
Brief Announcement: Multicoordinated Paxos∗

Lásaro Camargos†?

lasaro@unicamp.br

† Institute of Computing
State University of Campinas,

Brazil

Rodrigo Schmidt‡?

rodrigo.schmidt@epfl.ch

‡ School of Computer and
Communication Sciences

École Polytechnique Fédérale
de Lausanne, Switzerland

Fernando Pedone?

fernando.pedone@unisi.ch

? Faculty of Informatics
University of Lugano,

Switzerland

Categories and Subject Descriptors:

C.2.4 [Distributed Systems]: Distributed Applications

General Terms: Algorithms, Design.

Keywords: Atomic Broadcast, Consensus, Generalized, Multico-

ordinated, Paxos.

1. INTRODUCTION
In the consensus problem, processes must agree on a single value,

given a set of proposals. It is used, for example, to implement state-

machine replication [4], in which failure-independent processors

are replicated to implement a reliable service. In this approach, the

states of the replicas are consistently changed by applying deter-

ministic commands from a sequence, each one agreed upon using

a consensus instance.

Paxos [5] is an efficient and fault-tolerant consensus protocol

originally intended for state-machine replication. It relies on a

leader process to receive proposals from proposer processes (e.g.,

clients) and forward them to be agreed by the acceptors, which then

notify the learners (e.g., replicas).

Even though Paxos provides very good performance, getting com-

mands delivered by replicas in three communication steps, normal

execution depends on the availability of the current leader. If the

leader fails (or seems to have failed) a new leader must be elected,

and this new leader has to synchronize with a quorum of acceptors

before resuming normal execution. These actions take time and

may introduce some temporary unavailability to the system. While

this unavailability may not be significant when running a single

instance of Paxos, it may cause a considerable slowdown on real

systems, which use infinitely many instances of them [1].

Multicoordinated Paxos is an improved version of Paxos in which

the failure of the leader does not slow down the protocol and the

acceptance of new proposals. Our improvements neither increase

Paxos latency nor require more acceptors to be contacted. In Mul-

ticoordinated Paxos, proposals are sent not to the leader, but to a

set of coordinator processes, which act like the leader, and forward

proposals to the acceptors. Acceptors, however, will only acknowl-

edge values that have been sent by a quorum of coordinators.

Fast Paxos [7] is another improved variant of Paxos. In good

runs of Fast Paxos, proposers send their proposals directly to the

acceptors, reducing the minimum time to get a command learned

to two communication steps. Since the leader can be bypassed, its

unavailability is much less disruptive to the system, as in Multi-

∗This work is supported by the NCCR-MICS grant 5005-67322.

Copyright is held by the author/owner(s).

PODC’07, August 12–15, 2007, Portland, Oregon, USA.
ACM 978-1-59593-616-5/07/0008.

coordinated Paxos. Nonetheless, this advantage comes at a price:

acceptor quorums must be bigger than those in the original or in the

Multicoordinated Paxos algorithm.

Fast Paxos can run either in the classic mode of the original

Paxos protocol, or in the fast mode, switching between the modes to

cope with dynamic changes in the system. Multicoordinated Paxos

has a third mode, multicoordinated, more resilient to failures.

In the fast execution mode, since acceptors receive proposals di-

rectly from proposers, they may accept different commands for the

same instance of consensus. In the worst scenario, no quorum of

acceptors will accept the same command and learners will not be

able to learn anything based on the received notifications. A simi-

lar situation can happen with our approach if coordinators forward

different commands for the same instance of consensus, since ac-

ceptors will not be able to accept any value. This problem, called a

collision, has many possible solutions, but all incur extra commu-

nication steps and, in the fast execution mode, extra disk writes.

In real applications, though, not all commands must be applied

in the same order to all replicas. This notion of commutable com-

mands can be used to alleviate the problem of collisions since com-

mutable commands can be forwarded or accepted out of order. The

Generalized Consensus [6] problem is a generalization of consen-

sus that can take the application semantics into account, like the

notion of commutable commands. In this problem, learners can

augment their learned data structures and, thus, a single instance

is enough to implement state-machine replication. In the full pa-

per [2], we extend Generalized Paxos, a Generalized Consensus

protocol similar to Fast Paxos, with multicoordinated execution;

we also give rigorous correctness proofs of the resulting protocol.

