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Abstract

In this paper, we propose a resource-aware solution to
achieving reliable and scalable stream diffusion in a prob-
abilistic model, i.e., where communication links and pro-
cesses are subject to message losses and crashes, respec-
tively. Our solution is resource-aware in the sense that
it limits the memory consumption, by strictly scoping the
knowledge each process has about the system, and the
bandwidth available to each process, by assigning a fixed
quota of messages to each process. We describe our ap-
proach as gambling in the sense that it consists in accept-
ing to give up on a few processes sometimes, in the hope
to better serve all processes most of the time. That is, our
solution deliberately takes the risk not to reach some pro-
cesses in some executions, in order to reach every process in
most executions. The underlying stream diffusion algorithm
is based on a tree-construction technique that dynamically
distributes the load of forwarding stream packets among
processes, based on their respective available bandwidths.
Simulations show that this approach pays off when com-
pared to traditional gossiping, when the latter faces identi-
cal bandwidth constraints.

Keywords: large-scale systems, reliable streaming, re-
source awareness.
1 Introduction

Reliable stream diffusion under constrained environment
conditions is a fundamental problem in large-scale dis-
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tributed computing. Many internet systems (e.g., peer-to-
peer, collaborative applications) rely on streaming multi-
cast; consequently, their performace depends on the perfor-
mance of the underlying streaming mechanism. Environ-
ment conditions are constrained by the reliability and the
capacity (usually limited) of its components. Nodes and
communication links can fail, unexpectedly ceasing their
operation and dropping messages, respectively. Moreover,
real-world deployment does not offer nodes and links in-
finite memory nor infinite bandwidth. Therefore, realistic
solutions should use local storage and inter-node communi-
cation sparingly, and account for node crashes and message
losses.

In this paper, we investigate the problem of reliable
stream diffusion in unreliable and constrained environments
from a novel angle. Our approach is probabilistic: with high
probability, all consumers will be reached and deliver all in-
formation addressed to them; however, there is no guarantee
that this will happen. Differently from previous probabilis-
tic algorithms found in the literature, we resort to a “gam-
bling approach,” which deliberately penalizes a few con-
sumers in rare cases, in order to benefit most consumers in
common cases. We show experimentally that the approach
pays off in that it outperforms traditional gossip-based al-
gorithms when subject to similar environment constraints.

The key idea of our solution is to diffuse streams ac-
cording to a global propagation graph. This graph approx-
imates a global tree aiming at the maximum reachability
and efficient use of the available bandwidth. The approach
is completely decentralized: nodes build propagation trees,
which we call Maximum Probability Trees (MPTs), au-
tonomously. Several MPTs are dynamically composed to
achieve a global graph reaching most (hopefully all) con-
sumer nodes. This solution is scalable and based on a com-
position of local optimums, i.e., each MPT ensures the max-



imum probability of reaching all processes in its subgraph
when subject to bandwidth constraints. MPTs are com-
posed in a manner that respects bandwidth constraints.

MPT construction is fully parameterized. Nodes are free
to define the scope of their local knowledge, from direct
neighborhood to the entire network. The scope of each
process can be defined according to its local memory con-
straints.

Besides discussing a new reliable stream diffusion algo-
rithm, we show that it can be implemented in a very modular
way, lending itself to real deployment. Briefly, our solution
consists in decomposing the problem of reliable stream dif-
fusion into four sub-problems. This decomposition of con-
cerns gives rise to an architecture composed of four lay-
ers: The top layer, Scalable Streaming Algorithm (SSA),
is responsible for breaking the outgoing stream into a se-
quence of messages on the producer side and assembling
these messages back into an incoming stream on the con-
sumer side. Stream routing is encapsulated in an inner
layer, the Packet Routing Algorithm (PRA); messages are
forwarded according to the global propagation graph, cov-
ering the whole system. Propagation trees are built out of
MPTs using the Propagation Tree Algorithm (PTA) layer,
which in turn relies on the partial view delivered by the
Environment Modeling (EML) layer. This latter layer al-
lows nodes to probe their neighborhood, determine their lo-
cal membership, and assess the reliability of their neighbors
and the links connecting them. Local knowledge is approx-
imated using Bayesian inference.

