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Abstract

In this paper, we propose a novel approach for solving the reliable broadcast problem in

a probabilistic model, i.e., where links lose messages and where processes crash and recover

probabilistically. Our approach consists in first defining the optimality of probabilistic reli-

able broadcast algorithms and the adaptiveness of algorithms that aim at converging toward

such optimality. Then, we propose an algorithm that precisely converges toward the optimal

behavior, thanks to an adaptive strategy based on Bayesian statistical inference. Our adap-

tive algorithm is modular and consists of two activities. The first activity is responsible for

solving the reliable broadcast, given information about the failure probability of each link

and of each process. This activity relies on the notion of Maximum Reliability Tree, which

we derive from the notion of Maximum Spanning Tree. The other activity is responsible

for approximating failure probabilities of links and processes, using Bayesian networks. We

compare the performance of our algorithm with that of a typical gossip algorithm through

simulation. Our results show, for example, that our adaptive algorithm quickly converges

toward such exact knowledge.

Keywords: adaptive protocols, large-scale systems, probabilistic protocols, reliable broad-

cast, optimal message diffusion
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1 Introduction

Diffusing information efficiently and reliably in an environment composed of many unreliable

nodes interconnected by lossy communication links is an ability sought by many current large-

scale systems (e.g., large-scale publish-subscribe architectures). Achieving reliable and efficient

information diffusion in such contexts, however, is a complex task. Several reasons account for

this fact. First, being composed of many components, it is unrealistic to assume that nodes have

precise a priori information about the system characteristics, such as network topology and link

reliability. Second, even if such information would be available to nodes at the beginning of

the execution, the dynamic nature of a large system would render it obsolete quickly. Nodes,

for example, may often leave the system, due to failures or explicit disconnections, constantly

changing its topology. Finally, as observed by many researchers, mechanisms traditionally used

to reliably broadcast information in small- and middle-size networks do not scale well when the

system grows [2].

Many works have investigated this problem from a probabilistic perspective (e.g., [2, 4, 8,

9, 10, 11]). Probabilistic algorithms scale much better than deterministic ones and achieve high

reliability. Intuitively, every node that receives a message chooses a subset of system members,

for example among the complete set of destinations, and propagates (i.e., gossips) the message

to these nodes. The gossip nature of the algorithm combined with the possibility of crashes and

message loss implies that there are some chances that not all nodes receive the original message.

Nevertheless, provided that nodes keep gossiping the original message “long enough” it can be

guaranteed that with very high probability all nodes receive the message.

In this paper, we propose an approach to improve the performance of gossip-based algorithms

by taking into account the topology and probabilistic nature (i.e., node failure and message loss

probabilities) of the environment in which these algorithms execute. Since nodes adapt to

the environment characteristics during the execution, we call such algorithms adaptive. This

adaptive characteristic is precisely what distinguishes our approach from previous works, which

in general do not take topology and reliability aspects into account to improve performance. As

we discuss in the paper, our approach is complementary to previous optimizations proposed in

the literature (e.g., [11]) and could be combined with them.
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The motivation for adaptive algorithms is performance. Large-scale systems are usually

composed of several parts with varying reliability characteristics (e.g., local-area network links

are usually more reliable than wide-area network links), and adjusting the gossip mechanism

according to the system characteristics can provide more efficient results. To better spell out

our argument, consider the following simple example in which two nodes are connected through

two independent paths. Path one loses messages with probability L, 0 < L < 1. Path two

is less reliable than path one and loses messages with probability αL, where α > 1. With a

typical gossip algorithm, which chooses paths randomly for every send, after node one sends k0

messages to node two, the probability that at least one message reaches node two is 1−(√αL)k0

(see Appendix A). Using an algorithm adapted to this environment, which chooses the paths

according to their reliability probabilities (and therefore always chooses the first path), node

one reaches node two with probability 1− Lk1 after k1 messages are sent.
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Figure 1: Adaptive versus traditional gossip

Consequently, to reach the same reliability as an environment-adapted algorithm, a typical

gossip algorithm has to retransmit more messages, wasting throughput and unnecessarily con-

suming system resources. Figure 1 depicts the relation between k0 and k1 as a function of α when

both algorithms achieve the same reliability. When α = 1, both paths have the same reliability

and so, there is no difference between a typical gossip algorithm and an environment-adapted

one. When α = 10, even if path one is very reliable, for example L = 0.0001, an adaptive

algorithm only needs about 87% of the messages sent by a traditional gossip algorithm to reach

the same overall reliability. This means that even in a very simple configuration, a traditional

gossip algorithm would waste about 13% of throughput only retransmitting messages. When
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paths are less reliable (e.g., L = 0.01 in Figure 1) and in more complex topologies, further

improvements are obtained. Section 5 discusses this issue in details, using a more sophisticated

traditional gossip algorithm.

Briefly, in our approach each time a node decides to broadcast a message, it builds aMaximal

Reliability Tree (MRT), a spanning tree that determines the best way to propagate messages.

To build an MRT, nodes use information about the system topology and the reliability of nodes

and communication links. The more precise this information, the closer to the optimal the

gossiping mechanism will be. An optimal algorithm, for example, will try to avoid gossiping

messages through very unreliable links, if an alternative more reliable path exists. We initially

assume that broadcasting nodes have perfectly accurate information about the system topology

and the nodes and links reliability to build the MRT at a given time. Although this leads to an

optimal reliable broadcast algorithm, it is mostly of theoretical interest only, since such complete

information is difficult to obtain. Then, we replace the full-knowledge assumption with a more

realistic one in which nodes try to approximate the topology and the reliability parameters of

the system during the execution, adapting to changes. This results in a modular and simple

design. Our optimal reliable broadcast algorithm (based on perfect knowledge about the system)

remains the same, while our adaptive strategy is completely encapsulated in a separate activity

that precisely tries to approximate such perfect knowledge. We believe that this approach could

be used to develop other adaptive algorithms in large-scale environments.

