
On the Inherent Cost of Generic Broadcast

Fernando Pedone? André Schiper†

?Computer Networking Laboratory
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne

Phone: +41 21 693 4797 Fax: +41 21 693 6600
E-mail: fernando.pedone@epfl.ch

†Distributed Systems Laboratory
Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne

Phone: +41 21 693 4248 Fax: +41 21 693 6770
E-mail: andre.schiper@epfl.ch

EPFL Technical Report IC/2004/46
20 May 2004

Abstract

This short paper establishes lower bounds on the time complexity of algorithms solving
the generic broadcast problem. The paper shows that (a) to deliver messages in one round, no
failures can be tolerated, (b) to deliver messages in two rounds, at most f < n/3 failures can
be tolerated, where n is the number of processes in the system, and (c) to deliver messages
in three rounds, at most f < n/2 failures can be tolerated. The lower bounds are tight:
a simple algorithm capable of delivering messages in one round if f = 0 is presented, and
algorithms solving generic broadcast in two rounds when f < n/3 and in three rounds when
f < n/2 are known in the literature. The paper also shows that even in runs in which
messages do not conflict, generic broadcast cannot achieve the same performance of reliable
broadcast algorithms.

Keywords: group communication, algorithm analysis, fault tolerance

1



1 Introduction

This short paper establishes lower bounds on the time complexity of algorithms solving the
generic broadcast problem. Generic broadcast assumes a symmetric, non-reflexive conflict rela-
tion on the set of messages, and requires ordered delivery only for conflicting messages [6]. If
messages m and m′ conflict, processes are required to deliver them in the same order; if they
do not conflict, some process may deliver m and then m′, and some other process may deliver
m′ and then m. The conflict relation is defined by the application. For example, in a system
in which read and write messages are broadcast to replicated processes, read messages do not
conflict with each other, and so, do not have to be delivered in the same order.

Formally, generic broadcast is defined by the primitives broadcast(m) and deliver(m), the
conflict relation ∼, and the following conditions: (a) if a correct process p broadcasts a message
m, then p eventually delivers m (validity); (b) if a correct process p delivers a message m, then
every correct process q eventually delivers m (agreement); (c) for any message m, every process
delivers m at most once, and only if m was previously broadcast by some process (integrity);
and (d) if correct processes p and q both deliver conflicting messages m and m′ (i.e., m ∼ m′),
then p and q deliver m and m′ in the same order (total order).

Generic broadcast implementations can take advantage of the fact that some messages do not
conflict and only order messages when really necessary. Ordering messages may be expensive or,
if processes cannot use oracles, impossible. Even if processes have access to oracles, they should
use them sparingly since oracles can make mistakes (e.g., failure detectors), which may degrade
the performance of the system. Thus, if messages do not conflict, efficient generic broadcast
algorithms will not require processes to always query their oracles.

The lower bounds established in this paper relate the resilience of generic broadcast algo-
rithms (i.e., the total number of failures f the algorithms can tolerate) to their time complexity
in runs in which oracles are not used. The paper shows that (a) to deliver messages in one
round (formally defined in Section 2), no failures can be tolerated, (b) to deliver messages in
two rounds, at most f < n/3 failures can be tolerated, where n is the number of processes in the
system, and (c) to deliver messages in three rounds, at most f < n/2 failures can be tolerated.
These lower bounds are tight: we give a simple algorithm that is capable of delivering messages
in one round if f = 0. Algorithms solving generic broadcast in two rounds when f < n/3, and
algorithms solving generic broadcast in three rounds when f < n/2 are known in the literature
[1, 6, 7].

One can compare the cost of generic broadcast in runs in which no conflicting messages are
broadcast (i.e., processes never query the oracle) with the cost of reliable broadcast. Reliable
broadcast (both uniform and non-uniform) can be solved in asynchronous systems with reliable
channels [4]. Non-uniform reliable broadcast algorithms can tolerate any number of failures and
deliver messages in the end of the first round [3]. Uniform reliable broadcast algorithms, in
which processes do not use oracles, require f < n/2 [5] and can deliver messages in the second
round—actually, it turns out that this is the best that can be achieved without oracles.

Ideally, one would like to have a generic broadcast algorithm that performs like a reliable
broadcast algorithm in runs in which no conflicting messages are broadcast. This paper shows
that such generic broadcast algorithms do not exist. The difference between the cost of delivering
non-conflicting messages with an optimal generic broadcast algorithm and the cost of delivering
messages with an efficient reliable broadcast algorithm can be understood as “the inherent cost
of generality.”