Summing up, this paper makes the following contribu-
tions: (1) it introduces a novel algorithm for reliable mes-
sage diffusion, which outperforms current solutions under
constrained circumstances; (2) it shows how it can be en-
gineered into a real system using a modular approach; and
(3) it evaluates its performance and compares it to tradi-
tional gossip-based algorithms.

Roadmap. The remainder of this paper is organized as
follows. In Section 2 we introduce the system model and
define the problem that motivates this work. Section 3
describes our reliable streaming solution based on a tree-
construction technique. Section 4 describes a performance
evaluation of our approach, including an analysis of the
costs and benefits of gambling. We discuss related work in
Section 5. Finally, in Section 6 we summarize our findings
and conclude with some final remarks.

2 Scalable Resource-Aware Streaming

Stream diffusion is a typical 3-step scenario: (1) the
producer breaks the outgoing stream into elemental mes-
sages (stream packets) and multicasts them to interested
consumers, (2) intermediate nodes route these messages to

the consumers, and (3) each consumer recomposes the re-
ceived messages into a coherent incoming stream. This is
depicted in Figure 1. In a resource-constrained environ-
ment, the main challenge then consists in routing stream
messages in a way that efficiently uses available resources.
As already mentioned, memory and bandwidth are the re-
sources that we consider in this paper.
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Figure 1. Stream diffusion scenario

2.1 Basic system model

We consider an asynchronous distributed system com-
posed of processes (nodes) that communicate by message
passing. Our model is probabilistic in the sense that
processes can crash and links can lose messages with a
certain probability. More formally, we model the sys-
tem’s topology as a connected graph G = (II, A), where
I = {p1,p2,...,pn} is a set of n processes and A =
{l1,12,...} € II x II is a set of bidirectional communi-
cation links. That is, we have V(G) = II and E(G) =
A. Finally, process crash probabilities and message loss
probabilities are modeled as failure configuration C' =
(P17 Pg, vy Pn7 Ll, Lg, vy L|A‘), where Pi is the probabil—
ity that process p; crashes during one computation step and
L; as the probability that link /; loses a message during one
communication step.

2.2 Problem statement

Intuitively, the main question addressed in this paper is
the following: how can we make stream messages reach
all consumers with a high probability, in spite of unreliable
processes and links, and the limited bandwidth and memory
available to each process?

Formally, the limited bandwidth constraint is modeled
as Q = (¢1, 42, ---, qn), the set of quotas associated to pro-
cesses in the system, i.e., g; is the individual quota of mes-
sages at disposal of process p; to forward a single stream



packet. By extending the basic system model presented ear-
lier, we then can say that the tuple S = (IL, A, C, Q) com-
pletely defines the system considered in this paper. In order
to take into account the limited memory constraint, we fur-
ther assume that each process has only a partial view of the
system, meaning that its routing decisions can only be based
on incomplete knowledge. Formally, the limited knowledge
of process p; is modeled with distance d;, which defines
the maximum number of links in the shortest path separat-
ing p; from any other node in its known subgraph. That
is, distance d; implicitly defines the partial knowledge of p;
as scope s; = (II;, A, Ci, Q;), with II; C II, A, C A,
C; C C,and Q; C Q. In the remainder of this paper, any
graph comprised of processes and links should be under-
stood as also including the corresponding configuration and
quota information.

Based on the above definitions, we can now restate the
problem we address in this paper more succinctly: given
its limited scope s;, how should process p; use its quota q;
in order to contribute to reach all consumers with a high
probability?

3 A Gambling Approach

In the absence of any constraints on resources, making
stream messages reach all processes with a high probability
is quite easy, typically via some generous gossiping (or even
flooding) algorithm. In a large-scale resource-constrained
system, however, such a solution is not realistic.

3.1 Diffusion trees as starting point

The starting point of our approach can be found in [8],
where we proposed an algorithm to efficiently diffuse mes-
sages in a probabilistically unreliable environment. Intu-
itively, the solution consists in building a spanning tree that
contains the most reliable paths connecting all processes,
using a modified version of Prim’s algorithm [1]. The al-
gorithm is also somehow resource-aware in that it tries to
minimize the number of messages necessary to reach all
processes with a given probability.

