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Abstract

Initial work on peer-to-peer systems has focused on find-
ing information in large-scale decentralized systems. More
recently, the focus has shifted to sharing information in such
contexts. Meeting this goal in environments in which many
data replicas change their state frequently is very challeng-
ing. The objectives of the work described in this paper is two-
fold: designing mechanisms that allow information lookup
based not only on unique data keys, but also on meta data,
and enabling efficient and scalable implementation of data
sharing by providing a notion of consistency weaker than ex-
istent proposals. The paper formalizes the notion of weak
consistency in peer-to-peer environments, and presents de-
tailed implementations of our information lookup and data
sharing mechanisms.

1. Introduction

The first wave of peer-to-peer systems, such as Napster [3]
and Gnutella [2], focussed on finding information in large-
scale, decentralized systems with an ad-hoc structure. More
recently, peer-to-peer systems, such as OceanStore [9], are
starting to address the more ambitious issue of sharing infor-
mation in a large-scale, decentralized setting. Systems that
address information sharing typically have to deal with infor-
mation that changes over time. In a decentralized setting, this
means dealing with consistency of mutable, replicated data.
Implementing consistency for a large number of mutable data
replicas in a scalable manner is very challenging. Our goal
is to provide middleware building blocks that meet this chal-
lenge in a peer-to-peer setting.

As observed by other researchers, such as [11, 19, 14], the
notion of a distributed hash table is a nice middleware build-
ing block to enable information sharing. We can use a hash
table as an information directory. The values stored in a hash
table can either be the information itself or some reference
to the information. The hash table keys can be used to name
and access the information. The information associated with
a given name can now change over time: we can update the

key-to-value mapping in a hash table. In short, peers can share
information through read and write operations on a distributed
hash table.

We extend existing work on hash-table-based middleware
in two directions:

� Where hash-tables support information lookup based on
unique keys only, we provide information lookup based
on general queries over arbitrary information meta-data.

� Where traditional implementations of distributed hash-
tables seek to provide the usual, single-copy semantics
for updates and lookups, we define and implement a
weaker notion of read-write consistency that allows for
a more distributed and scalable system.

In our system, information meta-data is a set of arbitrary
name-value pairs that describe a piece of shared information.
For example, if the shared information is a document, the
meta-data may contain the name of the author and a number
of keywords for the document content. If the shared informa-
tion is an enterprise directory, each entry in the directory may
have meta data that contains the location code and reporting
structure for the employee in question. Because of the more
flexible lookup capabilities, we refer to our system as a state
manager rather than a hash-table. A state manager maintains
a set of variables, where each variable maps meta-data to a
piece of shared information. The basic operations on a state
manager is the creation and deletion of variables, the lookup
of information based on a meta-data query, and the assign-
ment of a new piece of information to an existing variable.

Being able to access information based on arbitrary meta-
data makes the system more flexible. In fact, the reliance in
existing systems on unique keys has already been identified
as a weakness [15]. However, being able to access informa-
tion based on meta-data also introduces new challenges. For
example, existing systems that implement a distributed hash-
table typically partition the key space among the nodes of the
system, and define efficient routing algorithms through the
network. In this way, both lookup and update operations can
be routed to the node responsible for maintaining the map-
ping for a given key. Because a state manager has arbitrary
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meta-data, we cannot partition the variable space and route
each state manager operation to a single node only: we do
not know, a priori, which nodes will satisfy a given meta-data
query.

In terms of consistency, existing work seeks to implement
the “usual” hash-table semantics: a distributed hash table be-
haves as if it were a centralized data structure that is accessed
sequentially. It is very hard to efficiently implement the usual
hash-table semantics in a very large-scale distributed system.
As an alternative, we define and implement a weaker notion
of consistency that to some extent exposes the presence of a
replicated state manager.