Intuitively, our approximation strategy works as follows. First, nodes keep exchanging their

local knowledge of the network topology with their direct neighbors. This guarantees that

each node will eventually discover the complete network topology. Second, nodes monitor their

direct neighbors and try to assess their availability and the reliability of the communication

links interconnecting them. This information is also part of the messages exchanged between

neighbors and eventually reaches all nodes connected to the system. Upon receiving a message

from a neighbor, a node updates its local information. This process uses a mix of Bayesian

networks and a distortion factor. The distortion factor tries to take into account the information

aging via two factors, namely time and distance. Each approximated data has a distortion factor

that is proportional to how much time ran out since it was last updated, and to how far in the

network it was originated. We show that provided that the systems’ characteristics remain

stable for some time, the topology and reliability information assessed by the nodes eventually
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converge toward a perfect knowledge of the system. Then, the performance of our adaptive

reliable broadcast algorithm coincides with the performance of the optimal reliable broadcast

algorithm. Finally, although nodes keep exchanging information with their neighbors, this data

can also be opportunistically piggybacked in gossip messages, saving communication bandwidth.

The rest of the paper is organized as follows. Section 2 introduces the system model and the

concepts of optimal and adaptive reliable broadcast algorithms. Section 3 describes an optimal

algorithm to solve probabilistic reliable broadcast. Section 4 presents our adaptive algorithm,

which is derived from the optimal one. Section 5 evaluates our approach through simulation.

Section 6 reviews related work, and Section 7 concludes the paper.

2 Probabilistic Model and Definitions

2.1 Processes and Communication Links

We consider a system of distributed processes communicating by message passing. There are

no strong assumptions about the time it takes for processes to execute and for messages to be

transmitted. The system’s topology is defined by G = (Π,Λ), where Π = {p1, p2, ...} is a set of
processes (|Π| = n), and Λ = {l1, l2, ...} ⊆ Π × Π is a set of bidirectional communication links.
A link lx from pi to pj is also denoted by li,j . If li,j ∈ Λ and i 6= j, we say that pj is neighbor of

pi. The set of all pi’s neighbors is denoted by neighbors(pi). We define a path as a combination

of links and intermediate processes through which a message can transit to reach a destination.

Processes can crash and subsequently recover and links can lose messages. We do not consider

Byzantine failures, i.e., processes execute according to their algorithms. Processes have access to

local volatile memory and stable storage. Information recorded in stable storage survives crashes,

which is not the case for information stored in volatile memory. Processes should be judicious

about using stable storage, however, since it is significantly slower than volatile memory.

Processes execute a sequence of steps, which can be of two kinds. In a normal step, a process

(a) may receive a message from one of its neighbors or send a message to one of its neighbors

(but not both), (b) undergo a state transition, and (c) may write some information in stable

storage. These assumptions simplify the probabilistic analysis and proofs of our algorithms. In

a crashed step, the process simply loses all the contents of its volatile memory, if any, and passes

to the next step, which may be normal or crashed. If pi executes a crashed step sk followed by

a normal step sk+1, we say that pi has recovered at step sk+1.
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A configuration C = (P1, P2, ..., P|Π|, L1, L2, ..., L|Λ|) is a tuple of probabilities, where Pi is

the ratio between the number of crashed steps and the total number of steps executed by pi

in some execution of the algorithm, and Lx is the ratio between the number of messages lost

by lx and the total number of messages transmitted through lx in the execution. Pi can be

understood as the probability that process pi executes a crashed step in the execution and Lx

as the probability that link lx loses a message, whenever it is requested to transmit one.

2.2 Probabilistic Reliable Broadcast

Reliable broadcast is defined by the primitives broadcast(m) and deliver(m). To simplify the

discussion, we assume that processes in Π are part of a single broadcast group; in practice,

there may exist several broadcast groups, with processes possibly being members of more than

one group. A probabilistic reliable broadcast algorithm AK ensures with at least probability

K that if a process in Π delivers some message m, then all processes in Π will deliver m. For

brevity, we do not require a message to be delivered exactly once by each process. Usually, to

ensure exactly-once message delivery in a crash/recovery model, processes have to do some local

logging to keep track of messages already delivered. If desired, such a guarantee can be built on

top of our reliable broadcast primitive.

2.3 Adaptation and Optimality

To compare the efficiency of different probabilistic reliable broadcast algorithms, we consider the

number of messages exchanged. According to this parameter, it seems intuitive that processes

should privilege paths requiring the lowest possible number of retransmissions to reach other

processes. Our definition of adaptation is based on the notion of optimal algorithms. We

informally define optimal and adaptive probabilistic reliable broadcast algorithm as follows.

Definition 1 A probabilistic reliable broadcast algorithm OK is optimal to some configuration

C w.r.t. the number of messages if there is no algorithm XK such that processes executing XK

in C exchange fewer messages than processes executing OK in C.

Definition 2 A probabilistic reliable broadcast algorithm AK is adaptive to some configuration

C iff the number of messages exchanged by processes executing AK in C in response to a broadcast

is eventually equal to the number of messages exchanged by processes executing OK in C.
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3 An Optimal Algorithm

The optimal algorithm we propose relies on the assumption that each process knows the topol-

ogy G and the failure configuration C (i.e., crash and loss probabilities) of the system. Each

process then uses this knowledge to minimize the number of messages needed to reach all pro-

cesses with a given probability. This is achieved by having each process first compute aMaximum

Reliability Tree (MRT) of the system, as described next.

