
A Pragmatic Protocol for Database Replication in
Interconnected Clusters

J. Grov
U. Oslo

L. Soares
U. Minho

A. Correia Jr.
U. Minho

J. Pereira
U. Minho

R. Oliveira
U. Minho

F. Pedone
U. Lugano

Abstract

Multi-master update everywhere database replication,
as achieved by protocols based on group communication
such as DBSM and Postgres-R, addresses both performance
and availability. By scaling it to wide area networks, one
could save costly bandwidth and avoid large round-trips to
a distant master server. Also, by ensuring that updates are
safely stored at a remote site within transaction boundaries,
disaster recovery is guaranteed. Unfortunately, scaling ex-
isting cluster based replication protocols is troublesome.

In this paper we present a database replication proto-
col based on group communication that targets intercon-
nected clusters. In contrast with previous proposals, it uses
a separate multicast group for each cluster and thus does
not impose any additional requirements on group commu-
nication, easing implementation and deployment in a real
setting. Nonetheless, the protocol ensures one-copy equiv-
alence while allowing all sites to execute update transac-
tions. Experimental evaluation using the workload of the
industry standard TPC-C benchmark confirms the advan-
tages of the approach.

1. Introduction
Database replication is an attractive concept both to in-

crease fault tolerance and to improve scalability by en-
abling several database sites to serve the same queries. The
main challenge of such systems is that coordinating up-
dates among the participating servers inevitably delays the
execution of update-transactions. A particularly promis-
ing approach is taken by replication protocols based on
group communication such as DBSM [12, 7] and Postgres-
R [10, 21]. By taking advantage of optimistic concur-
rency control allowed by transactional semantics and of
atomic multicast provided by group communication, it pro-
vides performance and scalability even in face of demand-
ing workloads such as the industry standard TPC-C bench-
mark [17].

Unfortunately, scaling existing cluster based replication
protocols to a wide area network is troublesome. Notably,
the latency of uniform atomic (or safe) delivery required to
ensure fault tolerance has a profound impact in optimistic

concurrency protocols leading to increased abort rate [6].
This wastes resources and endangers the ability to commit
long lived transactions in a busy server. Although optimistic
delivery can mitigate this limitation [16], using it requires
an in-depth rewrite of existing protocol implementations.
In fact, the only generally available group communication
toolkit supporting it is Appia [11, 14].

Furthermore, although research has been addressing
group communication in wide area networks for a long
time, industrial deployment is far more common in clusters.
Therefore one should expect wide area features to be far
less tested and optimized, if implemented at all. The over-
head of maintaining automatic management of membership
spanning multiple geographically apart sites is also not neg-
ligible. Finally, the practicality of group communication
over wide area networks is also compromised by network
configuration and security issues, such as firewalls, tunnels
and NAT gateways. In particular, using true multicast for
efficiency is often not an option.

In this paper we present WICE, a protocol targeted at
multiple clusters interconnected by a wide area network.
In contrast with lazy replication protocols, such as Ora-
cle Streams [20], WICE ensures that no globally committed
transaction (i.e. which has been acknowledged to clients) is
lost. On the other hand, by allowing all replicas to be fully
on-line and executing update transactions, it improves re-
source efficiency and performance when compared to vol-
ume replication [18], often the only choice for disaster re-
covery in mission critical applications.

In detail, the contributions of this paper are the follow-
ing: (i) introduces the protocol providing 1-copy equiva-
lence of the native database consistency criterion, even in
the presence of faults, while confining group communi-
cation within LANs and improving practicality, (ii) takes
advantage of directly implementing updates stabilization
across wide-area directly on TCP/IP to greatly reduce the
likelihood of a transaction being aborted during the certi-
fication phase, which is the single greatest obstacle to the
scalability of previous proposals [6], and (iii) provides an
experimental evaluation of the protocol applied to a multi-
version database when running the workload of the industry
standard TPC-C benchmark [19], thus verifying the previ-

ous claim.

2. System Model
We assume the page model for a database [2]: A collec-

tion of named data items which have a value. The combined
values of the data items at any given moment is the database
state. We do not make any assumptions on the granularity
of data items.

A database site is modeled as a sequential process. In de-
tail, the execution of each site is modeled as a sequence of
steps that may change the site’s state. Namely, the database
state is manipulated by executing READ(x) and WRITE(x)
steps, where x represents a database tuple. A transaction
is a sequence of read and write operations followed by a
COMMIT(t) or ABORT(t) operation. Each site contains a
complete copy of the database and is responsible for ensur-
ing local concurrency control.

We consider a finite set of database sites that communi-
cate through a fully connected network. Both computation
and communication are asynchronous. Sites may fail only
by crashing and do not recover, thus stopping to execute
database operations, or send or deliver further messages.