Our notion of consistency reflects the semantics typically
associated with existing large-scale information-sharing sys-
tems, such as the Domain Name System (DNS), the World-
Wide Web, and wide-area publish-subscribe systems. In these
systems, update propagation is not instantaneous, but rather
time bounded. That is, users of these systems may observe in-
formation being out-of-date for some bounded period of time.
Furthermore, a given information copy may not necessarily
receive all updates. Reception of the latest version makes all
older versions obsolete and unnecessary.

We have implemented a distributed, decentralized state
manager that provides our weak consistency model. We de-
compose the general state manager into variable management
and discovery sub-systems. This has allowed us to focus
on specific problems and use existing work where appropri-
ate. The discovery capability is built on an enhanced gnutella
search network which interoperates with the existing network,
but scales well and allows arbitrary meta-data queries to be
performed. We have designed new protocols for the formation
of networks to update and propagate changes to state manager
variables. In both cases, we retain the benefits of peer-based
systems in the areas of scalability, reliability and adaptation
to change.

The rest of the paper is structured in the following manner.
We formalize out notion of weak consistency in Section 2. We
present our implementation in Section 3. We discuss possible
improvements to the implementation in Section 4. Section 5
outlines related work, and Section 6 provides concluding re-
marks.

2. System Model and Correctness

2.1. Processes and Communication

We consider a system with � processes and use � to refer
to the set of processes (� � ���� ��� � � � ���). We also refer
to the elements of� as peers, and use the terms “process” and
“peer’ inter-changeably throughout this paper. At any given
time, a process is either present or absent. When a process is
present, it executes at its own speed and according to its pre-
scribed algorithm. When a process is absent, it is completely

passive and does not execute any instructions. In particular,
we assume that a proces never acts maliciously.

The transition from present to absent, and vice versa, is
atomic. A leave event at a process � captures the transition of
� from present to abssent; a join event captures the transition
from absent to present. A leave event may happen because a
process crashes or it may happen because the process chooses
to disconnect from the network. Processes may leave silently,
we do not assume that a processes notifies other processes that
it is about to leave. A join event may happen because a pro-
cess recovers from a crash, or because it chooses to connect
to the network. A process may either be absent or present
initially.

A process is called unstable if it leaves and joins and infi-
nite number of times. A process is called correct if there is a
time after which it is permanently present.

Processes communicate by passing messages. We assume
that communication links can lose messages but not corrupt
them. Moreover, if a process � keeps sending some message
� to process �, and � remains present, then � eventually re-
ceives �. Therefore, processes can build reliable commu-
nication on top of unreliable links by periodically resending
messages. Our protocols do not always need reliable commu-
nication, however, and so, unless stated otherwise, we con-
sider that communication is unreliable.

2.2. Correctness

We define what it means for a state manager to be correct.
We focus on the notion of consistency that a state manager
must ensure relative to queries and updates of its variables. To
formally define our notion of single-variable consistency, we
model a variable as a special kind of read-write register that
we refer to as a convergence register. In defining consistency,
we do not consider the creation or deletion of variables, nor
do we capture the ability to perform meta-data queries. Fur-
thermore, we define the properties of a single register only—
a state manager does not provide consistency guarantees for
multi-variable operations.

A convergence register has two operations: read and write.
A write operation takes a value in a domain ����� (� �
�����). A read operation returns a value in ����� � ���
(� �� �����). Informally, write assigns a new value to a vari-
able and read determines the current value of a variable.

To distinguish between different invocations of the write
operation, we assume that each value is written at most once.
In practice, we can “implement” this assumption by associat-
ing a unique identifier with each invocation of the write oper-
ation and consider the identifier to be part of the written value.

We specify the properties of a convergence register in
terms of events. In modeling a system’s behavior, we con-
sider communication events and register events. Communi-
cation events reflect message passing between processes. The
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event �������� occurs when a process � sends a message �,
and the event ����������� occurs when a process � receives a
message �.

Register events reflect the start and completion of register
operations (read and write). The event ������ captures the
start of a read operation at a process �. A start event ������
occurs when � invokes the read operation on a register. The
event ��������� denotes the completion of a read operation
that returns � at a process �. A completion event ���������
occurs when a process � returns from the invocation of a read
operation. Similarly, the events �	��
����� and �	��
����� de-
note the start and completion of a write operation with param-
eter � at a process �, and these events occur when � invokes a
write operation or when � returns from such an invocation.