3.1 Maximum Reliability Tree (MRT)

The Maximum Reliability Tree is a spanning tree containing the most reliable paths in G con-

necting all processes in Π. We assume that the MRT is calculated by function mrt(G,C) using

a modified version of Prim’s algorithm [1] (see Appendices B and C). If processes agree on the

system’s topology and configuration, they all build the same MRT. Under more realistic assump-

tions, however, processes may have different views of the system topology and configuration. In

such cases, they will build different MRT’s. To avoid ambiguity, we denote mrti(G,C) the MRT

built by some process pi. Notice that since MRT is a tree, it always contains exactly n−1 links.

3.2 From MRT to Optimal Algorithm

Intuitively, given a sender pi, our optimal algorithm uses mrti(G,C) to determine the minimum

necessary number of messages that must transit through each edge in order to reach all processes

with probability K. To state this idea more formally, we label ps the root of the tree and pi

all other processes in mrts(G,C), with 1 ≤ i < |Π| − 1. Then, we label li the link that leads
to pi and mi the number of messages going through li.

1 Figure 2 illustrates this labeling on a

concrete example. So, we can now restate the intuitive idea of our optimal algorithm as follows:

it consists in minimizing the sum of mi necessary to reach all processes with some probability K.

In order to present our algorithm, we must still introduce a few additional notions and

terms. First, we define Ti to be the subtree of mrts(G,C) with pi as root ; from this definition,

we have that Ts = mrts(G,C). Then, we define Si to be the set of direct subtrees of pi, i.e.,

Si contains any subtree whose root is a process pj directly connected to pi via link lj . Figure 3

illustrates this notion of direct subtrees on the maximum reliability tree introduced in Figure 2

1With this labeling, we can simplify the way we write the loss probability of each link li as Li.
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(e.g., S2 = {T3, T5}). Finally, we define ~mi to be a vector whose components are the numbers

of messages transiting through the links of Ti.

Given this terminology, we can now introduce the reach function: given a tree Ti and a

vector ~mi, this function computes the probability that all processes in Ti are reached by at

least one message. Eq. (1) presents the reach function in a recursive form with ~mi[j] being

the j-th component of vector ~mi. The idea consists in multiplying the probability that at least

one message reaches the root process pj of each subtree Tj ∈ Si by the recursive probability

to reach all processes of Tj . Then, if process pj is a leaf (Tj =⊥), we have that |~mj | = 0 and
reach(⊥,~0) = 1.

reach(Ti, ~mi) =











1 if Ti =⊥
∏

Tj∈Si
(1− [1− (1− Pi)× (1− Lj)× (1− Pj)]

~mi[j])× reach(Tj , ~mj) otherwise

(1)

Since Eq. (1) presents a typical tail-recursion form, we can also write the reach function in

pure iterative form, as shown by Eq. (2), with pred(j) being the process that precedes pj in Ti.

reach(Ti, ~mi) =
n−1
∏

j=1

1− [1− (1− Ppred(j))× (1− Lj)× (1− Pj)]
~mi[j] (2)

Using the reach function, we can state our optimization problem in a concise manner, as

shown in Eq. (3), where λj expresses 1− (1− Ppred(j))× (1− Lj)× (1− Pj).

minimize c(~m) =

|~m|
∑

j=1

m[j]

subject to r(~m) =

|~m|
∏

j=1

1− λ
m[j]
j ≥ K

(3)
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We encapsulate the solution to this optimization problem in the optimize() function, which

takes an MRT and K as input parameters and returns a vector ~ms. Algorithm 1 shows how the

optimize function is used to implement our optimal probabilistic reliable broadcast.

Algorithm 1 Optimal Algorithm at pk

1: To execute broadcast(m) do
2: mrtk ← mrtk(G,C)
3: propagate(m,mrtk, pk)
4: deliver(m)

5: when receive (m, mrtj) for the first time
6: propagate(m,mrtj , pk)
7: deliver(m)

8: function propagate(m,mrtj , pk)
9: ~mj ← optimize(mrtj ,K)
10: for all subtree Ti ∈ Sj,k do
11: repeat ~mj [i] times
12: send (m, mrtj) to pi

3.3 The optimize() Function

Algorithm 2 implements optimize() via a greedy strategy. Our algorithm works by optimizing

each individual step, hoping that the resulting global solution will be optimal. From operational

research it follows that a greedy algorithm does indeed yield an optimal solution if the problem

it solves is itself greedy (a fact we prove in Appendix D). The algorithm starts with a minimal

solution, i.e., an initial vector ~m of the form (1, 1, ..., 1), and then proceeds in incremental steps.

In each step, the algorithm chooses the link lj in the MRT that maximizes the gain in terms of

the probability to reach all processes when sending one more message through lj . It then stops

when the desired probability K is reached and returns vector ~m as solution. In Algorithm 2, ~uj

denotes a vector in which the j-th element is 1 and the others are 0, e.g., ~u2 = (0, 1, 0, ..., 0).

Algorithm 2 A Greedy Algorithm for optimize()

1: function optimize(mrt,K)
2: ~m← (1, 1, 1, · · · , 1)
3: while r(~m) < K do

4: let ~uj be such that
r(~m+~uj)

r(~m) is maximum

5: ~m← ~m+ ~uj

6: return ~m
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4 An Adaptive Algorithm

4.1 Overview of the Algorithm

Our adaptive protocol is based on Algorithm 1, used by the optimal protocol. The difference lies

in the knowledge processes have about the topology G = (Π,Λ) and the configuration C. In the

optimal protocol, this knowledge is accurate; in the adaptive protocol, it is an approximation.

Thus, with the adaptive protocol, in addition to executing Algorithm 1, processes are constantly

trying to approximate G and C based on what they observe from the system. If G and C remain

stable for “long enough”, our adaptive protocol converges toward the optimal one.