Database sites are organized in clusters. Within a cluster
we assume a primary component group membership service
that provides current and consistent views of the sites be-
lieved to be up [4]. This service is intended to allow, at any
moment, the deterministic identification of a distinguished
site as the cluster’s delegate as well as providing a view-
synchronous multicast primitive (Section 2.2). The avail-
ability of a primary component group membership service
implicitly assumes that consensus is solvable in our system
model [8]. The assumed failure patterns and failure detec-
tion capabilities of our model are thus indirectly determined
by the actual solution adopted for consensus.

Among clusters, we assume that the failure of an entire
cluster is reliably detected at the other sites. That is, if all
sites in a cluster fail then the fact is eventually noticed by
the other clusters’ delegates. Otherwise, the cluster is never
suspected to have failed.1 At each cluster, the set of clusters
believed to be up is given by a function remoteClusters().

2.1. Database Interface
The replication protocol presented in Section 3 uses a

replication interface with the database engine that is part
of the API being defined in the context of the GORDA
project [5]. The interface has been implemented in a num-
ber of DBMS, notably in PostgreSQL [9] and Derby [1].
The interested reader can find its detailed definition in [13].

1This assumption is equivalent to have a perfect failure detector among
the clusters [3]. In a wide area setting, its provision would require the use
of a specially dedicated communication infrastructure among the clusters
or rely on human intervention to declare the unavailability of all cluster
sites.

Basically, it allows the inspection of a transaction’s execu-
tion at three specific points: (1) at the beginning of the trans-
action’s execution, (2) at the end of the transaction’s execu-
tion, just before it starts committing updates or rolls back,
and (3) when the local database system has committed the
transaction and is ready to reply to the client. Furthermore,
the database engine provides an update function executed
with priority over any other running transactions that allows
to update the values of a given set of items.

More precisely, we assume that the replicated database
engine allows to register four callback functions as follows:
onExecuting(tid) invoked before a transaction is about to

enter the executing state, i.e., before it starts execution.
The transaction is identified by tid.

onCommitting(tid, rs, ws, wv) invoked when the transac-
tion tid succeeds and is about to enter the commit
phase. The database provides the set of tuples read (rs)
and written (ws) by the transaction, as well as the writ-
ten values (wv). At this point the transaction has all its
updates buffered and all write locks still acquired.

onAborting(tid) invoked when the transaction tid fails and
is about to abort.

onCommitted(tid) invoked after the transaction has com-
pleted making all updates persistent, released locks,
entered the committed state and is ready to reply to
the client.

When it invokes any of the above functions, the database
engine suspends the execution of the transaction until
the protocol replies by invoking the database functions
continueExecuting(tid), continueCommitting(tid), contin-
ueAborting(tid) and continueCommitted (tid), respectively.

Replica updates are submitted to the database using the
db update (tid, ws, wv) function which applies the values in
wv to the tuples in ws by means of a high priority trans-
action. A transaction submitted through db update only
triggers the onCommitted(tid) event. High priority means
that any regular (i.e., non high priority) transaction holding
locks on any item in ws will be aborted. Moreover, high pri-
ority transactions are serialized when requesting locks and
then executed concurrently.

2.2. Communication Primitives

Among sites within the same cluster, a group com-
munication toolkit is available providing reliable point-to-
point communication and FIFO uniform view-synchronous
multicast [4]. Uniform view-synchronous multicast is de-
fined through primitives u vscast and u vsdeliver. FIFO
uniform view-synchronous multicast is invoked through
primitive fifo u vscast. Point-to-point reliable communi-
cation is defined by two primitives r send and r deliver.
These primitives rely on the existence of a (primary compo-
nent) group membership service that tracks the membership
of the cluster. Among clusters, messages are exchanged

Figure 1: WICE: example of handling of transaction T

through a point-to-point FIFO reliable channel using prim-
itives fifo r send and fifo r deliver. A cluster is said to be
correct if it does not fail entirely.

3. The WICE Protocol
The WICE protocol adopts an optimistic concurrency

control policy. Transactions are executed optimistically at
any site and then, just before commit, certified against con-
current transactions. WICE borrows from protocols such
as Postgres-R [10] and DBSM [12] often called certification
based protocols. These protocols share two fundamental
characteristics: (1) each database site is assumed to store
the whole database and transactions can be executed at any
site, and (2) all update transactions are certified and, if valid,
committed in the same order at all sites.

WICE does not make use of a total order communica-
tion primitive, instead ordering is explicitly handled by the
protocol. In WICE, one of the sites plays the role of certi-
fier, it totally orders and certifies all transactions. Each valid
transaction is then broadcast together with its commit order
and updates. This allows to leverage the knowledge about
the system’s topology and to make optimizations that would
not be possible otherwise.

