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Vaidė Zuikevičiūtė Fernando Pedone
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Abstract

The Database State Machine (DBSM) is a
replication mechanism for clusters of database
servers. Read-only and update transactions
are executed locally, but during commit, up-
date transactions execution outcome is broad-
cast to all the servers for certification. The
main DBSM’s weakness lies in its dependency
on transaction readsets, needed for certifica-
tion. This paper presents a technique to by-
pass the extraction and propagation of read-
sets. Our approach does not incur any com-
munication overhead and still guarantees that
transactions are serializable.

1 Introduction

Replication is an area of interest to both distributed
systems and databases: in database systems replica-
tion is done mainly for performance and availability,
while in distributed systems mainly for fault tolerance.
The synergy between these two disciplines offers an
opportunity for the emergence of database replication
protocols based on group communication primitives.

This paper focuses on the Database State Machine
(DBSM) approach [20]. The DBSM is based on de-
ferred update replication, implemented as a state ma-
chine. Read-only transactions are processed locally at
some database replica; update transactions do not re-
quire any synchronization between replicas until com-
mit time. During commit, the transaction’s updates,
readsets, and writesets are broadcast to all servers for
certification. To ensure that each replica converges to
the same state, each server has to reach the same de-
cision when certifying transactions and guarantee that
conflicting transactions are applied to the database in
the same order. These requirements are enforced by
an atomic broadcast primitive and a deterministic cer-
tification test.

The DBSM has several advantages when compared
to existing replication schemes. In contrast to lazy
replication techniques, the DBSM provides strong

consistency (i.e., serializability) and fault tolerance.
When compared with primary-backup replication, it
allows transaction execution to be done in parallel
on several replicas, which is ideal for workloads pop-
ulated by a large number of non-conflicting update
transactions. By avoiding distributed locking used in
synchronous replication, the DBSM scales to a larger
number of nodes. Finally, when compared to active
replication, it allows better usage of resources because
each transaction is executed by a single node.

The main weakness of the DBSM lies in its de-
pendency on transaction readsets, needed for certifi-
cation. Extracting readsets usually implies changing
the database internals or parsing SQL statements out-
side the database, both undesirable solutions due to
portability, complexity, and performance reasons. On
the other hand, extracting writesets is less of a prob-
lem: writesets tend to be much smaller than read-
sets and can be obtained during transaction processing
(e.g., using triggers). This paper extends the original
DBSM to avoid the need of readsets during certifica-
tion. Our approach has no communication and con-
sistency penalties: termination still relies on a single
atomic broadcast and the execution is still serializable.
Moreover, in most cases of practical interest, the price
to pay is a few additional aborted transactions.

The remainder of the paper is organized as follows:
Section 2 introduces our system model and some defi-
nitions. Section 3 explains how to avoid readsets dur-
ing certification. Section 4 presents some preliminary
performance results, and Section 5 discusses related
work. Section 6 summarizes the proposed ideas and
gives an overview of future refinements.

2 System model and definitions

In this section we present the DBSM and the two con-
cepts it relies upon: state machine and group commu-
nication. The state machine approach delineates the
replication strategy. Group communication primitives
constitute a sufficient mechanism to implement a state
machine.



2.1 Database replication

We consider a system Σ = {s1, s2, ..., sn} of database
sites. Sites communicate with each other through
atomic broadcast, built on top of message passing.
Replicas fail independently and only by crashing (i.e.,
we exclude Byzantine failures). Database sites may
eventually recover after a crash.

Each database site plays the role of a replica man-
ager and each has a full copy of the database. Transac-
tions are locally executed according to strict two-phase
locking (2PL). Our consistency criteria is one-copy se-
rializability [18].

Transactions are sequences of read and write oper-
ations followed by a commit or abort operation. A
transaction is called a query (or read-only) if it does
not contain any write operations; otherwise it is called
an update transaction.

2.2 State machine replication

The state machine approach is a non-centralized repli-
cation technique. Its key concept is that all replicas
receive and process the same sequence of requests in
the same order. Consistency is guaranteed if replicas
behave deterministically, that is, when provided with
the same input (e.g., a request) each replica will pro-
duce the same output (e.g., state change).

The way requests are disseminated among replicas
can be decomposed into two requirements [23]:

1. Agreement. Every non-faulty replica receives
every request.

2. Order. If a replica processes request req1 before
req2, then no replica processes req2 before req1.

Notice that the DBSM does not require the execu-
tion of transaction to be deterministic; only the certi-
fication test is implemented as a state machine.