Network topology (G). Initially, processes know only the links connecting them directly to

their neighbors—notice that we do not require processes to agree on the system membership at

any given time. To share this knowledge, each process periodically sends heartbeat messages

containing its view of the topology to all its neighbors. When receiving a heartbeat, a process

updates its topology knowledge with the information received. The next time this process

propagates its topology view, it will include the recently added information. If the network

topology remains stable and partitions are temporary, even in the presence of process crashes

and message losses processes eventually learn the global system topology.

Reliability configuration (C). Heartbeats are also used by processes to determine the re-

liability of the system and to share this information with other processes. The probability of

crashing is approximated by the process itself by periodically reading the value of its local clock

and storing it in stable storage. When the process recovers from a crash, it reads the last clock

value from stable storage and compares it to the current time. The probability of failure is

proportional to the number of intervals missed during some sufficiently large amount of time.

When a process pk receives a heartbeat from some neighbor pj , it updates its local estimate of

pj ’s failure probability by simply adopting the value received from pj . In addition, pk adjusts the

message loss probability of link lk,j . If pk does not receive any heartbeats from pj for some time,

pk increases the failure probability of pj and the message loss probability of lk,j . To approximate

the reliability of non-neighbor processes and remote links, pk only relies on information received

from its neighbors. When pk receives a heartbeat with Cj from its neighbor pj , it must decide

which estimates to keep, i.e., its current ones or the ones in Cj . Intuitively, the idea is to choose
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the less distorted estimates. This implies that each estimate has a distortion factor, which ex-

presses how accurate the estimate is: the higher the factor, the less accurate the estimate. As

explained in next section, two factors tend to erode an estimate accuracy: time and distance.

4.2 A Detailed Approximation Algorithm

Algorithm 4 presents our solution to approximate the knowledge some process pk has about G

and C. To simplify the algorithm, we assume that pk knows Π, the set of processes in the system,

right from the start—this assumption is not essential and can be removed at the cost of some

additional complexity in the algorithm.2 Thus pk must approximate Λ and C. In Algorithm 4,

Λk and Ck denote the view pk has on Λ and C, respectively, at any given time.

Data structures. The two main data structures of Algorithm 4 are Λk and Ck. While Λk has

exactly the same structure as Λ (i.e., a set of links), Ck is more complex than C. Hereafter Ck[pi]

denotes Pi, the crash probability of pi at pk, and Ck[lj ] denotes Lj , the message loss probability

of lj at pk. Ck[pi] and Ck[lj ] are complex data structures representing pk’s current estimates

of Pi and Lj , respectively—we refer to such data structures as simply estimates. An estimate

contains a small Bayesian network used to approximate Pi and Lj . Section 4.3 describes how

Bayesian networks are used to compute such probabilities via functions initializeReliability(),

increaseReliability() and decreaseReliability(). In addition to Bayesian networks, estimates

contain several other fields, listed and initialized between Lines 2 and 12, and explained next.

Algorithm structure. Algorithm 4 is an epidemic-type protocol: each process pk periodically

sends its Λk and Ck approximation to its neighbors; the periodicity is set to δ and also serves

as a heartbeat protocol to detect process crashes and messages losses. This epidemic-type

propagation is shown on Lines 14 to 17. Although these messages are completely independent

of the application, the information they convey could be piggybacked into application messages.

Approximating Λ. Process pk initializes Λk with the links to its neighbors (Line 9). When-

ever pk receives (Λj , Cj) from some neighbor pj , it adds all links in Λj to Λk (Line 33.) Next

time pk sends its view of Λk to its neighbors, Λk will contain these additional links. As already

discussed, this strategy ensures that Λk will eventually embrace the complete topology, i.e., it

will eventually converge to Λ.

2Additional complexity here means using dynamic data structures instead of static ones.
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Approximating C. To approximate C (i.e., the crash probability of processes in Π and the

message loss probability of links in Λ), pk relies on the four events presented next.

• Event 1. Reception of (Λj , Cj) from neighbor pj (Lines 18–33). This event allows pk to

know how many messages were lost by link lk,j . Each heartbeat sent by pj holds a sequence

number in Cj [pj ].seq. Similarly, pk keeps in Ck[pj ].seq the sequence number of the last

heartbeat received from pj and in Ck[pj ].suspected the number of times it suspected lk,j

since the last time it received a heartbeat from pj . Based on this information, pk can

proportionally adjust the message loss probability of lk,j (Line 19) and decide whether the

suspicion timeout associated with pj should be adjusted (Line 23).

Process pk also uses Cj to select and adopt the best estimate for each process and for

each link. This is done by function selectBestEstimate() presented in Algorithm 3. This

function selects the best estimate based on the notion of distortion factor. Intuitively, for

any pi, the corresponding distortion factor Ck[pi].d is proportional both to the network

distance between pk and pi, and to how much time ran out since pk last updated its

estimate about pi. A similar principle applies to the estimate of any link li, except that in

this case the distortion factor merely captures the distance between pk and li. The minimal

value of Ck[pi].d is given by the network distance between pk and pi, and Ck[pi].d increases

as pk hears nothing about pi (directly or indirectly) for a given period of time (timeout

∆k[pi]). This is why process estimates in Ck have their distortion factor initialized to ∞:
initially, pk knows nothing about the failure probabilities of other processes. For its own

probability and the probability of direct links, the distortion factor is 0.

Given two distortion factors, selecting the best estimate means adopting the less distorted

one. In addition, when adopting pj ’s estimate, process pk also increments the correspond-

ing distortion factor. This accounts for the fact that the estimate pk just adopted is now

second-hand. Note that having the distortion factor Cj [pj ].d = 0 guarantees that the es-

timate of pj concerning its own reliability will always be adopted by pk. Finally, selecting

the best estimates only makes sense for links that are already known to pk. For new links,

pk merely adopts pj ’s estimate and adjusts the distortion factor (Lines 30–32).