We assume that the events at any given process � are to-
tally ordered according to a precedence relation��. We use
the inherent ordering of message-passing events to extend this
local precedence relation to a global precendece relation �.
Where�� is a total order,� is a partial order only. In accor-
dance with well-established practice [10], we define� in the
following manner:

1. Sending a message always preceedes receiving it:

��������� �����������

2. The global precedence order obeys the per-process total
order:

�� �� �� � �� � ��

3. The global precedence order is transitive:

�� � �� � �� � �� � �� � ��

We extend the notion of precedence to written values in
the following way: if �	��
����

�� � �	��
�����, we say that
�� preceedes �. Moreover, we assume that � preceedes any
written value.

If a run contains the event ���������, we say that � reads
�. Similarly, if a run contains �	��
�����, we say that � writes
�. If ��������� � ��������

�� we say that � reads � before it
reads ��.

With this terminology, we can now define the properties of
a convergence register. In the properties, �, ��, and �� are all
non-� values.

� TERMINATION: If a process invokes read or write, and
then remains present, then the invocation eventually re-
turns.

� INTEGRITY: If a process reads � then some process in-
vokes write with parameter �.

� ORDER: If a process reads �� before it reads ��, then no
process reads �� before it reads ��.

� PROGRESS: If a process writes �, and then remains
present, then eventually no correct process reads a value
that preceedes �.

� CONVERGENCE: If a run contains only a finite number
of �	��
� events, then eventually each read operation at
every correct process returns the same value.

The ORDER, PROGRESS, and CONVERGENCE properties
complement each other to define a weak, yet useful, notion of
consistency for replicated state. Without order, the processes
may disagree about the current value for arbitrary periods of
time. For example, if two processes, p1 and p2 concurrenctly
write the values v1 and v2, p1 may initially read v1, and
then later read v2, whereas p2 may initially read v2, and
then later read v1. To satisfy convergence, the processes must
eventually agree on a common value, but this agreement can
be arbitrarily postponed (the agreement is only required to
hold for correct processes).

Without the PROGRESS property, a register may forever
use the first value written as the return value from all read
operations. That is, the register implementation may simply
drop all subsequent values written.

Without the CONVERGENCE property, two parts of the net-
work may forever operate independently, that is, processes
are allowed to perpetually read and write values in isolation.
Roughly speaking, convergence supplements progress to en-
sure some notion of “agreement” in a system with concurrent
write operations. If write operations are totally ordered ac-
cording to the precedence relation, and if processes that in-
voke write are perpetually present, progress implies conver-
gence.

3. Implementation

Our algorithmic approach to the state management abstrac-
tion is to decompose the problem into two sub-problems. The
first is discovery. That is, how a new comer to the network
is able to discover a variable of interest and attach to the net-
work. The second is managing state updates and providing
the consistency guarantees defined in the previous section.

For discovery, our approach is to augment an existing
search network, gnutella [2]. Gnutella’s failures in the area of
scalability have been well documented [4]. However, rather
than replace the already defined protocols, we take the ap-
proach of performing more intelligent peer selection algo-
rithms at each process. The goal is to generate a search net-
work which is more efficient than is found in today’s ran-
domly generated networks.

State updates are handled by designating one process as the
owner (process �� in the example network) of a state variable
at any point in time. Only the owner may update the state of
the variable by adding a new attribute or changing the value
of an attribute. The updated state is periodically propagated
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to other processes which have previously shown interest in
the state of the variable. These two algorithms are described
in more detail in the following sections. The algorithms as
described here are what have been implemented in our pro-
totype. Specific extensions to the implemented protocols are
discussed in the following section.