2.3 Atomic broadcast communication

In order to satisfy the above mentioned state ma-
chine requirements, database sites interact by means of
atomic broadcast, a group communication abstraction.
Atomic broadcast guarantees the following properties:

1. Agreement. If a site delivers a message m then
every site delivers m.

2. Order. No two sites deliver any two messages in
different orders.

3. Termination. If a site broadcasts message m
and does not fail, then every site eventually deliv-
ers m.

Several atomic broadcast algorithms exist in the liter-
ature [6]. Our experiments (see Section 4) are based
on a highly efficient Paxos algorithm [15].

2.4 The Database State Machine approach

The Database State Machine is based on deferred up-
date replication. During transaction execution there
is no interaction between replicas. When an update
transaction is ready to be committed, its updates
(e.g., redo logs), readsets, and writesets are atomically
broadcast to all replicas. All sites receive the same se-
quence of requests in the same order and certify them
deterministically. The certification procedure ensures
that committing transactions do not conflict with con-
current already committed transactions.

The notion of conflicting concurrent transactions is
based on the precedence relation, denoted by tj → ti,
and defined next.

• If ti and tj execute on the same replica si, then
tj → ti only if tj enters the committing state at
si before ti enters the committing state at si.

• If ti and tj execute on different replicas si and sj ,
respectivelly, then tj → ti only if tj is committed
at si before ti enters the committing state at si.

Two operations conflict if they are issued by dif-
ferent transactions, access the same data item and at
least one of them is a write. Finally, a transaction tj
conflicts with ti if they have conflicting operations and
tj does not precede ti.

During processing, transactions pass through some
well-defined states:

1. Executing state. In this state transaction ti is lo-
cally executed at site si according to strict 2PL.

2. Committing state. Read-only transactions com-
mit immediately upon request. If ti is an up-
date transaction, it enters the committing state
and si starts the termination protocol for ti: ti’s
updates, readsets, and writesets are broadcast to
all replicas. Upon delivering this message, each
database site si certifies ti. Transaction ti passes
the test at si if the following condition holds:

[
∀tj committed at si :
tj → ti ∨ (writesets(tj) ∩ readsets(ti) = ∅)

]

Atomic broadcast is used to ensure that the se-
quence of transactions certified by each replica is
the same, thus consistency is guaranteed.

3. Committed/Aborted state. If ti passes the certifi-
cation test, its updates are applied to the database
and ti passes to the committed state. Transac-
tions in the executing state at sj holding locks on
data items updated by ti are aborted.



3 DBSM?: refining the DBSM

In the original DBSM, readsets of update transactions
need to be broadcast to all sites for certification. Al-
though storing and transmitting readsets are sources of
overhead, extracting them from transactions is a more
serious problem since it usually implies accessing the
database internals or parsing SQL statements outside
the database. For the sake of portability, simplicity,
and efficiency, certification should be ”readsets free.”

3.1 Readsets-free certification

The basic idea of the DBSM remains the same: trans-
actions are executed locally according to strict 2PL.
In contrast to the original DBSM, when an update
transaction requests a commit, only its updates and
writesets are broadcast to the other sites. Certifica-
tion checks whether the writesets of concurrent trans-
actions intersect; if they do, the transaction is aborted.
Transaction ti passes certification at si if the following
condition holds:[

∀tj committed at si :
tj → ti ∨ (writesets(tj) ∩ writesets(ti) = ∅)

]
Does such a certification test ensure one copy serial-

izability? Transactions executing at the same site are
serializable, but the certification test does not ensure
serializability of global transactions: not all the serial-
ization anomalies are avoided in the execution [9]. For
instance, it does not avoid the write-skew anomaly:

ri[x], ri[y] ... rj [x], rj [y], wj [x], cj ... wi[y], ci

In the above example ti and tj are executed concur-
rently at different sites, ti reads x and y, tj reads the
same data items, writes x and tries to commit. Then
ti writes y and tries to commit. Both transactions pass
the certification test because their writesets do not in-
tersect, however the execution is not serializable (i.e.,
no serial execution is equivalent to it).

3.2 Snapshot Isolated DBSM?

Snapshot isolation (SI) is a multi-version concurrency
control algorithm introduced in [9]. SI does not pro-
vide serializability, but is still attractive and used in
commercial and open-source database engines, such as
Oracle and PostgreSQL. Under SI a transaction ti sees
the database state produced by all the transactions
that committed before ti started. Thus if ti and tj are
concurrent, neither will see the effects of the other.
According to the first-committer-wins rule, ti will suc-
cessfully commit only if no other concurrent transac-
tion tj that has already committed writes to data items
that ti intends to write.

Although specific workloads will not be serializable
under SI, such cases seem to be rare in practice. Fairly

complex transaction mixes, such as the TPC-C bench-
mark, are serializable under SI. Moreover, there are
different ways to achieve serializability from SI [1, 2].