• Event 2. No update of pj’s estimate for ∆k[pj ] time (Lines 34–39). The distortion factor

associated with some estimate Ck[pj ] captures the fact that in absence of news about pj , its
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estimate should get more distorted. This increase in distortion is captured by incrementing

Ck[pj ].d (Line 35). If pj is also a neighbor of pk, the absence of update means that pk did

not receive any heartbeats from pj for some time, and so, it should suspect it. Furthermore,

both pj and the link to it should have their estimated reliability decreased (Lines 38–39).

• Events 3 and 4. No crash of pk during ∆up time, and returning from a crash lasting

∆down time (Lines 40–43). The last two events help augment pk’s knowledge about its

own reliability. The idea is to increase or decrease pk’s estimate of its own reliability

proportionally to how long it stayed up and down.

Algorithm 3 Best estimate selection at process pk

1: function selectBestEstimate(ek, ej)
2: if ej .d < ek.d then {less distorted is best}
3: ek ← ej {adopt the best and}
4: ek.d← ek.d+ 1 {adjust distortion}

4.3 Bayesian Networks

To estimate the failure probability of some process or link, pk builds a list of probability intervals

and maintains for each interval a belief that the failure probability lies within the corresponding

interval. In doing so, pk actually builds a small Bayesian network b → s, where b is the belief

and s is the failure probability. Functions initializeReliability(), decreaseReliability() and

increaseReliability() are responsible for managing such Bayesian networks (see Algorithm 5).

Let F be the event associated with the crash of some process, the message loss of some

link, or merely the suspicion that such a crash or loss occurred. We denote by PF |B [u] the

u-th probability interval associated with F at pk, and by PB[u] the corresponding belief, i.e., the

probability that the “real” failure probability in C lies within the u-th interval. In Algorithm 5 we

consider U failure probability intervals (Line 2), initially associated to identical beliefs (Lines 5

to 7).

To compute the new degree of belief B on a given interval u, based on the observation of

an event F , pk uses basic conditional probability PB|F [u] × PF = PF |B [u] × PB[u] and Bayes

theorem given by Eq. (4). This equation is used to compute the belief a posteriori on PF |B [u]

(denoted by PB|F [u]), which will be the new value of PB[u] after event F has been observed

by pk. This is precisely what function decreaseReliability() of Algorithm 5 does (Lines 8 to 11).
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Algorithm 4 Approximating (Λk, Ck) at process pk

1: Initialization:

2: for all pi ∈ Π do {initialize all process estimates with:}
3: initializeReliability(Ck[pi]) {a set of reliability beliefs}
4: Ck[pi].d←∞ {a distortion factor}
5: Ck[pi].seq ← 0 {a heartbeat sequencer}
6: Ck[pi].suspected← 0 {a suspicion counter}
7: ∆k[pi]← δ {a heartbeat timeout}
8: Ck[pk].d← 0 {pk sees itself with no distortion}

9: Λk ← {lk,i | pi ∈ neighbors(pk)} {first pk only knows about neighbor links}
10: for all li ∈ Λk do {initialize these link estimates with:}
11: initializeReliability(Ck[li]) {a set of reliability beliefs}
12: Ck[li].d← 0 {a distortion factor}

13: To update (Λk, Ck):

14: every ∆k[pk] do : {do periodically:}
15: Ck[pk].seq ← Ck[pk].seq + 1 {increment heartbeat sequencer}
16: for all pi ∈ neighbors(pk) do {propagate my estimates via}
17: send (Λk, Ck) to pi {a sequenced heartbeat}

18: when received (Λj , Cj) from pj do {Event 1}
19: adjust← Ck[pj ].suspected− (Cj [pj ].seq − Ck[pj ].seq) {adjustment factor for link suspicions}
20: Ck[pj ].suspected← 0 {and cancel all suspicions}
21: if adjust > 0 then {link lk,j was suspected too much}
22: increaseReliability(Ck[lk,j ], adjust) {update pk’s belief about that link}
23: if adjust > 1 then ∆k[pj ]← ∆k[pj ] + δ {so adjust its associated timeout}
24: if adjust < 0 then {link lk,j was not suspected enough}
25: decreaseReliability(Ck[lk,j ], |adjust|) {update pk’s belief about that link}
26: for all pi ∈ Π do {for each process, take}
27: selectBestEstimate(Ck[pi], Cj [pi]) {the most accurate estimate}
28: for all li ∈ (Λk ∩ Λj) do {for each common link, take}
29: selectBestEstimate(Ck[li], Cj [li]) {the most accurate estimate}
30: for all li ∈ Λj − (Λk ∩ Λj) do {for new links, simply}
31: Ck[li]← Cj [li] {adopt pj ’s estimate}
32: Ck[li].d← Ck[li].d+ 1 {and adjust distortion}
33: Λk ← Λk ∪ Λj {finally, merge topology knowledge}

34: when not[updated Ck[pj ], pj 6= pk, in the last ∆k[pj ]] do {Event 2}
35: Ck[pj ].d← Ck[pj ].d+ 1 {knowledge gets distorted with time}
36: if pj ∈ neighbors(pk) then {in addition, neighbors should be}
37: Ck[pj ].suspected← Ck[pj ].suspected+ 1 {suspected and their reliability}
38: decreaseReliability(Ck[pj ], 1) {beliefs should be updated}
39: decreaseReliability(Ck[lk,j ], 1) {as well as the link to them}

40: every ∆tick do {Event 3}
41: increaseReliability(Ck[pk], 1) {update pk’s belief about itself}

42: when recovering from a crash lasting n×∆tick do {Event 4}
43: decreaseReliability(Ck[pk], n) {update pk’s belief about itself}

14



Algorithm 5 Reliability beliefs management

1: Initialization

2: U ← 100 {precision of probabilistic intervals}

3: function initializeReliability(estimate)
4: with estimate do

5: for all u = 1..U do

6: PF |B [u]←
2u−1
2U

{probabilistic intervals}
7: PB [u]←

1
U

{with equal initial beliefs}

8: function decreaseReliability(estimate, factor)
9: with estimate repeat factor times

10: for all u = 1..U do

11: PB [u]←
PB [u]×PF |B [u]

∑

U
v=1 PB [v]×PF |B [v]

12: function increaseReliability(estimate, factor)
13: with estimate repeat factor times

14: for all u = 1..U do

15: PB [u]←
PB [u]×(1−PF |B [u])

∑

U
v=1 PB [v]×(1−PF |B [v])

As shown in function increaseReliability(), a similar computation is performed to account for

the absence of failure (Lines 12 to 15).