3.1. Intelligent Peer Searching

The network of processes can easily grow to a large num-
ber of participants with processes activating or disappearing
dynamically. As a result, the topology of the network can be
random with various connectivity degrees between the peers,
regardless of the physical location, resource capabilities or the
state of the processes. To address this problem, our approach
is to make intelligent connections among the peers. This has
the important advantages: (1) reduces the number of mes-
sages in the network and also the number of peers that pro-
cess and propagate these messages and, (2) scales well with
respect to the size of the network.

3.1.1 Discovering the Network of Processes

A process joins the network of processes by establishing a
connection with at least one process currently in the network.
These are peers with which the process had previous connec-
tions to and is likely to connect to in the future. At any given
time a process can become absent, in which case the process
will have to find an alternative peer to connect to or probes
a centralized server such as [3] to obtain a list of currently
present processes in the network. The process constructs and
maintains a list of known processes, called PeerList. Each
process has a limited amount of bandwidth in the network and
therefore limits the number of connections it can accept. The
process of discovering the network of processes, is facilitated
by the following two communication events:

� ping: discover active processes in the network

� pong: a process that receives the ping message accepts
the connection by replying with a pong message. In ad-
dition, it piggybacks information about the process, such
as its geographic location and the type of connection
(e.g., modem, DSL) it supports.

3.1.2 Intelligent Peer Connections

A process searches in the network by sending query messages
to its peer processes. A query message contains a constraint
that is evaluated locally at each peer to determine what re-
sults to return. The constraint includes a set of meta-data that
describe the search request.

The process that receives the query message evaluates the
query locally and should a number of results be found, replies

with a query hit message that includes an enumeration of the
matching search results along with the IP address of how they
can be invoked.

The problem in the current pure P2P networks such as
Gnutella [2] is that because the networks are formed in an ar-
bitrary manner the messages may have to travel a large num-
ber of hops from one process to another until the results are
found. To address this problem, our algorithm selects the con-
nections among peers so that peers with similar interests (such
as same file replicas) are connected to each other. This has the
important advantage of reducing the end-to-end delay in find-
ing the data and minimizing the number of messages in the
network [13].

To identify good peers, each process builds a profile of its
peer processes. The profile includes the list of the most recent
� past queries and the specific peer that provided the answer
for. The process accumulates the list of past queries by two
different mechanisms: (1) by monitoring the number and type
of requests (Query messages) performed by this process in the
network, and (2) by recording the peer processes that replied
to its requests (QueryHit messages) and the number and type
of requests they generated.

The process updates the list of queries at its local repos-
itory. Note though, that for each process peer this list is in-
complete, because these are only the queries that were routed
through this node. As the system operates, the size and accu-
racy of the list increases over time.

When a process identifies that a peer is frequently produc-
ing good results to its requests, it moves closer to it in the net-
work by establishing a direct connection to that peer. If the
number of available connections at the node exceeds, the pro-
cess removes one of its existing connections. The decision of
which connection to remove depends on (1) how many results
are generated from that peer, (2) how many results are prop-
agated from remote peer processes and (3) the period of con-
nection time. Based on the processes’ behavior, the same peer
processes may have different importance for different periods
of time. The pseudocode for selecting good connections, ex-
ecuted at each peer, is illustrated in figure 1.

3.2. State Update and Propagation

3.2.1 Joining the network

The state update algorithm is intended to provide the consis-
tency properties described in Section 2. The first step in the
system is for a process to discover at least one other process
that has a value for the desired state variable. It uses the dis-
covery protocol described in Section 3.1 to do this. When
a remote process is found, the local process sends a VARI-
ABLE REQUESTmessage to it. The remote process responds
by sending a VARIABLE UPDATE message back containing
its current value for the state of the variable. In addition, the
remote process and the local process add the other to its list
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intelligentConnections() �
wait for incoming msg

if received QUERY msg(search constraints)
evaluate query at the local repository
if (successful)

create QUERY_HIT msg(IP_addr, port, replies)
forward QUERY_HIT msg to the requesting node

propagate QUERY msg to all other
direct peers except requesting

if received QUERY_HIT msg(IP_addr, port, replies)
update replies for peer IP_addr in PeerList
if number of replies from indirect peer is high

connect to indirect peer
if number of available connections exceeds

remove direct peer with less replies
�

Figure 1. Intelligent Connections pseudo-code.

