaction types, each of which accounts for different
computational resources: New Order, Payment, Delivery, Order Status and Stock
Level. Order Status and Stock Level are read-only transactions; the others are
update transactions.

In all experiments we used a TPC-C database, populated with data for 8
warehouses, resulting in a database of approximately 800MB in MySQL, that
fits in main memory of the server. The experiments were conducted on a system
with 4 replicas under various load conditions. Clients submit transactions as soon
as the response of the previously issued transaction is received (i.e., we do not use
TPC-C think times). Since providing stronger correctness criterion has greater
impact on read-only transactions, we have increased the percentage of read-
only transactions in the TPC-C workload mix. In particular, we present results
of two workloads: TPC-C 20, which contains only 20% of update transactions;
and TPC-C 50, which represents TPC-C workload with balanced mix of update
and read-only transactions. We measure throughput in terms of the number of
transactions committed per second (tps). The response time reported represents
the mean response time of committed transactions in milliseconds (msec). Both
throughput and response time are reported separately for update and read-only
transactions.

5.2 Replication protocols

Besides BaseCON, we also study the effects of different correctness criteria on
primary-backup and optimistic update-everywhere replication solutions.

Primary-backup replication. Primary-backup replication requires all trans-
actions to be submitted to the same dedicated server, the primary replica. The
requests are executed at the primary and only the updates are sent to the back-
ups. The communication between the primary and the backups has to guarantee
that updates are processed in the same order at all replicas.

As an example we have chosen the Pronto primary-backup replication pro-
tocol [13]. In a nutshell the protocol works as follows. Clients submit update
transactions to the primary replica. Once the request is executed and ready
to commit, the primary broadcasts update SQL statements to all backups. To
ensure consistency despite multiple primaries resulting from incorrect failure
suspicions, a total-order broadcast is used to propogate updates. Upon delivery
of updates each server executes a deterministic validation test. The validation
test ensures that only one primary can successfully execute a transaction. If the

replica decides to commit the transaction, the update statements are applied to
the database. The response is given to the client as soon as any replica commits
the transaction. Read-only transactions are submitted and executed at random
replica.

The original Pronto protocol guarantees 1SR. The easiest way to provide ses-
sion consistency in Pronto is to require clients to submit their read-only transac-
tions to the replica which was the first to commit the previous transaction of the
same client. To guarantee strong serializability the protocol needs to ensure that
the effects of committed transactions are visible to all following transactions.
To provide this in Pronto, read-only transactions are atomically broadcast to all
replicas. However, there is no need to require all replicas to execute the query:
one randomly chosen replica executes the transaction and replies to the client.

Update everywhere replication. The main difference between primary-backup
and update everywhere replication is that in the update everywhere approach
any replica can execute any transaction. The key concept is that all replicas re-
ceive and process the same sequence of requests in the same order. Consistency
is guaranteed if replicas behave deterministically, that is, when provided with
the same input each replica will produce the same output.

For the discussion we have chosen the Database State Machine replication
(DBSM) [12]. The protocol works as follows. Each transaction is executed locally
on some server and during the execution there is no interaction between replicas.
Read-only transactions are committed immediately locally. When an update
transaction is ready to be committed, its updates, readsets, and writesets are
atomically broadcast to all replicas. All servers receive the same sequence of
requests in the same order and certify them deterministically. The certification
procedure ensures that committing transactions do not conflict with concurrent
already committed transactions. Once passed the certification the updates are
applied to the replica. The response to the client is given by the replica that
executed the transaction locally.

Session consistency can be trivially attained enforcing that the client always
selects the same replica for executing its transactions. As in primary-backup
replication strong serializability is ensured if read-only transactions are atomi-
cally broadcast to all replicas. The delivery of such a transaction is ignored by
all but one replica: the read-only transaction is executed at a selected database
server.

5.3 Performance results

BaseCON. Figures 2 and 3 show the achieved throughput and response time of
read-only and update transactions for TPC-C 20 and TPC-C 50, respectively.

There is no significant performance difference among distinct variants of
BaseCON: neither throughput nor response time suffers from stronger correct-
ness requirements. BaseCON scheduler assigns read-only transactions to replicas
so that there is no waiting involved: there is always at least one replica where

0 5 10 15 20 25 30 35 40
15

20

25

30
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
s

);
 U

p
d

a
te

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

500

1000

1500

4 replicas:BaseCON

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
);

 U
p

d
a
te

Load(number of concurrent clients)

1SR SC strong 1SR

(a) (b)

0 5 10 15 20 25 30 35 40
50

60

70

80

90

100
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
s

);
R

e
a

d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300
4 replicas:BaseCON

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 R

e
a

d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

(c) (d)

Fig. 2. BaseCON, TPC-C 20: Throughput and response time

read-only transaction can execute. Thus, the scheduler does not introduce any
notable overhead to assign read-only transaction to a specific replica instead of
randomly chosen. Response time of update and read-only transactions (Figs. 2(b)
and (d)) is the same independently of the correctness criterion considered. This
holds for all load conditions and different workloads considered (see also Fig. 3).