This algorithm, however, does not limit the bandwidth:
when asking the algorithm to diffuse a message with a high
probability in a very unreliable environment, the number of
messages tends to explode. Furthermore, this solution does
not limit memory consumption either: in order to achieve
optimality, it requires a complete knowledge of the system
topology and of the failure probabilities associated to links
and processes. Informally, the approach presented hereafter
consists in building a diffusion graph that exhibits proper-
ties similar to that of [8], while taking into account strict
constraints on bandwidth and on memory. As presented in

Section 2, these contraints are modeled via ¢; and s;, re-
spectively the limited quota and the limited scope available
at each process p;.

From resource constraints to gambling. As soon as we
face resource constraints, we have to make difficult deci-
sions. In the context of this paper, this observation trans-
lates into deciding how high the risk we are willing to take
is in order to increase our chances to reach all consumers.
More specifically, the question we ask ourselves is the fol-
lowing: does it pay off to take the risk to sacrifice a few
consumer processes in some executions, in order to reach
every process in most executions? As we shall see in Sec-
tion 4, when comparing the performance of our solution to
that of a typical gossiping approach, the answer is yes.

Intuitively, our approach consists in having processes
make bold decisions, in spite of their limited view on the
system (scope), in the hope to better use the available band-
width (quota). That is, along the paths from the producer
to the consumers, a process p; may decide to build a lo-
cal propagation tree based on its limited scope s; in order
to maximize the probability to reach everybody in s;.! In
building its local propagation tree, p; also decides how pro-
cesses in s; should use their quotas. Since these decisions
can be made concurrently, process p; has no guarantee that
processes in s; will actually follow its decisions. As we
shall see in Section 4, this approach can lead to some (fairly
rare) executions in which some processes are never reached.
Experiments show however that the benefits of taking such
a risk pays off in most executions.

3.2 Solution overview

Our solution is based on the four-layer architecture pic-
tured in Figures 3 and 4. The top layer represents a stan-
dard stream fragmentation layer. It executes the Scalable
Streaming Algorithm (SSA), which is responsible for break-
ing the outgoing stream into a sequence of messages on the
producer side, and for assembling these messages back into
an incoming stream on the consumer side. The SSA layer
then relies on the Packet Routing Algorithm (PRA), which
is responsible for routing stream messages through a prop-
agation graph covering the whole system. This propaga-
tion graph results from the spontaneous aggregation of var-
ious propagation trees concurrently computed by some in-
termediate routing processes defined as responsible for this
task. As suggested by Figures 2, 3 and 4, producers and
consumers execute both the SSA and PRA layers, while
pure routing processes only execute the PRA layer. The
responsibility for building propagation trees is delegated to
the Propagation Tree Algorithm (PTA), which in turn relies

IThe actual criteria that determines whether p; will make such a deci-
sion or not is explained later.



on the partial view delivered by the Environment Model-
ing Layer (EML). The latter relies on Bayesian inference
to approximate the environment within distance d; of each
process p;. Explaining how the environment modeling ac-
tually works goes beyond the scope of this paper and can
be found in [8]. Finally, the Unreliable Link Layer (ULL)
allows each process p; to send messages to its direct neigh-
bors in a probabilistically unreliable manner.

Packet Routing Algorithm (PRA) |
* incrementPT()
| Propagation Tree Algorithm (PTA) |

receive(m;)

* getScope()
Environment Modeling Layer (EML) |

send(m;) * *

Unreliable Link Layer (ULL)

Figure 2. Router node architecture

3.3 Scalable Streaming Algorithm

The scalable streaming solution, presented in Algo-
rithm 1, is fairly straightforward. On the producer side, as
long as data is available from the outgoing stream (line 6),
the algorithm reads that data, builds up a message contain-
ing it and multicasts the message using the multicast()
primitive of the PRA layer (lines 7 to 10). On the consumer
side, upon receiving a message from PRA (line 11), the al-
gorithm writes the data contained in that message to the in-
coming stream, provided that the message is not out of se-
quence (lines 12 to 14). Because of the probabilistic nature
of our environment, messages can indeed be received out
of sequence, in which case they are simply dropped. This
is the standard way to handle lost or out-of-sequence pack-
ets when streaming realtime data, such as audio or video
streams.