2



2 System Model

We consider an asynchronous system composed of a set Π = {p1, ..., pn} of processes, augmented
by an oracle (e.g., a failure detector [3]) in order to make the generic broadcast problem solvable.
Processes may fail by crashing, but do not behave maliciously (i.e., no Byzantine behavior).
Processes that do not crash are correct; otherwise they are faulty. We assume a fully connected
and reliable FIFO network (i.e., no loss, no duplication, and no creation of messages). Each
process pi has a buffer, bufferi , that represents the set of messages that have been sent to pi but
not yet received; pi receives the message when it removes it from its buffer. We assume a notion
of round similar to the one in [2]: In any run of an algorithm, until it crashes, each process pi

repeatedly performs the following two steps, which define one round :

1. In the first step, pi generates the (possibly null) messages to be sent to each process based
on its current state, and puts these messages in the appropriate process buffers. If pi

crashes in round r, only a subset of the messages created in r by pi are put in the buffers.

2. In the second step, pi may query its oracle or not. If pi decides not to query its oracle,
it waits until there is one or more messages in its buffer, removes these messages, and
determines its new state based on its current state and on the messages received. We do
not define the behavior of pi if it decides to query its oracle; our results will be stated in
runs in which processes do not query their oracles.

Given the asynchrony of the system, it can be that one process terminates round r, while
another has not started round r′, r′ ≤ r. Thus, it is possible for a process in r to receive messages
sent in r′. Moreover, without querying an oracle, no process can wait for messages from more
than n− f different processes in a round without risking being blocked forever [2].

3 The Lower Bounds

We establish conditions under which a message m broadcast in round 1 can be delivered at the
end of round r = 1, at the end of round r = 2, and at the end of round r ≥ 3. The bounds
hold for algorithms in which processes query their oracles iff they have received two conflicting
messages.

Proposition 1 Let C be a non-empty conflict relation and A a generic broadcast algorithm
using C. In runs in which the oracle is not used, if messages broadcast in round 1 are delivered
in round 1, then A does not tolerate any failures.

Proof: Assume for a contradiction that A tolerates one failure. Consider runs R1 and R2, and
let m1 and m2 be two conflicting messages. In run Rx, x ∈ {1, 2}, process p3−x does not execute
any step (i.e., it fails in the beginning of the run). Process px broadcasts message mx, and no
other process broadcasts a message in Rx. By assumption, px delivers mx in round 1.

Let R3 be a failure-free run in which p1 broadcasts m1 and p2 broadcasts m2, such that any
messages sent by p1 only reach p2 after round 1, and any messages sent by p2 only reach p1

after round 1. R3 is such that for p1, round 1 in R3 is indistinguishable from round 1 in R1,
and since p1 delivers m1 in round 1 in R1, it also delivers m1 in round 1 in R3. Similarly, for
p2, in round 1, runs R2 and R3 are indistinguishable, and since p2 delivers m2 in round 1 in R2,

3



it also delivers m2 in round 1 in R3. From agreement of generic broadcast, all processes deliver
m1 and m2 in R3, but p1 delivers m1 and then m2, and p2 delivers m2 and then m1, violating
total order, and contradicting the fact that A solves generic broadcast. 2

The lower bound of Proposition 1 is tight. Consider the following generic broadcast algo-
rithm, which does not tolerate any failures. In the first round, if pi wants to broadcast m, it
sends m to all processes; otherwise it sends a void message to all processes. Each process waits
for all messages, applies some deterministic function to decide on the delivery order and delivers
every message received different from void in this order.

Proposition 2 Let C be a non-empty conflict relation and A a generic broadcast algorithm
using C. In runs in which the oracle is not used, if messages broadcast in round 1 are delivered
in round 2, then A does not tolerate n/3 failures.

Proof: For a contradiction, assume that A tolerates f ≥ n/3 failures. We divide set Π in three
disjoint subsets, P1, P2, and P3, of size f or less. By assumption, A can tolerate the failure of
all processes in one single set.

Assume that m1 and m2 are conflicting messages. Let Ri, i ∈ {1, 2}, be a run in which
processes in P3−i do not execute any steps (i.e., they fail in the beginning of the run). Process pi

in Pi broadcasts message mi, and no other process broadcasts any messages in Ri. Every process
in Pi ∪ P3 executes rounds 1 and 2, and at the end of round 2 delivers mi. By assumption, no
process queries its oracle in Ri. Notice that processes in P3 send in the first round of R1 the
same messages (if any) they send in the first round of R2.