The WICE algorithm is exemplified in Figure 1. In a
nutshell, the handling of a transaction proceeds as follows.
Consider a system consisting of two clusters A and B. Each
cluster has a designated delegate responsible for handling
the communication with the other cluster. The delegate of
cluster A, site s2 is also responsible for certifying all exe-
cuted transactions. When an update transaction T is sub-
mitted to site s1 (T ′s initiator), it is readily executed and
sent to the certifier. If it succeeds, then the certifier prop-
agates T ’s updates and commit order, both locally and to
cluster’s B delegate. The latter, in turn, propagates T lo-
cally. Once a delegate is certain that all sites in its cluster
delivered T ’s data it acknowledges the fact to the other clus-
ter’s delegate. This acknowledgement is multicast locally
by each delegate. Once a database site knows T ’s data has
been delivered everywhere and all previous transactions had
been committed or aborted, then it commits T . The initiator
of T can then reply to its client.

Note that the algorithm discussed here only applies to
update transactions, as read-only transactions do not need
such a validation. Nevertheless we cannot allow any trans-
action to read and expose updates before the updating trans-
actions become stable, i.e., committed. For clarity, we omit
this from the protocol and assume it to be handled by the
local DBMS by blocking the commit of a read-only trans-
action until all updaters from which it has read from become
stable.

3.1. Algorithm

We now consider the protocol algorithm in detail (Fig-
ure 2). It is composed by a set of handlers that deal with
events triggered by the database engine (”Events at the ini-
tiator” and ”Transaction commit”) and with message deliv-
ery. We assume that every database site knows the current
system’s certifier through a function certifier(). The local
concurrency control strategy of a given site, which we admit
to be either snapshot isolation (SI) or strict two-phase lock-
ing (S2PL), is given by the function localCC(). Each cluster
delegate can find the other participating clusters through a
function remoteClusters() as well as identifying some dele-
gate’s cluster through function cluster(). Further, the func-
tion delegate() is used to determine whether the current site
is the delegate of its cluster or not.

Global site variables Each database site manages four
sets containing transactions known to be certified, locally
updated, locally commited and remotely stable. It keeps
track of the number of locally executed transactions in vari-
able lts. The certifier keeps track of the number of certified
transactions in variable gts.

Events at the initiator Before a transaction tid executes
its first operation, the onExecuting handler is invoked. The
version of the database seen by tid is required for the val-
idation procedure, and for sites running snapshot isolation,
this is equal to the number of committed transactions when
tid begins execution. For sites using two-phase locking, the
version must instead be recorded at the end of the execution,
i.e., in the onCommitting handler.

If the transaction at any time aborts locally, onAborting()
is invoked and the transaction is simply forgotten by the
protocol. On the contrary, if tid succeeds execution then
onCommitting() is invoked. If local consistency is S2PL,
the database version is recorded here. Then, tid’s read set,
write set and written values (rs, ws and wv) provided by
the database are reliably sent to the certifier along with the
version of the database on which the transaction executed.
The transaction’s execution is left suspended until it is cer-
tified and its outcome known. If tid ends up committing
then continueCommitting(tid) will be called, otherwise the
initiator receives a (ABORT, tid) message from the certifier
and forces the transaction to abort locally.

Certification Upon delivering an update transaction to
certify — (CERTIFY, tid, ts, rs, ws, wv) — from some
initiator site the certifier performs the certification of tid
against its concurrent transactions. For every certified trans-
action (but not necessarily committed yet) ctid with times-
tamp equal or greater than tid’s, a certification function is
called with ctid’s write set and tid’s read and write sets.
When preserving 1-SR the certification function checks
tid’s read and write sets against ctid’s write set. If 1-SI is
the adopted consistency criterion then only the write sets of
both transactions are compared. In both cases, if there is
a non empty intersection then the certification fails and an
abort message is sent back to tid’s initiator.

When tid’s passes the certification test then the certifier’s
sequence number is incremented and tid added to its set
of certified transactions. The transaction’s id, commit or-
der, write set and written values are then sent to all other
replicas. Locally, tid is sent using the FIFO uniform view-
synchronous multicast primitive as a (UPDATE LOC, tid,
gts, ws, wv) message. Remotely, it is sent using the FIFO
reliable point-to-point primitive to each remote cluster as a
(UPDATE REM, tid, gts, ws, wv) message.

Remote delivery of updates Once a cluster delegate de-
livers a transaction from the certifier it simply forwards the
message to the local replicas using the FIFO uniform view-
synchronous multicast primitive.