3.4 Packet Routing Algorithm

The packet routing solution, presented in Algorithm 2,
consists in disseminating stream messages through a prop-
agation graph generated in a fully decentralized manner.
This propagation graph actually results from the sponta-
neous aggregation of several propagation trees. Each prop-
agation tree is in turn the result of an incremental building
process carried out along the paths from the producer to the
consumers. It is important to note however that the propa-
gation graph itself might well not be a tree.

1: uses: PRA

2: initialization:
3:  nextSeq— 1
4:  lastSeq «— 0

5: To multicast some outgoingStream to a set of consumers:
6:  while not outgoingStream.cof() do

7: m.data < outgoingStream.read()

8: m.seq «— nextSeq

9: nextSeq «— nextSeq + 1

0 PRA.multicast(m, consumers)

11: upon PRA.deliver(m) do

12:  if m.seq > lastSeq then

13: incomingStream.write(m.data)
14: lastSeq < m.seq

Algorithm 1. Scalable Streaming Algorithm
(SSA) executed by p;

—_

. uses: PTA, ULL, EML

2: initialization:

30 re— ..

4: procedure multicast(m)

5.  pt — PTA.incrementPT( ({p:},0,{P:},{ai}))
6: m «— optimize(pt)

7. propagate(m, pt,p;,m)

8: upon ULL.receive(m, pg, pt,m) do
9: if EML.distance(pg, pi) = r then

10: pt «— PTA. incrementPT (pt)
11: m «— optimize(pt)

12: propagate(m, pt, p;, m)

13:  else

14: propagate(m, pt, py, m)

15:  if p; is interested in m then
16: SSA.deliver(m)

17: procedure propagate(m, pt, pg, m)

18:  for all p; such that link (p;,p;) € E(pt) do
19: repeat 17[7] times :

20: ULL.send(m, py, pt, i) to p;

Algorithm 2. Packet Routing Algorithm (PRA)
executed by p;

On the producer. The routing process starts with pro-
ducer p; calling the multicast() primitive (line 4). As a
first step, p; asks the PTA layer to build a first propagation
tree pt, using the incrementPT () primitive (line 5). This
primitive is responsible for incrementing the propagation
tree passed as argument, using the scope of the process exe-
cuting it (here p;). Since p; is the producer, the initial prop-
agation tree passed as argument is simply composed of p;
and its associated information (failure probability P; and
quota g;). As discussed in Section 3.5, the returned propa-
gation tree pt maximizes the probability to reach everybody
in scope s;, based on available quotas. Process p; then calls
the optimize() primitive, passing it pt (line 6). This prim-
itive is discussed in details in Section 3.6. At this point, all



we need to know is that it returns a propagation vector 1m
indicating, for each link in pt, the number of messages that
should be sent through that link in order to maximize the
probability to reach everybody in scope s;. Finally, p; calls
the propagate() primitive (line 7), which simply follows
the forwarding instructions computed by optimize(). That
is, it sends stream message m, together with some addi-
tional information, to the p;’s children in pt. As we shall
see below, this additional information is used throughout
the routing process to build up the propagation graph.

m3
m
my

outgoing stream l

| Scalable Streaming Algorithm (SSA) |

multicast(m;)
| Packet Routing Algorithm (PRA) |

incrementPT()

Propagation Tree Algorithm (PTA)

* getScope()

Environment Modeling Layer (EML)

‘ ' send(m;) *
l Unreliable Link Layer (ULL) I

Figure 3. Producer node architecture

On the consumer. When a consumer p; receives mes-
sage m, together with the aforementioned informa-
tion (line 8), it has first to decide whether to increment pt
before further propagating m (lines 10 to 12), or to simply
follow the propagation tree pt it just received (line 14). The
propagation tree pt should be incremented if and only if the
distance that separates p; from py, the process that last in-
cremented pt, is equal to r < dy, the increment rate. In
such a case, p; is said to be an incrementing node.

Intuitively, r defines how often a propagation tree should
be incremented as it travels through the propagation graph.
The latter then spontaneously results from the concurrent
and uncoordinated increments of propagation trees finding
their ways to the consumers. Finally, process p; delivers
message m to the SSA layer only if it is interested in it
(lines 15 and 16). If this is not the case, process p; is merely
a router node.