Moreover, in the full paper, we also thoroughly review the hier-

archy of algorithms ours depend upon (Paxos, Fast Paxos, and Gen-

eralized Paxos), and discuss practical issues like liveness, collision

recovery, and how our protocols remove one disk write from runs

with collisions. Summing up, our protocols either tolerate more

acceptor and coordinator failures or write less frequently on stable

storage than Fast and Classic Paxos, and similar protocolos.

2. MULTICOORDINATED PAXOS
Although the practical benefits of our approach are more evident

when multiple commands are proposed and delivered, as in state

machine replication, they are better understood starting from an

isolated consensus instance. Hence, in the following, we present

the multicoordinated version of the Fast Paxos consensus protocol.

Consensus. The safety requirements of the consensus problem

can be described in terms of agreement among a set of learner pro-

cesses, on values proposed by a set of proposer processes [8]. The

liveness requirement is defined in terms of the set of acceptor pro-

cesses. We call a quorum any finite set of acceptors that is large



enough to ensure liveness. The properties are the following:

Nontriviality: Any value learned must have been proposed.

Stability: A learner learns at most one value. (Usually omitted.)

Consistency: Two different learners cannot learn different values.

Liveness: For any proposer p and learner l, if p, l, and a quorum

Q of acceptors are nonfaulty and p proposes a value, then l even-

tually learns some value.

We assume a crash-recovery asynchronous model in which pro-

cesses communicate by exchanging messages that can be lost or

duplicated, but not corrupted. Below we state the extra assump-

tions needed to circumvent the FLP result [3] and satisfy Liveness.

Fast and Classic Rounds. Like Fast Paxos [7], our protocol

executes in rounds and assumes an unbounded number of them,

totally ordered by a relation <. For simplicity, we assume here that

the set of round numbers equals the set of natural numbers. The

execution of rounds need not be ordered, and actions in different

rounds may even interleave.

Each round i has its own set of quorums of acceptors, called i-
quorums. In each round i, an acceptor can “accept” at most one

value, and we say that a value has been chosen if accepted by an

i-quorum in some round i; a chosen value is ready to be learned.

To orchestrate round executions, we assume a set of coordinator

processes, organized in quorums per round. We refer to a quorum

of coordinators for round i as an i-coordquorum, and say that c is a

coordinator of i if c belongs to some i-coordquorum. Rounds can

be classic or fast. In classic rounds, proposers send their proposals

to the coordinators, so they can pick one and forward to the accep-

tors. Acceptors can only accept a value that has been forwarded by

an i-coordquorum. Due to the following requirement, acceptors are

guaranteed not to accept different values in the same classic round.

Coord-quorum Assumption For any classic round i, if L and P
are i-coordquorums, then L ∩ P 6= ∅.
In fast rounds, acceptors may accept values coming directly from

proposers, if they are told by the coordinators of the round to do so.

As different values could then be accepted in the same round, the

assumption below is needed for the algorithm to ensure liveness.

Fast Quorum Assumption For any rounds i and j:

• if Q is an i-quorum and S is a j-quorum, then Q ∩ S 6= ∅.
• if Q is an i-quorum, R and S are j-quorums, and j is fast, then

Q ∩ R ∩ S 6= ∅.
A round is divided into two phases, each one involving a num-

ber of actions. Briefly, during the first phase of round i, coordina-

tors query an i-quorum about their latest accepted values and make

them change their rounds to i, preventing acceptors from accepting

values in any round j < i. Based on the values received during

the first phase and given that acceptors will not accept values on

lower-numbered rounds, coordinators are able to identify the value

that has been or might be chosen at smaller rounds and can pick it.