Local delivery of updates When a replica delivers a
transaction tid it signals the fact adding it to its set of up-
dated transactions. The use of a uniform primitive ensures
that once the transaction is delivered at the current replica
it is eventually delivered at all non faulty replicas in the
cluster. Therefore, if the replica is a cluster delegate it ac-
knowledges the fact that tid became stable at the cluster to
all clusters. The just delivered updates are applied. If the
replica is the tid’s initiator then it just needs to proceed with
continueCommitting(tid). Although tid does not hold high
priority locks at the initiator, the fact that it passed certifica-
tion means that between its execution and the given commit
order, no other certified transaction conflicted with it, and
consequently, tid will not be aborted by another transaction
requesting high-priority locks at tid’s initiator. For all other
sites, db update is invoked.

Delivery of remote acks Each time a delegate delivers
a stability acknowledgment for transaction tid from some
cluster, the pair (tid, cluster) is added to its acks set. When
tid has been acknowledged by all remote clusters, then the
delegate locally declares the transaction remotely stable us-
ing the (non- uniform) view-synchronous multicast primi-
tive — (STABLE REM, tid). When this message is deliv-
ered each replica adds tid to its remotestable set.

Transaction commit Here, each site handles the onCom-
mitted callback. When onCommitted (tid) is invoked the

site just increments its local database version lts and adds
tid to its committed set. Since all tid locks have been re-
leased then any new transaction can read from tid and there-
fore from a more recent version of the database. When tid
is known to be commited locally and stable everywhere the
database is then allowed to reply to the client, which hap-
pens after continueCommitted(tid).

3.2. Failure Handling

The WICE algorithm tolerates both the failure of single
database sites as well as the failure of whole clusters. In this
section we present and explain the recovery procedures in
both cases.

Locally, each cluster is governed by a group mem-
bership service and local communication rests on view-
synchronous multicast primitives. This definitely eases fail-
ure handling locally. In the event of a site been expelled
from the group (because it was taken down, has failed, be-
came unreachable, etc.) every other site in the group even-
tually becomes aware of the fact by installing a new view
of the group. This allows each site to deterministically
determine the cluster’s delegate should the former failed.
Moreover, view-synchrony ensures that all sites surviving
the previous view delivered the same set of messages, thus
not requiring any synchronization among them. As a result,
no particular procedure is required on the failure or an ordi-
nary site. In the next two sections we examine the failures
of a cluster’s delegate and of the system’s certifier. Then, we
consider the failure of an entire cluster. For the sake of sim-
plicity and lack of space, we assume that no sites are added
to a cluster and that once a site is expelled from the group,
whatever was the reason for this, it is no longer readmitted.

3.2.1 Delegate Failover

In Figure 3a, we sketch a protocol for recovering from a site
failure when this site was the cluster’s delegate. On a view
change, site d becomes aware it is the new cluster’s dele-
gate. To ensure that no transactions are blocked, d must re-
run all transaction updates and acknowledgements received
from remote clusters that may have been incompletely pro-
cessed by the previous delegate.

New delegate: Synchronization request When ini-
tialized, the new delegate d sends a message (DELE-
GATE SYNC, lts) to the certifier in order to ensure that
all transactions certified since lts are delivered in its local
cluster. The lts value corresponds to the latest transactions
updated in d’s cluster. The new delegate also contacts each
remote cluster with (ACK SYNC, lts, TRUE) acknowledg-
ing the local stability of all transactions up to lts, requesting
similar action from the recipients (argument TRUE of the
message).

Global site variables
local = ts = []1
certified = updated = ()2
commited = remotestable = acks = {}3
gts = lts = 04

Events at the initator
upon onExecuting(tid)5

if localCC() == SI then6
local[tid]=lts7

continueExecuting(tid)8
end9

upon onComitting(tid, rs, ws, wv, type)10
if localCC() == S2PL then11

local[tid]=lts12
rsend(CERTIFY, tid, local[tid], rs, ws, wv) to certifier()13

end14

upon onAborting(tid)15
continueAborting(tid)16

end17

upon rdeliver(ABORT, tid) from i18
db abort(tid)19

end20

(1) Certification
upon rdeliver(CERTIFY, tid, ts, rs, ws, wv) from initiator21

foreach (ctid, cts, cws, cwv) in certified do22
if cts ≥ ts and !certification(cws, rs, ws) then23

r send(ABORT, tid) to initiator24
return25

gts = gts + 126
enqueue (tid, gts, ws, wv) to certified27
fifo u vscast(UPDATE LOC, tid, gts, ws, wv)28
foreach cluster in remoteClusters() do29

fifo r send(UPDATE REM, tid, gts, ws, wv) to30
cluster

end31

(2) Remote delivery of updates
upon fifo r deliver(UPDATE REM, tid, ts, ws, wv) from certifier32

fifo u vscast(UPDATE LOC, tid, ts, ws, wv)33
end34

(3) Local delivery of updates
upon fifo u vsdeliver(UPDATE LOC, tid, ts, ws, wv)35