3.5 Propagation Tree Algorithm

The solution to increment propagation trees is encapsu-
lated in the increment PT() primitive, presented in Algo-
rithm 3. This primitive takes a propagation tree pt as argu-
ment and increments it if needed, i.e., if something changed
in the environment of p; or if pt is different from the prop-

Tincoming stream

m3

|Scalable Streaming Algorithm (SSA) |

deliver(m;)
| Packet Routing Algorithm (PRA) |

receive( mi)‘ ‘

incrementPT()

| Propagation Tree Algorithm (PTA) |

* getScope()
‘ ' send(m;)
| Unreliable Link Layer (ULL) |

Figure 4. Consumer node architecture

agation tree that was last incremented (line 8).> To get an
up-to-date view of its surrounding environment, p; calls the
getScope() primitive provided by EML (line 7).

To build local tree Ipt;, process p; first builds a Maximum
Probability Tree (MPT), using the mpt() primitive (line 11).
Details about the notion of maximum probability tree, and
primitive mpt(), are provided in Section 3.6. For now, all
we need to know is that an MPT maximizes the probability
to reach every process within a given scope, by taking into
account not only the intrinsic reliability of processes and
links in scope s;, but also the individual quotas available to
processes in s;. Note that primitive mpt() increments pt as
a whole (see discussion below), whereas Algorithm 3 is in
fact only interested in the subtree rooted at p; (line 12). This
subtree is precisely the local tree ipt;.

1: uses: EML
2: initialization:
3: pt; — 0
4:  pt; — 0

5 s;i+— 0

6: function incrementPT (pt)
7: s« EML.getScope()
8 if pt; # pt V s; # S then

9: pt; «— pt

10: Si «— S

11: myMpt — mpt(s;, pt;)

12: Ipt; < subtree of myM pt with p; as root

13:  return pt U Ipt;

Algorithm 3. Propagation Tree Algorithm
(PTA) executed by p;

The gambling effect. Intuitively, the approach taken by
the mpt() primitive consists in augmenting p¢ with the best

2The conditional nature of this increment is motivated by performance
concerns: during stable periods of the system, propagation trees remain
unchanged, cutting down the processing load of incrementing nodes.



branches in scope s;, even if some of these branches are
not downstream from p;. These latter branches are said
to be concurrent branches. This approach somehow con-
sists in taking the risk to exclude some consumers from the
propagation graph by accident. Process p; has indeed no
way to inform processes located along concurrent branches
about its incremental decisions, and has no guarantee that
incremental decisions will be taken coherently with respect
to each other. In order to mitigate this risk, Algorithm 3
merges the local tree with the original propagation tree
passed as argument (line 13), rather than directly returning
the maximum reliability tree.

Execution example. Figure 5 illustrates the propagation
tree increment process on a simple example. In this sce-
nario, the distance defining the scope and the increment
rate r are the same for all processes and equal to 2. Pro-
cess p1, the producer, builds a first propagation tree pty
covering its scope s1; this tree is pictured in Figure 5 (a) us-
ing bold links. All nodes in pt; that are at a distance r = 2
from p; are incrementing nodes, which means they have to
increment pt; when they receive it. Process p3 being such
a node, it calls the mpt() function, passing it pt; and its
scope s3. This function adds the dashed links pictured in
Figure 5 (a) to pt; and returns the resulting Maximum Prob-
ability Tree (MPT); this MPT contains the local propagation
tree rooted at ps, i.e., [pts. The latter is then extracted from
the MPT, merged with the initial propagation tree pt; and
returned. Figure 5 (b) pictures the new propagation tree re-
sulting from the above increment process.

O incrementing nodes O consumers . producer

= propagation tree == links added by mpt()

Ipty

(b) returned propagation tree

Figure 5. Propagation tree increment

3.6 Maximum Probability Tree

The concept of Maximum Probability Tree (MPT) is at
the heart of our approach, as it materializes the risk taken
during the construction of the propagation graph. Intu-
itively, an MPT maximizes the probability to reach all pro-
cesses within a given scope by optimally using the quotas
of these processes. Before describing how the mpt() func-
tion given in Algorithm 4 builds up an MPT, we first need to
introduce the notions of reachability probability and reach-
ability function. These notions are borrowed from [8].