boolean requestOwnership(Variable) �
try
create reliable channel endpoint
loop upto retry limit

create REQUEST_OWNERSHIP
msg(channel address, Variable.Id)

send msg to Variable.Owner or
broadcast to all peers if too many retries

wait for connection on channel
if (connected before timeout)

receive VARIABLE_UPDATE with current state
close channel
set Variable.Owner to self
return true

end loop
catch any faults
return false

�

Figure 2. Ownership request pseudo-code

of peers for that variable. This per-variable peer list is used
in propagating state updates as will be described below. By
joining the peer list, we have essentially joined a process from
the search network into the state update network.

3.2.2 Performing an update

A process that wishes to update the state of a variable must
first be granted ownership of the variable. Only the present
owner of a variable is allowed to perform updates. Every vari-
able contains an attribute containing the network address of
the current belief about the owner. An owning process can
simply perform the update locally with no interaction with
other processes. We believe this will be the common case as
most applications will have a “locality of updates” in which
updates will be performed at one location most of the time.
In section 4 we discuss extensions that eliminate the single
owner as a point of failure which would make further updates
to a variable impossible.

A non-owner process that wishes to perform an update
must for be granted ownership. This done using the algorithm

processRequestOwnershipMsg(Variable) �
try

if (Variable.Owner == self &&
willing to grant ownership)

create VARIABLE_UPDATE msg
containing state of the variable

connect to endpoint provided in the msg.
send VARIABLE_UPDATE msg on channel
close channel
set Variable.Owner to sender of msg.

else if (Variable.Owner != self)
forward msg to Variable.Owner

catch any faults
�

Figure 3. Ownership request message process-
ing

shown in Figure 2. The process starts by creating a reliable
channel on which ownership will be granted. We use a reli-
able channel in this case to help ensure transfer of ownership.
Next, it creates a REQUEST OWNERSHIP message with the
address for the channel and the identity of the variable it is
requesting ownership of. This message is sent to the node’s
current owner value for that variable. When a connection is
received on the channel, it reads the current state of the vari-
able which is sent by the current owner, closes the channel,
and sets itself as the owner. If the connection is not received
in a timely manner, the REQUEST OWNERSHIP message is
re-sent. Multiple failures likely indicate an owner that is no
longer on the network, or a network failure between the pro-
cess and the owner, so the message can be broadcast to all of
the variable’s peers to help ensure that the current owner is
found. If faults are detected at any point or too many mes-
sages have been sent, we assume that a successful ownership
transfer has not occured, so we leave the owner set to our orig-
inal value. This would mean that the original update operation
would been considered to have failed, though a higher-level
application would be free to re-initiate the update if it wanted
to.

The algorithm for the receiver of the RE-
QUEST OWNERSHIP is shown in Figure 3. We first
must be sure that receiving process is the current owner,
and that it believes granting ownership to be a good idea.
Choosing not to grant ownership is a heuristic decision, but
may be based on frequent updates at this process so there’s
an expectation that it will need to regain ownership soon.
By maintining ownership, it can avoid ownership moving
too frequently. If it is willing to grant ownership, it simply
creates a VARIABLE UPDATE message containing the state
of the variable, connects to the requester on the reliable
channel it created, and sends the message on this channel.
It finally closes the channel and assumes the the requester
is now the current owner. As above, if any failures in the
communication are detected, we assume ownership has not
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processVariableUpdateMsg(VariableUpdate) �
find local variable with id match-

ing the id in the msg.
if (VariableUpdate update count > local update count)
copy attributes from VariableUpdate

into local copy of Variable
forward msg. to all peers for this

variable except sender
add sender of the msg. to peer list for this variable

�

Figure 4. Variable update message processing

been succesfully transfered, so the process retains ownership.
Because of the lax consistency model provided by the sys-

tem or because a desperate process may broadcast its own-
ership request, it is possible that a REQUEST OWNERSHIP
message could be received at a non-owner process. In
this case, the receiving process simply forwards the RE-
QUEST OWNERSHIP message to its current owner attribute
value on behalf of the requesting process. This process can
continue until it is received at the current owner. We refer
to this as “chasing the owner.” Similar approaches have been
used in the past for communicating with migrating objects [8].