We build now an auxiliary run R3. In R3, p1 and p2 broadcast m1 and m2, respectively, in
round 1. Further, (a) for processes in P1, the first round of R3 is indistinguishable from the first
round of R1, (b) for processes in P2 the first round of R3 is indistinguishable from the first round
of R2, and (c) processes in P3 crash in round 1 immediately after having sent their messages.
From generic broadcast, every process in P2 ∪ P3 delivers m1 and m2 in the same order in R3.
Let r′ be the smallest round in which all correct processes have delivered both messages, and
assume m1 is delivered before m2. Using R3, we construct the failure-free run R4 as follows:

1. For processes in P3, (a) rounds 1 and 2 are indistinguishable from rounds 1 and 2 in R2, and
(b) the messages sent by processes in P3 in rounds 2, ..., r′ are only received by processes
in P1 ∪ P2 after round r′. Item (a) is satisfied as follows: processes in P2 send in round 1
of R4 the same messages they send in round 1 of R2. Messages sent from processes in P1

do not reach processes in P3 until after round 2.

2. For processes in P1 ∪ P2, rounds 1, ..., r′ are indistinguishable from rounds 1, ..., r′ in R3.

By (2), processes in P1 ∪ P2 deliver messages m1 and m2 as in R3, i.e., m1 before m2. By
(1), processes in P3 deliver m2 in round 2 before delivering m1. Since no process crashes in R4,
eventually, processes in P3 also deliver m1. Thus, the order property is violated, contradicting
the fact that A solves generic broadcast. 2

Proposition 3 Let C be a non-empty conflict relation and A a generic broadcast algorithm
using C. In runs in which the oracle is not used, if messages broadcast in round 1 are delivered
in round r ≥ 3, then A does not tolerate n/2 failures.

Proof: First we prove a basic fact about generic broadcast algorithms.

4



Lemma 1 Let C be a non-empty conflict relation. There is no generic broadcast algorithm A
using C that tolerates n/2 failures.1

Proof: The proof is by contradiction using a partition argument. Assume that A tolerates
f ≥ n/2 failures. We divide set Π in two disjoint subsets, A and B, of size f or less. By
assumption, A can tolerate the failure of all processes in one single set.

Let R1 be a run in which processes in B do not execute any step. Some pi in A broadcasts m1,
and no other process broadcasts any message in R1. From the properties of generic broadcast,
there is a round r1 such that all processes in A have delivered m1 by the end of round r1.

Let R2 be a run in which processes in A do not execute any step. Some pj in B broadcasts
m2, which conflicts with m1, and no other process broadcasts any message in R2. From the
properties of generic broadcast, there is a round r2 such that all processes in B have delivered
m2 by the end of round r2.

Consider now the failure-free run R3 such that messages from processes in A (resp.B) to
processes in B (resp.A) are very slow and do not reach their destinations before round r =
max(r1, r2). For processes in A, until round r, runs R1 and R3 are indistinguishable, so processes
in A deliver m1 by the end of round r1. For processes in B, until round r, runs R2 and R3 are
indistinguishable, so processes in B deliver m2 by the end of round r2.

Since R3 is a failure-free run, from the agreement property of generic broadcast, all processes
deliver m1 and m2. Thus, processes in A deliver m1 before m2 and processes in B deliver m2

before m1, violating order and contradicting that A solves generic broadcast. 2 Lemma 1

The proof of Proposition 3 follows immediately from Lemma 1 and Proposition 2. 2

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic broadcast. In Proc.
of the 14th International Symposium on Distributed Computing (DISC’2000), October 2000.

[2] M. Ben-Or and R. El-Yaniv. Resilient-optimal interactive consistency in constant time. Distributed
Computing, 16:249–262, 2003.

[3] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
ACM, 43(2):225–267, 1996.

[4] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In Sape Mullender,
editor, Distributed Systems, pages 97–145. ACM Press, 1993.

[5] D. Malki, K. Birman, A. Ricciardi, and A. Schiper. Uniform Actions in Asynchronous Distributed
Systems. In Proc. of the 13th ACM Symposium on Principles of Distributed Computing, August 1994.

[6] F. Pedone and A. Schiper. Generic Broadcast. In 13th. Intl. Symposium on Distributed Computing
(DISC’99), pages 94–108. Springer Verlag, LNCS 1693, September 1999.

[7] F. Pedone and A. Schiper. Handling message semantics with generic broadcast protocols. Distributed
Computing, 15(2):97–107, 2002.

1This result has also been stated, but not proved, in [1].

5