Reachability probability. The reachability function, de-
noted R(), computes the probability to reach all processes
in some propagation tree 7' with configuration C'(T'), given
a vector m defining the number of messages that should
transit through each link of 7". We then define the probabil-
ity returned by R() as T’s reachability probability. Equa-
tion 1 below proposes a simplified version of the reacha-
bility function borrowed from [8]. That is, this version as-
sumes that only links can fail by losing messages with a
given probability, whereas processes are assumed to be re-
liable.?

|77

R(T,m) = [[1- L7 with L; € C(T) (1)
Jj=1

Using R(), we then define the maxR() function pre-
sented in Algorithm 4 (lines 8 to 10), which returns the
maximum reachability probability for 7. To achieve this,
maz R() first calls the optimize() function in order to ob-
tain a vector 1 that optimally uses the quotas available to
processes in T'. It then passes this vector, together with 7', to
R() and returns the corresponding reachability probability.

The optimize() function iterates through each pro-
cess ps in T and divides individual quota g5 in a way
that maximizes the probability to reach direct children
of ps (line 14 to 18). For this, function optimize() allots
messages of g, one by one, until all messages have been
allocated (line 16 to 18). That is, in each iteration step it
chooses the outgoing link [, from pg that maximizes the
gain in probability to reach all p,’s children in 7', when
sending one more message through [,, (line 17). When all
individual quotas have been allocated, optimize() returns a
vector m that provides the maximum reachability probabil-
ity when associated with 7T'.

MPT building process. We now have all the elements
needed to present the MPT building process carried out by

3Note that this simplification causes no loss of generality; see [8] for
details.



1: function mpt(S,T')
2:  while V(S) — V(T) # 0 do
3: O — {ljx |l € E(S) AN pj € V(T) N pr €
V(S) - V(T)}
letl, ., € O suchthat Vi, , € O:
mazR(T Up,) > maxR(T U ps)
T —TU{pv}
return 7’

Nk

oo

: function mazR(T)
m «— optimize(T)
10:  return R(T,m)

o

11: function optimize(T)

12:  letm : Vl; € E(T), m[j] is the number of messages to
be sent through link /;

13:  m«(0,0,---,0)

14:  forallp, € V(T) do

15: let Ac CE(T): Iy € As = (ps,pr) € E(T)

16: while >, _, k] < ¢ do

17: let My 1 Ly € Ag A Vi My [t] = M[t] A Myfu] =

mu] +1 A R(T,m,) — R(T,m) is max
18: M — My
19:  return m

Algorithm 4. MPT Building Process

mpt(), given a scope S and an initial propagation tree 7.
This function simply iterates until all processes in S but
not in 7" have been linked to 7, i.e., it only stops when
T covers the whole scope S (line 2 to 6). In each iteration
step, the mpt() function then adds the link that produces
a new tree exhibiting the maximum reachability probabil-
ity (line 5).

Execution example. Figures 6 to 8 illustrate the MPT
building process on a simple example. In this example,
the initial tree 7" is composed of only process p; and S is
the scope of pi, i.e., S = s;. During the first iteration
step, the algorithm simply chooses the most reliable link,
i.e., link [; o with failure probability L; o = 0.2. At this
point, it means that the entirety of p;’s quota has been allo-
cated to reach p». In this example, the quota is identical for
all processes and equal to 3, i.e., Vp; : ¢; = 3.

Figure 6. Resulting tree after the first iteration
step

At the beginning of the second step, the algorithm faces
two alternatives: either adding link [, 3 and splitting the
quota of p; between links /; 2 and [; 3, or adding link I3 4
and using the entirety of g2, the quota of p,, to reach py.
These two alternatives are pictured in Figure 7 as trees T’
and T" respectively.

mazR(T') = (1 — L]'37) x (1 — LT'3®) = 0.512

mazR(T") = (1 - LY'3?) x (1= Ly §*) = 0.651

Figure 7. Alternative trees during the second
iteration step

Based on the result of function mazR(), the algorithm
chooses to keep T", since it is the tree that offers the max-
imum probability to reach everybody. Note however that
this decision implies adding link I 4 rather than link /; 3,
although the latter is more reliable. Figure 8 pictures the fi-
nal Maximum Probability Tree returned by function mpt ().