Transactions executing in the same site in the
DBSM? are snapshot isolated. This follows from the
fact that such transactions are serializable, and serial-
izability is stronger than SI [9]. Are global transactions
also snapshot isolated in the DBSM?? It turns out that
the answer to this question is yes. We provide only an
informal argument here. First, notice that any two
concurrent transactions executing in different sites are
isolated from one another in the DBSM?: one transac-
tion does not see any changes performed by the other
(before commit). Second, the DBSM?’s certification
test provides the first-committer-wins behavior of SI
since the first transaction to be delivered for certifica-
tion commits and later transactions abort.

3.3 One-copy serializable DBSM?

The DBSM?, as well as the original DBSM, has an in-
teresting property: if all transaction requests are sub-
mitted to the same replica, the DBSM? will behave
as primary-backup replication [26]. Since all transac-
tions would then be processed according to 2PL at the
primary site, 1SR would be ensured. Therefore, en-
suring 1SR in the DBSM? would be a matter of care-
fully scheduling update transactions to some selected
database site; read-only transactions could still be ex-
ecuted at any replica. However, for load-balancing and
availability reasons, localizing the execution of update
transactions in the same site may not be such a good
idea.

In [1] it was proved that two transactions executing
concurrently under SI produce serializable histories if
they are interference-free, or their writesets intersect.
Two transactions are interference free if one does not
read what is written by the other (notice that this
is precisely what the original DBSM certification test
guarantees). Therefore, two transactions concurrently
executed at different sites in the DBSM? are serializ-
able if their writesets intersect or one does not read
what is written by the other. Since this may not hold
for each pair of update transactions, the authors in [2]
suggested conflict materialization techniques as a way
to guarantee serializable histories of dangerous trans-
actions executed under SI.

Following these ideas, we describe next our tech-
nique, which guarantees 1SR with no communication
overhead w.r.t. the original DBSM. Briefly, the mech-
anism works as follows:

1. The database is logically divided into a number of
disjoint sets (according to tables, rows, etc), each
one under the responsibility of a different replica,
and extended with a control table containing one
dummy row per logical set. This control table is
used for conflict materialization. Note that each
replica still stores a full copy of the database.



2. Each replica is responsible for processing update
transactions that access data items in its as-
signed logical set.Transactions that only access
data items in a single logical set and execute at
the corresponding replica (we call them ”local”)
are serialized with other transactions of the same
type by the 2PL scheduler on the server where
they execute.

3. Update transactions that access data items in
more than a logical set should execute on a server
responsible for one of these logical sets. We call
such transactions ”complex”. Complex transac-
tions are serialized with other transactions updat-
ing data items in intersecting logical sets by the
certification test. But the certification test cannot
serialize them with interfering transactions exe-
cuting at different servers.

4. To ensure 1SR update transactions that read data
items in a logical set belonging to the remote
replica are extended with update statements for
dummy rows corresponding to each remote log-
ical set read.This can be done when the appli-
cation requests the transaction commit. Dummy
rows are constructed in such a way to material-
ize write-write conflicts between complex or local
transactions that access data items in the same
logical set.Therefore, if ti executes at si and one
of ti’s operations reads a data item that belongs
to sj ’s logical set, a dummy write for sj logical
set is added to ti. This ensures that if ti exe-
cutes concurrently with some transaction in sj ,
complex or not, only one transaction will pass the
certification test.

5. Read-only transactions can be executed at any
database site independently of the data items ac-
cessed.

Correctness is a consequence of the fact that read-
only and version-order dependencies in multiversion
serialization graph follow the delivery order of com-
mitted transactions. We prove this formally in an ex-
tended version of this document.

Abort rates can be reduced in the above scheme
if the division of the database into logical sets takes
the workload into account. For example, a criterion
for defining logical sets could be the tables accessed
by the transactions. Moreover, notice that we do not
have to know exactly which data items are accessed by
a transaction to schedule it to its correct server; only
its logical sets have to be known (e.g., which tables are
accessed by the transaction).

The issue of transaction scheduling is orthogonal to
the described work and a detailed account of it is be-
yond the scope of this paper. Whatever mechanism
is used, it should obviously be aware of the division
of the database into logical sets and schedule update

transactions accordingly. Nevertheless any transaction
can be executed at any database site as long as a cor-
responding dummy writes for remote logical sets read
are added to materialize the conflict.

4 Performance results

In this section we evaluate the impact of the modifi-
cations proposed on the abort rate of the DBSM.

4.1 Simulation model

All experiments were performed using a discrete-event
simulation model written in C++ based on the C-SIM
library. Every server is modelled as a processor with
some data disks and a log disk as local resources. The
network is modeled as a common resource shared by all
database sites. Communication delays between repli-
cas are based on experiments measuring Paxos in a
real network.