Since BaseCON implements conservative transactions execution there are
no aborted transactions. On the other hand, due to conservative concurrency
control response time of update transactions grows with increasing load, and
thus throughput is not improved. Read-only transactions are significantly simpler
and do not require additional synchronization, thus the growth in response time
is lower. Differently from update transactions, which are fully executed at all
replicas, read-only transactions execute only on a selected replica.

Primary-backup replication. Figure 4 depicts the attained throughput
and response time of Pronto running TPC-C 20. The throughput of update
transactions is limited by a single primary replica handling most of the up-
date transactions load (backup replicas apply only updates). On the contrary,
read-only transactions are distributed over all replicas and consequently higher
transactions load results in higher throughput for both 1SR and strong 1SR.
However, the performance of Pronto implementing SC is considerably worse. To
guarantee SC read-only transactions must execute on a replica which was the
first to commit previous transaction of the same client. Since upon delivery of
updates the primary replica just performs the certification test and can commit

0 5 10 15 20 25 30 35 40
15

20

25

30
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
s

);
 U

p
d

a
te

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

500

1000

1500

4 replicas:BaseCON

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
);

 U
p

d
a
te

Load(number of concurrent clients)

1SR SC strong 1SR

(a) (b)

0 5 10 15 20 25 30 35 40
15

20

25

30
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
s
);

R
e
a
d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300
4 replicas:BaseCON

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 R

e
a

d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

(c) (d)

Fig. 3. BaseCON, TPC-C 50: Throughput and response time

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30
4 replicas:Pronto

T
h

ro
u

g
h

p
u

t
(t

p
s
);

 U
p

d
a
te

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

500

1000

1500
4 replicas:Pronto

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 U

p
d

a
te

Load(number of concurrent clients)

1SR SC strong 1SR

(a) (b)

0 5 10 15 20 25 30 35 40
50

60

70

80

90

100
4 replicas:Pronto

T
h

ro
u

g
h

p
u

t
(t

p
s

);
 R

e
a

d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300
4 replicas:Pronto

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 R

e
a

d
!

o
n

ly

Load(number of concurrent clients)

1SR SC strong 1SR

(c) (d)

Fig. 4. Pronto, TPC-C 20: Throughput and response time

0 5 10 15 20 25 30 35 40
0

5

10

15

Load (number of concurrent clients)

A
b

o
rt

 r
a

te
 (

%
)

4 replicas: Pronto

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

5

10

15

Load (number of concurrent clients)

A
b

o
rt

 r
a

te
 (

%
)

4 replicas: Update everywhere

1SR SC strong 1SR

(a) Pronto (b) Update everywhere

Fig. 5. TPC-C 20: Abort rates

the transaction, while backups still need to apply the received SQL statements,
the primary replica is the fastest one to respond. As a result, both read-only
and update transactions execute locally at the primary replica overloading it.
To guarantee strong 1SR Pronto totally orders read-only transactions with re-
spect to all other transactions but executes them only on selected replicas. In this
way the load of read-only transactions is distributed over the replicas. Further-
more, such transactions execute in isolation, as opposite to SC, where read-only
transactions execute concurrently with all the load submitted to the primary
replica. Further, differently from BaseCON, Pronto aborts some transactions
due to local timeouts and deadlocks (Fig. 5(a)).

Update everywhre replication. Figure 6 depicts performance graphs of
DBSM running TPC-C 20. As in the case of BaseCON, implementing different
correctness criteria with DBSM does not introduce any notable overhead and
thus has no significant influence on system’s performance. Even though the re-
sponse time of committed transactions is lower when compared to BaseCON,
the improvement is achieved at the price of high abort rate (see Fig. 5(b)). With
increasing number of concurrent clients more update transactions will execute in
parallel without synchronization and consequently more will be aborted by the
certification test to ensure strong consistency. Thus the throughput of update
transactions degrades leaving more room for executing read-only transactions.