Coordinators then start the second phase of i by sending such value

to the acceptors, which will accept it unless they have moved to a

higher-numbered round. If the coordinators found no value to pick,

they send any proposed value to acceptors, or have the proposers

send their proposals directly.

The algorithm. We now present the complete algorithm as atomic

actions executed by proposers, coordinators, acceptors, and learn-

ers. A TLA+ specification of this algorithm is given in the full

paper [2]. The actions are the following:

Propose(p, v) Executed by proposer p to propose value v. In the

action, p sends a 〈“propose”, v〉 message to all coordinators

and acceptors.

Phase1a(c, i) Executed by any coordinator c of round i to start

round i. In the action, c sends a message 〈“1a”, i〉 to each accep-

tor a asking a to take part in round i.

Phase1b(a, i) Executed by acceptor a upon reception of a mes-

sage 〈“1a”, i〉, if i is greater than any other round a has ever

heard of.1 In this case, a sends a message 〈“1b”, i, vval , vrnd〉
to all the coordinators of round i, where vrnd is the highest-

numbered round in which a has accepted a value (or an invalid

round number if no value has been accepted by a) and vval is

the value it accepted in vrnd . The pre-condition of this action

makes sure that after it is executed for round i, acceptor a will

not execute it for a round j such that j < i. As we show in action

Phase2b, this action also prevents a from accepting a value for

a round j lower than i. This is a guarantee to the coordinators of

i that the pair vval and vrnd will remain consistent as the infor-

mation about the latest value accepted by a for a round number

lower than i.

Phase2a(c, i) Executed by any coordinator c of round i upon re-

ception of 〈“1b”, i, vval , vrnd〉 from any i-quorum Q. In this

action, c sends a 〈“2a”, i, val〉 message to the acceptors, where

val is the value to be accepted by the acceptors. The value is

picked based on the “1b” messages c received: (i) If none of

the “1b” messages has a valid round number, then no value has

been chosen in any round j < i, and c can pick any proposed

value. Otherwise, let k be the greatest round number vrnd re-

ceived amongst the “1b” messages. (ii) If there exists a value

v such that, for some k-quorum R, a message 〈“1b”, k, v〉 was

received from every acceptor in R ∩ Q, then c picks v. If such

a value does not exist, (iii) c can pick any proposed value. If

any value can be picked and i is a fast round, then c can pick the

special value Any, that tell acceptors to accept proposals directly

from proposers.

Phase2b(a, i) Executed by acceptor a, for round i. This action

is enabled if a has not heard of a round greater than i and has

received a message 〈“2a”, i, val〉 coming from all coordinators

in some i-coordquorum with the same value val . If i is a fast

round and val = Any , then a can accept any value sent in a

“propose” message. If i is classic and, therefore, val 6= Any ,

then a accepts val . After accepting value v, a sends the message

〈“2b”, i, v〉 to all learners.

Learn(l) Executed by learner l when it receives a 〈“2b”, i, val〉
message from each acceptor in an i-quorum. The messages imply

that val has been chosen and l can learn it.

Briefly, liveness is ensured if a quorum of acceptors and at least

one coordinator is alive. More details can be found in [2].

3. REFERENCES
[1] M. Burrows. The chubby lock service for loosely-coupled distributed systems.

In Proc. of the OSDI’06, Nov. 2006.

[2] L. Camargos, R. Schmidt, and F. Pedone. Multicoordinated Paxos. Technical

report, EPFL, 2006.

[3] M. J. Fischer, N. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. JACM, 32(2):374–382, Apr. 1985.

[4] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, Jul. 1978.

[5] L. Lamport. The part-time parliament. ACM Transactions on Computer

Systems, 16(2):133–169, 1998.

[6] L. Lamport. Generalized consensus and paxos. Technical Report

MSR-TR-2005-33, MSR, 2004.

[7] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, October 2006.

[8] L. Lamport. Lower bounds for asynchronous consensus. Distributed

Computing, 19(2):104–125, 2006.

1We say that a has heard of j if actions Phase1b(a, j ) or
Phase2b(a, j ) have been executed.