Figure 8. Final Maximum Probability Tree

4 Performance Evaluation and Discussion

The performance of our scalable algorithm was evalu-
ated through a simulation model. For simplicity, we only
considered link failures, while assuming that processes are
reliable, i.e, Vp; : P, = 0. As mentioned in Section 3.6,
this does not compromise the generality of our approach.
We performed experiments with 100 processes organized in
various topologies: we started from a ring where each pro-
cess had two neighbors and then incrementally augmented



the number of neighbors until reaching a connectivity of
20 neighbors per process. To facilitate the evaluation, we
set the scope to be the same for all processes during the
execution, i.e., Vp; : d; = d. To avoid regular network con-
figurations, we then defined 20% of processes to be hubs.
A hub has twice the quota of a normal process and is con-
nected to its neighbors through highly reliable links, i.e., we
set the message loss probability of these links to 10™4. Our
performance evaluation consists in measuring the success
rate of 1000 distinct executions. We consider an execution
as a success when the diffused stream packet reaches all
nodes in the system.

4.1 Benefits of gambling

To measure the benefit of our gambling approach, we
compare our Scalable Streaming Algorithm (SSA) with a
modified version of Bimodal Multicast Algorithm (BMA),
proposed in [4]. Our modified version of BMA implements
the notion of individual quota. That is, to propagate an
incoming message m, the algorithm repeats the following
two steps until exhausting its quota: (1) randomly choose a
neighbor among those that did not yet acknowledge m and
(2) send m to those neighbors. For the comparison, we then
set the quota to 5 and the failures probability of each link*
to a random value within [0.05,0.55]. As for specific pa-
rameters of SSA, we set the scope to 5 and the increment
rate to 2.

Figure 9 shows the evolution of the success rate of SSA
and BMA respectively, when varying the network connec-
tivity. As we can see, the success rate of BMA decreases
as the connectivity increases. This is due to the fact that
each process randomly uses its quota of messages, without
taking into account the reliability of links. Indeed, as the
connectivity increases, it becomes more and more impor-
tant to maximize the impact of each message on the overall
reachability probability.

For SSA on the contrary, the success rate tends to in-
crease with the network connectivity because SSA focuses
its efforts on less reliable paths. That is, as the connectivity
increases, SSA has a larger choice of links when computing
local Maximum Probability Trees (MPTs) and thus more
chances to build a global propagation graph with a favorable
reachability probability. More precisely, even if some pro-
cesses have a number of neighbors that exceeds their quota,
our approach still tries to maximize the overall reachability
probability by adapting the number of children of each pro-
cess to its quota. As shown in Figure 9, this has a significant
impact on the actual success rate. For a connectivity of 20
for example, which is 4 times higher than the quota used in
our experiments, the success rate is close to 100. In this fig-
ure however, we can also see a drop of the success rate for

4To be more precise: each link that is not attached to a hub.
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Figure 9. SSA vs. BMA with quotas

connectivities between 10 and 16. As discussed hereafter,
this drop constitues the costs of gambling.

4.2 Cost of gambling

To evaluate our gambling approach, we measured the
success rate by considering the two types of missed® exe-
cutions: the probabilistic misses and the gambling misses
(Figure 10). The probablistic misses are due to losing mes-
sages sent through unreliable links. These misses simply
come from the probabilistic model we consider. Gambling
misses are due to executions in which the effective propaga-
tion graph® does not cover the whole system.

In Figure 10 (a), we see that the connectivity varia-
tions have different impacts on probabilistic and gambling
misses. Considering probabilistic misses, we note that as
the connectivity increases, the probability of reaching all
nodes increases. Indeed, as the connectivity increases the
number of links increases and the algorithm has a larger
choice of links when computing M PT and thus more
chances to get an M PT' with a favorable reachability prob-
ability. For gambling misses, as the connectivity increases,
misses due to the structure of the effective propagation
graph become more frequent since there is a larger choice
of links, which induces a higher risk to make contradictory
decisions when building distinct propagation trees. How-
ever, when reaching high connectivity (12 in our example),
this type of misses becomes less frequent since the known
scope of each process becomes close to the whole system.’
Many cases of gambling misses are detectable and could