ts[tid] = ts36
enqueue (tid, ts, ws, wv) to updated37
if delegate() then38

foreach cluster in remoteClusters() do39
r send(ACK REM, tid) to cluster40

if local[tid] then41
continueCommitting(tid)42

else43
db update(tid, ws, wv)44

end45

(4 and 5) Delivery of remote acks
upon r deliver(ACK REM, tid) from cluster46

acked = {}47
add (tid, cluster) to acks48
foreach (tid, c) in acks do49

add c to acked50
if remoteClusters() ⊆ acked then51

u vscast(STABLE REM, tid)52
end53

upon vsdeliver(STABLE REM, tid)54
add (tid) to remotestable55

end56

Transaction commit
upon onCommitted(tid) and ts[tid] = lts + 157

lts = lts + 158
add tid to commited59

end60

upon (tid) in commited and (tid) in remotestable61
continueCommitted(tid)62

end63

Figure 2: WICE protocol

Certifier: Handle synchronization request When deliv-
ering this message, the certifier resends (in order) each cer-
tified transaction with a certification timestamp larger than
d’s lts value.

All delegates: Synchronize ACK’s When the message
(ACK SYNC, clts, reply) from a cluster is delivered in a
remote cluster C, the delegate of C regards all its updated
transactions with ts <= clts as acknowledged by cluster.
It then just checks whether these transactions became stable
in every cluster and proceeds accordingly. If reply was set
to TRUE a similar message (now with reply set to FALSE)
is sent back to the initializing delegate (just elected) so it
can also update the respective acknowledgements.

3.2.2 Certifier Failover

The most serious single server failure is when the current
system’s certifier becomes unavailable. When initialized,
the new certifier advertises itself to all delegates. There may
be previously certified transactions not yet known to new
certifier so a state synchronization is due. Figure 3b shows
our synchronization protocol in pseudocode. The code as-
sumes two existing functions, blockCertification() and un-
blockCertification(). Their implementation is not shown,
but they state whether all arriving certification requests
should be buffered, awaiting the synchronization protocol
to finish.

New certifier: Synchronization request The new certi-
fier c starts by invoking blockCertification() and requesting
from each cluster all the transactions they might have deliv-
ered and updated after the last one updated by c.

Each delegate: Send missing transactions When a
(CERTSYNC REQUEST, clts) is received by the delegate
of a cluster C, it replies with a list of its updated transactions

(tid, ts, ws, wv) such that ts > clts, that is, transactions not
yet seen by the new certifier.

Certifier: Missing updates When processing a (CERT-
SYNC REPLY, clts, missing) from remote cluster C, the
new certifier c then checks each member of the missing list
whether it has already received this transaction from another
cluster. This will happen if two or more remote clusters both
know about a transaction which is unknown to c. If not,
the transaction is enqueued in c’s certified queue. As soon
as all replies from remoteCluster() are delivered, c sets the
certifiers counter gts to lts and starts distributing from its
certified queue (1) locally transactions with ts > lts and
(2) remotely according to each cluster’s last updated trans-
action. The certifier’s gts counter is updated for each trans-
action distributed locally. Finished the update, certification
is unblocked.

3.2.3 Multiple Failures

The WICE protocol shall tolerate situations where multiple
servers or entire clusters can fail abruptly. Most failure sce-
narios can be handled using a combination of the procedure
for single servers. To avoid blocking during synchroniza-
tion, we assume that all running synchronization routines
are restarted if a delegate fails.

The only scenario which requires special treatment is the
loss of an entire cluster. In that case, the other clusters must
be informed as soon as possible to allow blocking current
and future transactions to become stable. A handler for this
event is illustrated in Figure 3c.

4. Evaluation
In replication protocols that rely on a system-wide uni-

form atomic broadcast, updates cannot be applied before

Figure 3a: Delegate failover
New delegate: Synchronization request

upon site is initialized as new delegate1
rsend(DELEGATE SYNC, lts) to certifier()2
foreach cluster in remoteClusters() do3

rsend(ACK SYNC, lts, TRUE) to cluster4
end5

Certifier: Handle synchronization request
upon rdeliver(DELEGATE SYNC, clts) from cluster6

foreach (ctid, cts, cws, cwv) in certified do7
if cts > clts then8

fifo rsend(UPDATE REM, ctid, cts, cws,9
cwv) to cluster

end10

All delegates: Synchronize ACK’s
upon rdeliver(ACK SYNC, clts, reply) from cluster11

foreach (utid, uts, uws, uwv) in updated do12
acked = {}13
if clts ≥ uts then14

add (utid, cluster) to acks15
foreach (utid, c) in acks do16

add c to acked17
if remoteClusters() ⊆ acked then18

u vscast(STABLE REM, utid)19
if reply == TRUE then20

rsend(ACK SYNC, lts, FALSE) to cluster21
end22

Figure 3b: Certifier failover
Global site variables

synch = []1

New certifier: Synchronization request
upon site is initialized as the new certifier2