PB|F [u] =
PF |B [u]× PB[u]

∑U
v=1 PF |B [v]× PB[v]

(4)

Table 1 illustrates how Bayesian approximation works. The example starts with an initial

configuration with equal a priori beliefs for U = 5 (case a). Then, it shows how the beliefs

have been adapted after a suspicion (case b). Since the real probability must fall into some

probability interval of Table 1, we have that
∑

u Ck[pi].PB[u] = 1 is an invariant of Algorithm 4.

u Ck[pi].PF |B [u] Ck[pi].PB[u]

1 [0.0 , 0.2) 0.2
2 [0.2 , 0.4) 0.2
3 [0.4 , 0.6) 0.2
4 [0.6 , 0.8) 0.2
5 [0.8 , 1.0] 0.2

(a) Initial configuration

u Ck[pi].PF |B [u] Ck[pi].PB[u]

1 [0.0 , 0.2) 0.04
2 [0.2 , 0.4) 0.12
3 [0.4 , 0.6) 0.20
4 [0.6 , 0.8) 0.28
5 [0.8 , 1.0] 0.36

(b) After a failure suspicion

Table 1: Adapting failure beliefs after a suspicion

5 Simulation Results

In order to evaluate the performance of our adaptive algorithm we built a discrete-event simu-

lation model and conducted several experiments with it. Our model simulates the behavior of

processes and links in a distributed system, associating a crash probability to each process and

a loss probability to each link. To simplify the interpretation of our results, we considered that
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all processes have the same crash probability P and that all links have the same loss probability

L. This choice counts against our adaptive algorithm because contrary to traditional gossip, our

solution selects the most reliable links. Nevertheless, even under such unfavorable conditions,

the results provide strong evidence about the benefits of an adaptive strategy.

We performed experiments with 100 processes for several network topologies. In the min-

imal network connectivity setup each process had two neighbors (i.e., the network is a ring).

The connectivity was increased until each process had 20 neighbors. Heartbeat messages were

50K bytes long and contained a small Bayesian network per process, information about the loss

probability of links, and some additional fields as described in Section 4.2.

Our results were compared to a reference algorithm, implementing a typical gossip-based

reliable broadcast. The execution proceeds in steps, and in each step processes forward data

messages to their neighbors. The execution continues until all processes have been reached with

probability 0.9999—the exact number of steps needed depends on the parameters of a particular

setup and were determined interactively. As a simple optimization, processes acknowledge the

receipt of data messages. Thus, when choosing the neighbors to which some data message m

will be forwarded, each process p never forwards m to its neighbor q if (a) it has previously

received m from q, or (b) it has received an acknowledgment message from q for m.

In Figure 4 we compare the adaptive and the reference algorithms. In Figure 4(a), we varied

the crash probability while assuming that links were reliable (i.e., L = 0); in Figure 4(b) we

varied the message loss probability while assuming that processes were reliable (i.e., P = 0). In

both figures, the y-axis shows the ratio between the number of messages sent by the reference

algorithm and by the adaptive algorithm to reach all processes with the same probability. For

example, when the connectivity is 16 and P = 0.03, the adaptive algorithm needs 4 times fewer

messages than the reference algorithm to reach all processes with the same probability. The

adaptive algorithm provides better results as the connectivity of the network increases. This is

due to the fact that in low-connected graphs in which processes and link have the same reliability,

the adaptive algorithm does not have much room for improving the forwarding mechanism.

Figure 5 shows the effort needed to converge (i.e., all processes in the system learn the

reliability probabilities) in number of messages per link. This parameter is twice the number of

heartbeat messages sent by a process through a link until all processes converge. For example,

when the network connectivity is 6 and L = 0.05, about 400 heartbeat messages will be sent

16



0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22

R
ef

er
en

ce
 a

lg
or

ith
m

 / 
O

pt
im

al
 a

lg
or

ith
m

Network connectivity (links / process)

P=0.01
P=0.03
P=0.05
P=0.07

(a)

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20 22

R
ef

er
en

ce
 a

lg
or

ith
m

 / 
O

pt
im

al
 a

lg
or

ith
m

Network connectivity (link / process)

L=0.01
L=0.03
L=0.05
L=0.07

(b)

Figure 4: Algorithms with (a) reliable links and (b) reliable processes

per process through a link. If heartbeats are sent each 1 second, the adaptive mechanism will

converge in about 7 minutes. Two factors amount for the convergence time: the time it takes for

the Bayesian networks to find the right probability interval accurately—in the simulations we

used 100 probability intervals—and the time it takes for this information to reach all processes.
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Figure 5: Convergence with (a) reliable links and (b) reliable processes

Connectivity has a double effect on convergence. On the one hand it helps convergence since

it reduces the time it takes for the inferred information to arrive at all processes. On the other

hand, it hurts convergence since as more links are added, more information has to be inferred.