The workload contains 50% of update and 50%
of read-only transactions. The number of opera-
tions within a transaction varies from 5 to 15. Each
database replica contains 2000 data items. We assume
that access to data items is uniform – there are no
hotspots.

4.2 Experiments

We are interested here in understanding the implica-
tions of conflict materialization on the abort rate of
the DBSM?. Conflict materialization introduces addi-
tional aborts to the DBSM? whenever a conflict arises
between concurrently executing transactions. Such
aborts are essential to avoid non-serializable execu-
tions.

In the graphs presented next, each plotted point
was determined from a sequence of simulations, each
containing 100000 submitted transactions. In order
to remove initial transients, only after the first 1000
transactions had been submitted the statistics started
to be gathered.
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Figure 1 presents the abort rate of update transac-
tions when the number of database sites and the per-
centage of complex update transactions increases. In
a workload mix of 100%, all transactions are complex.
Obviously, the abort rate increases with the number of
complex transactions and the number of sites. More
interesting, workload mixes with few complex trans-
actions (0%–15%) tend to scale very well with the
number of sites. This is particularly important since
in practice, the percentage of complex transactions is
fairly low. For example, in the heaviest transaction
mix of the TPC-W benchmark (the ordering scenario,
with the highest number of update transactions) the
percentage of complex transactions varies from 10%–
15% of all update transactions. Moreover, TPC-C is
serializable under SI, and therefore no conflict materi-
alization is needed.
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Figure 2: DBSM? vs. DBSM (updates only)

In Figure 2 we compare the abort rate of update
transactions executing in the original DBSM and the
DBSM?. In the experiments, the workload mix con-
tains 10% of complex update transactions. Although
the DBSM aborts fewer transactions than the DBSM?,
both abort less than 5% of update transactions.

5 Related Work

Several works have proposed database replication cen-
tered on group communication. Among them Agrawal
et al. present a family of replica management protocols
that exploit the properties of atomic broadcast and are
based on immediate and deferred replication [5]. De-
ferred replication based on group communication was
also proposed in [8].

A suite of eager, update everywhere replication pro-
tocols is introduced in [12]. The authors take advan-
tage of the different levels of isolation provided by
databases to relax the consistency of the protocols. In
[4] Kemme and Alonso introduce Postgres-R, a repli-
cation mechanism implemented within PostgreSQL.
Snapshot isolation is further investigated in [27, 16].

In [21] the authors present Ganymed, a middleware-
based replication solution. The main idea behind
Ganymed is a separation between updates and read-

only transactions: updates are handled by a mas-
ter replica and lazily propagated to the slaves, where
queries are processed.

Clustered JDBC (C-JDBC) [7] is another
middleware-based replication solution. C-JDBC
supports both partial and full replication. The ap-
proach consists in hiding a lot of database complexity
in the C-JDBC layer, outside the database. Extending
JDBC with a primary-backup technique was proposed
in [19].

Some works have concentrated on reducing the com-
munication overhead of group communication by over-
lapping transaction processing with message ordering
[13, 14, 17]. While NODO [17] protocol requires trans-
actions scheduling to be known in advance, that is, be-
fore the transactions execution, in DBSM? scheduling
is more like a hint: 1SR is ensured even if transactions
are scheduled independently of data items accessed.

Amir et al. [3] deal with replication in wide area
networks. An active replication architecture is intro-
duced by taking advantage of the Spread Group Com-
munication Toolkit. Spread provides atomic broad-
cast and deals with network partitions. In [22] other
two replication protocols based on atomic multicast
for large-scale networks are presented.

The original DBSM has been previously extended
in two directions. Sousa et al. investigate the use
of partial replication in the DBSM [25]. In [11] the
authors relax the consistency criteria of the DBSM
with Epsilon Serializability.

A number of works have compared the performance
of group-based database replication. In [10] Holliday
et al. use simulation to evaluate a set of four ab-
stract replication protocols based on atomic broadcast.
The authors conclude that single broadcast transac-
tion protocol is the one that allows better performance
by avoiding duplicate execution and blocking. This
protocol abstracts the DBSM. Another recent work
[24] evaluates the original DBSM approach, where a
real implementation of DBSM’s certification test and
communication protocols is used. All the results con-
firm the usefulness of the approach.

6 Conclusion

The Database State Machine is a simple approach to
handle database replication. This paper addresses one
of its main weaknesses: the dependency on transac-
tion readsets for certification. The conflict material-
ization technique adopted for DBSM? does that with-
out sacrificing one copy serializability and increasing
communication overhead. Depending on the workload,
transactions with dangerous structures can be forced
to execute on the same site or at different replicas, if
an artificial update on dummy row is introduced in
the transaction. As future work we plan to prototype
the DBSM? and optimize our conflict materialization
algorithm.
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