6 Related Work and Final Remarks

In this paper we are interested in the correctness criteria used in middleware-
based database replication systems. The majority of the protocols proposed in
the literature ensure either 1SR (e.g., [5, 7, 12]) or SI (e.g., [3, 18]). However,
some applications may require stronger guarantees. In [10] the authors address
the problem of transactions inversions in lazily replicated systems that ensure
1SR by introducing strong session serializability. Strong session serializability
prevents transactions reordering within a client’s session. Causality expected by
the clients is studied in [19] as well. Differently from us, [19] considers only

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30
4 replicas:Update everywhere

T
h

ro
u

g
h

p
u

t
(t

p
s
);

 U
p

d
a
te

Load (number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

500

1000

1500

4 replicas:Update everywhere

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 U

p
d

a
te

Load (number of concurrent clients)

1SR SC strong 1SR

(a) (b)

0 5 10 15 20 25 30 35 40
50

60

70

80

90

100
4 replicas:Update everywhere

T
h

ro
u

g
h

p
u

t
(t

p
s
);

 R
e
a
d
!

o
n

ly

Load (number of concurrent clients)

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300
4 replicas:Update everywhere

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 R

e
a

d
!

o
n

ly

Load (number of concurrent clients)

1SR SC strong 1SR

(c) (d)

Fig. 6. Update everywhere, TPC-C 20: Throughput and response time

DBSM, and presents two ways (optimistic and conservative) to ensure expected
causality. The results reported confirm the results we have attained.

Besides uniform characterization of consistency degrees, we also show how
each of them can be achieved in the context of BaseCON and two other replica-
tion solutions. BaseCON was originally inspired by conflict-aware scheduling, a
replication technique by Amza et al. [20]. The authors use transaction scheduling
to design a lazy replication scheme. To avoid aborting conflicting transactions
the scheduler is augmented with a sequence numbering scheme and conflict-
awareness to provide strong consistency. Differently from BaseCON, failures in
[20] are handled in an ad hoc manner. Moreover, the correctness of the protocol
relies on stronger assumptions than ours.

We show experimentally that stronger consistency does not necessarily im-
ply worse performance in the context of middleware-based replication. On the
contrary, two of the three protocols evaluated are able to provide different con-
sistency guarantees without penalizing system’s performance. Even though the
implementation of strong serializability requires ordering read-only transactions
in all protocols studied, the overhead introduced by total order primitives is in-
significant in middleware-based replication. Moreover, implementation of session
consistency in primary-backup protocol exhibits worse performance than strong
serializability.

References

1. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: Flexible database clustering
middleware. In: Proceedings of ATEC, Freenix track. (June 2004) 9–18

2. Correia, A., Sousa, A., Soares, L., J.Pereira, Moura, F., Oliveira, R.: Group-based
replication of on-line transaction processing servers. In: LADC. (October 2005)
245–260

3. Lin, Y., Kemme, B., Patiño-Mart́ınez, M., Jiménez-Peris, R.: Middleware based
data replication providing snapshot isolation. In: Proceedings of ACM SIGMOD.
(June 2005) 419–430

4. Muñoz-Escóı, F.D., Pla-Civera, J., Ruiz-Fuertes, M.I., Irún-Briz, L., Decker, H.,
Armendáriz-Iñigo, J.E., de Mend́ıvil, J.R.G.: Managing transaction conflicts in
middleware-based database replication architectures. In: Proceedings of IEEE
SRDS. (October 2006)

5. Patiño-Mart́ınez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Consistent
Database Replication at the Middleware Level. ACM TOCS 23(4) (2005)

6. Plattner, C., Alonso, G.: Ganymed: scalable replication for transactional web
applications. In: Proceedings of Middleware. (October 2004) 155–174

7. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData
fault-tolerant replicated distributed object database. In: Proceedings of EurAsia-
ICT. (October 2002) 426–433

8. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

9. Breitbart, Y., Garcia-Molina, H., Silberschatz, A.: Overview of multidatabase
transaction management. The VLDB Journal 1(2) (1992)

10. Daudjee, K., Salem, K.: Lazy database replication with ordering guarantees. In:
Proceedings of IEEE ICDE. (March 2004) 424–435

11. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. ACM SIGMOD Record 25(2) (June 1996) 1173–182

12. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Journal of Distributed and Parallel Databases and Technology 14 (2003) 71–98

13. Pedone, F., Frolund, S.: Pronto: A fast failover protocol for off-the-shelf commercial
databases. In: Proceedings of IEEE SRDS. (October 2000) 176–185

14. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

15. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: Proceedings of ACM SIGMOD. (June 1995) 1–10

16. Zuikevičiūtė, V., Pedone, F.: Correctness Criteria for Database Replication: The-
oretical and Practical Aspects. Technical Report 2008/03, University of Lugano
(August 2008)

17. Transaction Proccesing Performance Council (TPC): TPC benchmark C. Standard
Specification (2005)

18. Elnikety, S., Zwaenepoel, W., Pedone, F.: Database replication using generalized
snapshot isolation. In: Proceedings of IEEE SRDS. (October 2005) 73–84

19. Oliveira, R., Pereira, J., Correia, A., Archibald, E.: Revisiting 1-copy equivalence
in clustered databases. In: Proceedings of ACM SAC. (April 2006) 728–732

20. Amza, C., Cox, A., Zwaenepoel, W.: Conflict-Aware Scheduling for Dynamic Con-
tent Applications. In: Proceedings of USITS. (March 2003)