blockCertification()3
foreach cluster in remoteClusters() do4

rsend(CERTSYNC REQUEST, lts) to cluster5
end6

All delegates: Send missing transactions
upon rdeliver(CERTSYNC REQUEST, clts) from certifier7

missing = []8
foreach (tid, ts, ws, wv) in updated do9

if ts > clts then10
enqueue (tid, ts, ws, wv) to missing11

rsend(CERTSYNC REPLY, lts, missing) to certifier12
end13

Certifier: Missing updates
upon rdeliver(CERTSYNC REPLY, clts, missing) from cluster14

synched = {}15
foreach (tid, ts, ws, wv) in missing do16

if (tid, ts, ws, wv) �∈ certified then17
enqueue (tid, ts, ws, wv) to certified18

add (cluster, clts) to synch;19
foreach (c, ts) in synch do20

add c to synched;21
if remoteClusters() ⊆ synched then22

gts = lts23
foreach (tid, ts, ws, wv) in certified do24

if (ts > lts) then25
gts = gts + 126
fifo u vscast(UPDATE LOC, tid,27
ts, ws, wv)

foreach (cluster, clts) in synch do28
if ts > clts then29

fifo r send(UPDATE REM,30
tid, ts, ws, wv) to cluster

unblockCertification()31
end32

Figure 3c:
All delegates: On failure of remote cluster

upon failure notification of cluster C1
foreach (tid, ts, ws, wv) in updated do2

acked = {}3
foreach (tid, c) in acks do4

add c to acked5
if remoteClusters() ⊆ acked then6

u vscast(STABLE REM, utid)7
end8

Figure 3: Failover handlers

their carrier message has been delivered (and acknowl-
edged) by all sites. This means that a full round-trip to
the most distant site 2 · tmax is required before updates can
be installed, regardless of the location of the initiator. As
the probability of two concurrent transactions conflicting
depends on the latency, this has a profound impact in the
abort rate of certification based protocols such as DBSM
and Postgres-R [6].

In WICE, and considering two clusters CA and CB , total
ordering of messages is performed using a sequencer sited,
say, in cluster CA, also referred to as the primary cluster.
The updates of each update transaction can be installed as
soon as the certification result is known but they are made
visible to clients only after stabilization. Thus, it makes
sense to distinguish between install-interval and commit-
interval. Commit-interval denotes the time elapsed from
the end of execution until the transaction gets committed at
the originating site and is still lower bounded by 2 · tmax.
The install-interval is the time elapsed from the moment the
transaction finishes its optimistic execution until some site
installs the incoming updates. Ignoring intra-cluster latency,
and considering transactions originated at CA, the install-
interval is negligible for servers in cluster CA and close to
tmax in cluster CB . On the other hand, for transactions
originating in cluster CB , the install-interval will be close
tmax and 2 · tmax, for CA and CB respectively.

The most significant advantage of the WICE protocol
when compared to DBSM in a wide area network should
therefore be its impact on the abort rate due to early deliv-
ery of updates. In this section, we experimentally verify this
claim.

4.1. Experimental Environment

Experimental evaluation is conducted by running an ac-
tual implementation of the protocol within a simulated en-
vironment. By profiling real components with CPU cycle
counters, the technique captures the actual overhead intro-
duced by protocols [15]. By fine tuning the simulation com-
ponents to accurately reproduce real components, it realis-
tically reproduces results of real distributed systems [17].
When compared to testing in a real setting, this allows a
tight control over experimental conditions, with advantages
in repeatability and observability. The approach has been
previously used to evaluate database replication protocols
both in LANs and WANs [6]. In detail, we use simulated
database clients, database engines and networks, and real
implementations of replication and group communication
protocols.

The workload generator is configured according to the
industry standard on-line transaction processing benchmark
TPC-C [19]. Briefly, a wholesale supplier with a number
of geographically distributed sales districts and associated
warehouses. This workload is update intensive, as 92% of
the transactions perform updates. It is also varied, as the
delivery transaction takes a considerable amount of CPU
time and has a very large read-set. The payment transaction
is likely to produce Write-Write conflicts. The neworder
transaction is short-lived and with higher locality.

The results thus vary according to the platform used for
calibration of the simulated environment [17]. Results pre-
sented in this paper refer to the following hardware con-
figuration: Each server has a single CPU AMD Opteron
250 running at 2.4GHz, 4GB RAM and a RAID 5 SATA
disk array with fibre attachment. Transaction processing
engines and overheads are configured according to Post-

Transaction Empirical Estimators
Name Distribution
Delivery normal mean=143.70 sd=2.33
Neworder uniform min=6.45 max=16.83
Orderstatus normal mean=1.66 sd=0.83
Stocklevel uniform min=1.85 max=2.33
Payment normal mean=2.26 sd=0.21

Table 1: CPU Times distributions (milliseconds).