5 A miss is an execution where some nodes in the system never receive
the diffused packet.

6 An effective propagation graph results from the aggregation of effec-
tively followed propagation trees.

7When the known scope covers the whole system, the propagation
graph corresponds to the MPT built by the producer and covering the whole
system, in this case there is no gambling risk.
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(b) with countermeasures

Figure 10. Gambling cost on the success rate

be resolved via a simple countermeasure, which implies
to slightly exceed some individual quotas. Due to lack of
space, we do not describe the details of these countermea-
sures here. Figure 10 (b) however presents the results of
these countermeasures on the reachability probability en-
sured by SSA.

5 Related Work

Several application-level multicast systems based on a
tree have been proposed in the literature [5, 6,9, 11]. Some
of them define a multicast tree that aims at optimizing the
bandwidth use, notably Narada [6] and Overcast [9]. Oth-
ers, also deal with scalability by limiting the knowledge
each process has about the system [5, 11]. Yet, other sys-
tems aim at increasing robustness with respect to packet loss
[2, 3, 14]. Our approach differs from these systems in that
it targets the three goals simultaneously. Our propagation
structure is build collaboratively by distributed processes

using their respective partial views of system. Reliability is
accounted for by each process when building its local tree.
Finally, bandwidth constraints are considered when defin-
ing how to forward packets along the propagation graph.

Narada [6] builds an adaptive mesh that includes group
members with low degrees and with the shortest path de-
lay between any pair of members. A standard routing pro-
tocol then is run on the overlay mesh. This work differs
from ours by considering latency as the main cost related to
links. While using the probing to change links in order to
optimize the mesh, Narada does not take into account the
loss probability of added or retrieved links. Furthermore,
Narada nodes maintain a global knowledge about all group
participants. In comparison, we take process and link fail-
ure probabilities into account and maintain local informa-
tion only.

Regarding the forwarding load distribution, the work
closest related to ours is probably Overcast [9], which leads
to deep distribution trees. Such a tree would be our M PT in
reliable environments, that is, if links do not lose messages.

In [7] and [10] the authors show how to implement a
gossip-based reliable broadcast protocol in an environment
in which processes have a partial view of the system mem-
bership. Our protocols as well do not require processes to
know all the system members or the topology connecting
them. In addition to [7] and [10], our approach takes relia-
bility properties of processes and links into account in order
to ensure reliable broadcast.

Reducing the number of gossip messages exchanged be-
tween processes by taking the network topology into ac-
count is discussed in [12] and [13]. Processes communicate
according to a pre-determined graph with minimal connec-
tivity to attain a desired level of reliability. Similarly to our
approach, the idea is to define a directed spanning tree on
the processes. Differently from ours, process and link relia-
bilities are not taken into account to build such trees.

Finally, our strategy shares some design goals with
broadcast protocols such as [8]. Both rely on the defini-
tion of a criteria for selecting the multicasting graph. In
our strategy, however, we strive to both decrease packet loss
and balance the forwarding load. The notion of reachability
probability of a tree is presented in [8] to define the Maxi-
mum Reliability Tree (MRT). This tree defines the most re-
liable tree of a known subgraph through which a message
will be propagated. In our work, we define the reachabiliy
probability of the streaming differently, by considering lo-
cal knowledge only.

The approaches illustrate a tradeoff in stream diffusion
algorithms: while the protocol in [8] can lead to the opti-
mum propagation tree, it requires global topology knowl-
edge; our current algorithm relies on local knowledge but
may not result in the optimum information propagation
tree.



6 Conclusion

This paper introduces a probabilistic algorithm for re-
liable stream diffusion in unreliable and constrained envi-
ronments. Differently from more traditional approaches,
we resort to a “gambling approach,” which deliberately pe-
nalizes a few consumers in rare cases, in order to benefit
most consumers in common cases. Experimental evalua-
tion has shown that our protocol outperforms gossip-based
algorithms when subject to similar environment constraints.
We believe that this main open up new directions for future
work on large-scale data dissemination protocols. Our cur-
rent work is investigating alternative gambling algorithms.
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