We have also observed that low probabilities are easier to be inferred by our Bayesian model

than high probabilities. In the case of links, the effects are more noticeable since links are more

numerous than processes. This can be observed in Figure 5(b) when L = 0.05.
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To evaluate the scalability of our adaptive algorithm, we executed simulations using two

types of network topologies: a ring (i.e., each process connected to two others) and a random

tree. In both cases about 100 graphs were generated for each experiment (see Figure 6). The ring

is a worst-case topology in which messages should traverse in the average half the processes in

the network. In such a case, the convergence time increases linearly with the size of the system.

For random trees, however, the convergence time is almost constant . In practical scenarios, the

topology is expected to be closer to a tree than to a ring.
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Figure 6: Algorithm scalability

6 Related Work

Epidemic protocols, also known as gossip protocols, were introduced in the context of replicated

database consistency management [3]. They were first used to implement reliable broadcast in

large networks in [2]. This latter protocol proceeds in two phases. In the first phase, processes

use an unreliable gossip-based dissemination of information to transmit messages; in the second

phase, messages losses are detected and repaired via re-transmissions. Many variations of this

protocol have been proposed, mostly orthogonal to the ideas described in our paper. Improved

buffering techniques, for example, have been considered in [6] and [9]. In both cases, the goal

is to limit the amount buffering required for a message. While the former work requires a full

knowledge about the system membership, the latter does not. The approach in [9] is mainly

concerned with process recovery. Alternative approaches have considered recovering messages

from the sender’s log [12]. In [6], heuristics are presented to garbage collect messages. The

approach aims to identify ”aging” buffered messages.
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The only adaptive gossip-based reliable broadcast protocol we are aware of is [11]. In this

protocol, processes adjust the message rate emission to the amount of resources available (i.e.,

buffer size) and to the global level of congestion in the system. Processes periodically evaluate

the available resources in the system and from time to time exchange the minimum buffer size.

Senders then reduce their gossip rate according to their estimates about the mean number

of messages in a process’ buffer. We are not concerned with adjusting sending rates in this

work, and the ideas described in this work could be easily integrated in our algorithm. Control

information, for example, used in both algorithms could be combined into a single message.

In [4] and [5] the authors show how to implement a gossip-based reliable broadcast protocol in

an environment in which processes have a partial view of the system membership. Our approach

does not require processes to know all the system members or the topology connecting them.

This information, however, allows processes to improve their gossiping.

Reducing the number of gossip messages exchanged between processes by taking the network

topology into account is discussed in [7] and [8]. Processes communicate according to a pre-

determined graph with minimal connectivity to attain a desired level of reliability. Similarly to

our approach, the idea is to define a directed spanning tree on the processes. Differently from

ours, no process and link reliability guarantees are taken into account to build such trees.

7 Concluding Remarks

This paper was motivated by a simple observation: typical gossip algorithms need to retransmit

more messages than adaptive algorithms to reach the same reliability probability. Based on

this observation, we proposed a new approach for broadcasting messages with a given reliability

probability. For this purpose, we defined the notions of optimal and adaptive probabilistic

reliable broadcast algorithms. We then proposed an algorithm that converges toward optimality,

by adapting its behavior to the distributed environment in which it executes. When provided

with exact knowledge about failure probabilities, we proved that our adaptive algorithm is indeed

optimal. We also evaluated the performance of our algorithm through simulation and showed

that it quickly converges toward exact knowledge of failure probabilities.

We plan to pursue this work in several directions. First, we intend to apply our approach to

distributed problems other than reliable broadcast and to consider optimality criteria different

than the number of messages. Another idea is to improve our statistical inference mechanism, for
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example by dynamically increasing the number of probabilistic intervals when better precision

is required. Along the simulation axis, we also plan to gather further results based on more

complex topologies. For example, our current simulations rely on the conservative assumption

that all failure probabilities are identical. By revisiting this assumption, we expect our adaptive

algorithm to further increase its performance gain with respect to typical gossip algorithms.
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A Typical vs. Adaptive Gossip Algorithm

The example presented in Section 1 consists of nodes N1 and N2 connected through two inde-

pendent paths. Path one has a loss probability of L; path two has a loss probability of αL, where

α > 1. After k0 messages are transmitted with a typical gossip algorithm, k0/2 go through path

one and k0/2 through path two. Thus, the probability that a message reaches N2 through path

one and two is, respectively, 1 − Lk0/2 and 1 − (αL)k0/2. And the probability that a message

reaches N2 through any path is 1−Lk0/2(αL)k0/2 = 1− (√αL)k0 . With an adaptive algorithm,

all messages go through path two, which has a smaller loss probability. The probability that at

least one out of k1 messages reaches N2 is then 1 − Lk1 . We can then determine the relation

k1/k0 when both methods lead to the same probability: 1− (
√
αL)k0 = 1− Lk1 , which can be

developed into k1 log L = k0 log (
√
αL), resulting in k1/k0 = 0.5 logL α+ 1.

B Maximum Reliability Tree Algorithm

The Maximum Reliability Tree is a spanning tree containing the most reliable paths in G =

(Π,Λ) connecting all processes in Π. Algorithm 6 implements function mrt(G,C) using a mod-

ified version of Prim’s algorithm [1]. Function mrt(G,C) returns graph (Π,Γ), where Γ ⊆ Λ
contains exactly |Π| − 1 links. C is used in mrt() to determine the reliability of the links.

Algorithm 6 Maximum Reliability Tree (MRT)

1: function mrt(G,C)
2: Γ← ∅
3: S ← {p1}
4: while Π \ S 6= ∅ do
5: R = {lu,v | lu,v ∈ Λ and pu ∈ S and pv ∈ Π \ S}
6: let lu,v ∈ R such for all lr,s ∈ R: (1−Pu)× (1−Lu,v)× (1−Pv) ≥ (1−Pr)× (1−Lr,s)× (1−Ps)
7: Γ← Γ ∪ {lu,v}
8: S ← S ∪ {pv}
9: return (Π,Γ)
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C Optimality Proof of MRT

We initially prove the following lemmata. A link in a graph between processes p and q means

that either p sends a message to q, or q sends a message to p, or both.