Figure 4: Network Topology.

greSQL 8.0. Storage throughput as measured at the transac-
tion log is 40MBps. CPU overheads are presented in Table 1
along with the corresponding generator distribution and es-
timators parameters. With properly configured indexes and
within the range of presented results, it was verified that
these are independent of the size of the database, as dictated
by TPC-C scaling rules. Note also that these values do not
include contention, as when blocked waiting for a resource
processes are not scheduled. Also according to PostgreSQL
8.0, transaction processing engines use a multi-version con-
currency control approach.

In our target scenario, 3 database servers are positioned
at each of two different sites, as shown in Figure 4. The
network simulator is configured as a pair of switched 1Gbps
Ethernet local area networks, connected by a dedicated T3
link (45Mbps) with 400ms round-trip latency, representa-
tive of an inter-continental satellite link. As a baseline, we
present also results obtained when configuring all 6 servers
within the same local area network.

In all scenarios, we vary the number of simulated clients
from 60 to 6000, equally spread by all servers. We also
take advantage of the locality in TPC-C: Clients associated
with the same warehouse are connected to the same server
to exploit locality, as suggested by the TPC-C specification.
Note however, that with a small probability any client up-
dates records associated with any warehouse.

4.2. Performance Results
The performance of the WICE protocol is evaluated by

observing the throughput, latency and abort rate achieved
when compared with plain DBSM. As a baseline, we
present results obtained by grouping all 6 servers in the
same cluster (DBSM CLUSTER). The results, obtained
with Write-Write conflict certification (achieving 1-SI), are
presented in Figure 5. Results are presented separately for
each cluster.

The first interesting observation from the baseline proto-
col (DBSM CLUSTER) is that the capacity of the system
is exhausted with 6000 clients. This shows up as through-
put peaking (Figure 5(a)), increasing latency due to queuing

Primary cluster CA Secondary cluster CB

T
hr

ou
gh

pu
t

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000

T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

Clients

DBSM (CLUSTER)
DBSM
WICE

(a)

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000

T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

Clients

DBSM (CLUSTER)
DBSM
WICE

(b)

L
at

en
cy

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000

(m
s)

Clients

DBSM (CLUSTER)
DBSM
WICE

(c)
 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000

(m
s)

Clients

DBSM (CLUSTER)
DBSM
WICE

(d)

A
bo

rt
R

at
e

 0

 6

 12

 18

 24

 30

 0 1000 2000 3000 4000 5000 6000

(%
)

Clients

DBSM (CLUSTER)
DBSM
WICE

(e)
 0

 6

 12

 18

 24

 30

 0 1000 2000 3000 4000 5000 6000

(%
)

Clients

DBSM (CLUSTER)
DBSM
WICE

(f)

Figure 5: Performance results with 1-SI.

(Figure 5(c)), and abort rate due to increased concurrency
(Figure 5(e)). By examining resource usage logs one con-
cludes that this is due to saturation of available CPU time.
We should thus focus on system behavior up to 4000 clients,
as a properly configured system will perform flow control to
ensure operation in that range. Throughput grows linearly,
latency is approximately constant and the abort rate negli-
gible.

Then, we turn our attention to DBSM in the target sce-
nario. Although throughput scalability is apparently close
to linear, it is misleading as it corresponds to a high abort
rate and a linearly increasing latency, in particular in cluster
CB (Figures 5(d) and 5(f)). Both are explained by the same
phenomenon: As locks are withheld during wide area stabi-
lization, queuing delays arise, thus proportionally increas-
ing the probability of later being aborted. Aborted transac-
tions have to be resubmitted by the application, thus further
loading the system. It is also important to underline that, as
expected, latency and abort rate impact both clusters equally
as both suffer with the same 2 · tmax commit-interval.

As expected, the WICE protocol improves the perfor-
mance at the primary cluster without negatively impacting
secondary clusters. Namely, in the primary cluster the abort
rate is negligible (Figure 5(e)), comparable only with the
DBSM CLUSTER scenario. The latency is also approxi-
mately constant in the safe operating range (i.e., up to 4000
clients), although impacted by the round-trip over the wide
area link (Figure 5(c)). Note however that such impact is
very close to the absolute minimum of 2 · tmax at 400 ms.

Also as expected, the abort rate of transactions initi-
ated in the second cluster, which are impacted by a tmax

to 2 · tmax commit-interval, is not negligible although still

offering a substantial improvement on DBSM. In the next
section, we discuss the impact of this in the expected usage
scenario of WICE.