Lemma 1 Every optimal algorithm propagates messages according to some tree T ⊆ G.

Proof (sketch): The proof is by contradiction. Assume T is not a tree. Then there is

necessarily a cycle in T . Let R ⊆ T such that R is a cycle with the minimum number of

processes and links. Let p be a process in R that receives a message from a process not in T , or

p is the source. Since T is optimal, p clearly does not receive any messages from its left and right

neighbors. Thus, p sends messages to its both neighbors. Without loss of generality, assume q

is p’s right neighbor. So, q does not send a message to p but to its other neighbor. Applying a

recursive reasoning, and from the fact that R is a cycle, we conclude that p’s left neighbor sends

a message to p. A contradiction. 2

Lemma 2 MRT propagates fewer messages than any other spanning tree in G.

Proof (sketch): Let U be an undirected graph that represents the network. An edge connects

nodes a and b in U if and only if a and b are neighbors in the original network, and its value is

given by 1− (1−Pa)× (1−La,b)× (1−Pb). Hence, the MRT is exactly the maximum spanning

tree of U and one important propriety of it is that it is always possible to find a bijection B

between its edges and the edges of any other spanning tree ST, such that every edge in the

maximum spanning tree has a higher or equal value than its relative edge in ST. This means

that a different tree will have to send at least the same amount of messages through its channels

in order to have a message reliably broadcast. 2

Theorem 1 Our MRT-based algorithm is optimal.

Proof: Immediate from Lemmata 1 and 2. 2
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D Optimality Proof of optimize()

In order to simplify the optimality proof of our greedy algorithm, we first operate a problem

transformation by swapping the objective function c(~m) and the constraint function r(~m) in

Eq. (3). Such a transformation results in the optimization problem presented in Eq. (5).

maximize r(~m) =

|~m|
∏

j=1

1− λ
m[j]
j

subject to c(~m) =

|~m|
∑

j=1

m[j] ≤ M

(5)

In this new problem,M is a number of messages given a priori that constraints function c(~m),

whereas the probability to reach all processes represented by function r(~m) has now to be

maximized. It is straightforward to see that the two problems are equivalent, i.e., any solution

to one of these problems can be derived into a solution to the other problem.3 For conciseness

sake, we do not prove the corresponding Lemma 3.

Lemma 3 The two optimization problems of Eq. (3) and Eq. (5) are equivalent.

For our proof, we also need to express the gain function α() in a way that allow us to reason

about it properties; this is the purpose of Eq. (6). From this expression, a straightforward

induction proof shows that α() is isotonic, i.e., non-decreasing. This property is illustrated by

Eq. (7). Again, for conciseness sake, we do not prove the corresponding Lemma 4.

αr(~m, ~mk) =
1− λ

mk+1
k

1− λ
mk
k

(6) αr(~m, ~mk) =
1− λ

mk+1
k

1− λ
mk
k

≥
1− λ

mk+2
k

1− λ
mk+1
k

= αr(~m+ ~mk, ~mk) (7)

Lemma 4 The gain function α() is isotonic.

Given Lemmata 3 and 4, we can now prove that Algorithm 2 solves the optimization problem

of Eq. (3), by showing that Eq. (5) defines an equivalent greedy problem. This is the aim of

Lemma 5 and Theorem 2 presented hereafter.

3Furthermore, if we replace the stop condition in Algorithm 2 with c(~m) = M , we immediately get a greedy

algorithm for the new problem.
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Lemma 5 Eq. (5) defines a greedy problem.

Proof: We have to prove that the problem defined by Eq. (5) exhibits the two classical prop-

erties known as the Greedy Choice Property and the Optimal Substructure Property.

Greedy Choice Property. We have to show that the first step taken by our greedy

algorithm, say g = ~uk, can be part of some optimal solution. Let ~ms be an optimal

solution that does not contain step g. From this, we know that ~ms =
∑

i ms[i]× ~ui with

ms[k] = 1. Then, from Lemma 4, we know that if the gain is maximum for ~uk on the first

step of Algorithm 2, i.e., when ∀i : ms[i] = 1, this is still the case if ∃i 6= k such that

ms[i] > 1. From this, we conclude that the solution ~mg = ~ms − ~ui + ~uk, which contains

our first greedy step g, is as good as solution ~ms. Hence ~mg is an optimal solution as well.

Optimal Substructure Property. From the above, we know that there exists an opti-

mal solution ~mg that includes our first greedy step g = ~uk. We now have to show that after

that first step, we are left with a subproblem which is optimally solved in ~m′
g = ~mg − ~uk.

Let P be the original problem given by Eq. (5) and P ′ the subproblem obtained after

applying step g. Eq. (8) below expresses the new problem P ′.

maximize r′(~m) =
k−1
∏

j=1

1− λ
m[j]
j × (1− λ

m[k]+1
k ) ×

|~m|
∏

j=k+1

1− λ
m[j]
j

subject to c′(~m) =

k−1
∑

j=1

m[j] + (m[k] + 1) +

|~m|
∑

j=k+1

m[j] ≤ M

(8)

We show that ~m′g is an optimal solution for P
′ by contradiction. Assume that there exists

a solution to P ′, say ~ms, such that c
′(~ms) ≤M and r′(~ms) > r′(~m′g). On the other hand,

we have that r′(~m′g) = r(~mg) is maximum under the constraint c(~mg) = c′(~m′g) ≤ M .

A contradiction. 2

Theorem 2 Algorithm 2 solves the optimization problem of Eq. (3).

Proof: Immediate from Lemmata 3 and 5. 2
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