4.3. Discussion

The workload assignment used in the previous section
deserves some additional comments. The WICE protocol
targets the global enterprise where the goal of replication
is twofold. First, by providing a cluster for each region of
the globe one avoids having to route all queries to a cen-
tral location and thus avoid imposing the large latency on
clients when no updates are performed, while at the same
time balancing the load. Second, it improves availability as
even catastrophic disasters can only impact the computing
or communication infrastructure at a single location. One
has therefore to consider clusters located in different time-
zones, having distinct peak utilization periods.

This means that the evaluation scenario in the previous
section, in which traffic in both clusters is exactly the same,
is the worst case scenario for the proposed protocol. In real-
ity, one should be able to migrate the centralized sequencer
to the currently most loaded cluster. The additional abort
rate at other locations can then be easily solved by resub-
mission, as these clusters are off peak and thus with under-
utilized resources.

We also have not assumed that resubmission can be done
automatically by the database management system. How-
ever, this is true for many workloads, especially in current
multi-tiered applications. By taking advantage of such op-
tion one could thus completely mask the abort rate at sec-
ondary clusters.

5. Conclusion

Eager update-everywhere database replication optimized
for interconnected clusters in wide area networks is a valu-
able contribution to the infrastructure of the global enter-
prise. By providing the ability to locally serve clients it im-
proves performance and by allowing failover ensures dis-
aster recovery with no data loss. This is a hard problem,
which existing commercial solutions address either by ad-
mitting some data loss or by centralizing update processing.

The proposed WICE protocol shows how to scale repli-
cation protocols based on group communication to a wide
area setting with increased performance, while at the same
time increasing their practicality. This is achieved by re-
stricting group communication within clusters and using a
simple peer protocol over long distance links. The evalua-
tion performed in a realistic platform illustrates the advan-
tages of the approach, namely, linear throughput scalability,
up to 2 times less latency and a negligible abort rate at the
cluster supporting the region currently generating the most
traffic.

References
[1] Apache. Apache derby. http://db.apache.org/derby.
[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2), Mar.
1996.

[4] G. V. Chockler, I. Keidar, and R. Vitenberg. Group commu-
nication specifications: a comprehensive study. ACM Com-
puting Surveys, 2001.

[5] G. Consortium. Gorda - open replication of databases. http:
//gorda.di.uminho.pt/consortium, October 2004.

[6] A. Correia Jr., A. Sousa, L. Soares, J. Pereira, R. Oliveira,
and F. Moura. Group-based replication of on-line transac-
tion processing servers. In Dependable Computing: Second
Latin-American Symposium, 2005.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database repli-
cation using generalized snapshot isolation. In Proceedings
of The 24th IEEE Symposium on Reliable Distributed Sys-
tems, 2005.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of
the ACM, 1985.

[9] P. Inc. Postgresql. http://www.postgresql.org.
[10] B. Kemme and G. Alonso. Don’t be lazy, be consistent:

Postgres-R, A new way to implement database replication.
In Proceedings of 26th International Conference on Very
Large Data Bases, 2000.

[11] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In
Proceedings of The IEEE 21st International Conference on
Distributed Computing Systems, 2001.

[12] F. Pedone, R. Guerraoui, and A. Schiper. The database state
machine approach. Distributed Parallel Databases, 2003.

[13] J. Pereira, A. C. Jr., N. Carvalho, S. Guedes, R. Oliveira,
and L. Rodrigues. Database interfaces for replication sup-
port. Technical report, Universidade do Minho/Faculdade
de Ciências da Universidade de Lisboa, 2006.

[14] L. Rodrigues, J. Mocito, and N. Carvalho. From sponta-
neous total order to uniform total order: different degrees
of optimistic delivery. In In Proceedings of the 21st ACM
Symposium on Applied Computing, 2006.

[15] L. Soares and J. Pereira. Experimental performability eval-
uation of middleware for large-scale distributed systems. In
7th International Workshop on Performability Modeling of
Computer and Communication Systems, 2005.

[16] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic
total order in wide area networks. In Proceedings of The
21st Symposium on Reliable Distributed Systems, 2002.

[17] A. Sousa, J. Pereira, L. Soares, A. C. Jr., L. Rocha,
R. Oliveira, and F. Moura. Testing the dependability and
performance of group communication based database repli-
cation protocols. In IEEE International Conference on De-
pendable Systems and Networks - Performance and Depend-
ability Symposium, 2005.

[18] Symantec. Veritas backup software. http://www.symantec.
com/enterprise/veritas/index.jsp.

[19] T. P. P. C. (TPC). TPC benchmarkTM C standard specifica-
tion revision 5.0, Feb. 2001.

[20] M. Tumma. Oracle Streams - High Speed Replication and
Data Sharing. Rampant TechPress, 2004.

[21] S. Wu and B. Kemme. Postgres-r(si): Combining replica
control with concurrency control based on snapshot isola-
tion. In International Conference on Data Engineering,
2005.