There are cases, however, where ownership transfer can
be dynamic enough that the chase will never complete. The
retries and broadcast fall-back by the requester are intended
to reduce the likelihood of this occuring. These retries and
broadcast are safe because the ownership request operation is
guaranteed to be idempotent because the requester will accept
only one connection on the reliable channel it establishes for
the transfer of ownership. Further connection requests will
simply fail on the owner side, and no update to the owner
value will be performed.

3.2.3 Propagating updates

Periodically, the owner of each variable sends the current state
of the variable to each of the processes on its peer list. It first
increments an update count attribute and then sends the con-
tents of all changed attributes since the last update, including
the update count, in a VARIABLE UPDATE message. We
perform this operation only periodically, rather than as each
update occurs, with the belief that updates will be clustered
temporally. By waiting until the interval expires all of the up-
dates can be sent at one time rather than triggering a rapid
sequence of updates. If no updates occur during the inter-
val, we do not need to send the update. However, because
of the unreliable channels we do send updates containing all
attributes after multiple intervals of inactivity to help ensure
that the current state is received by all processes.

When a process receives a VARIABLE UPDATE it com-
pares the update count with the update count in its local copy
as shown in Figure 4. If the value in the received message is
greater, it copies the attributes from the message into its lo-

cal copy. If the count is lower, the process assumes that this
message was somehow delayed, and contains stale data, so
the message is simply ignored. An equal value should never
be possible because of the duplicate message elimination per-
formed at the lower message processing layers.

An accepted message is also forwarded the message to all
of its peers for this variable with the exception of the source of
the message. In this way, the new state is flooded through the
network in the same way that query messages are propagated
in gnutella and other file sharing networks. We believe that
this method is appropriate here for a number of reasons:

1. The number of processes interested in a single variable
will be small relative to the total number of processes in
the overall network, so the scalability requirement is less
stringent.

2. The frequency of updates is small compared to the fre-
quency that queries are generated in the general search
network. Further, we can tune the update periodicity if
update traffic becomes too high.

3. More sophisticated network generation algorithms, sim-
ilar to the intelligent peer, could be created if needed.

Finally, we add the sender of the message to the local peer
list for this variable. Because we’ve received this message,
we know this peer is interested in this variable. Due to own-
ership transfers, it may become possible that the local process
will be closer to a new owner, so it would have to reverse
roles with the sender of the message, and would be responsi-
ble for propagating updates to it. In the appendix, we provide
justification for why our algorithm is correct relative to the
properties defined in section 2.2.

4. Fault-Tolerant State Management

4.1. Group Communication Primitives

We replicate the variable owner to tolerate failures and use
Group Communication primitivies to ensure consistency. In
a Group Communication system, processes are organized in
groups. Processes in a group use communication primitives
with well-defined semantics in case of failures to communi-
cate with each other. Furthermore, there exist mechanisms
that regulate how processes join and leave a group, as we now
explain.

Atomic Broadcast is a Group Communication primitive
that provides atomicity and total order [7]. Let � and �� be
two messages broadcast in some group � of processes. The
atomicity property guarantees that if a member of � delivers
� (resp. ��), then every correct member of � also delivers�
(resp. ��). The total order property guarantees that no two
members of � deliver � and �� in different orders.
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Virtual Synchronous Systems accommodate processes
joining and leaving a group [5, 6]. It is defined in the con-
text of a group � and is based on the notion of a sequence of
views ������ ������ � � � � ������ � � � of group �. Each view de-
fines the composition of the group at some time �, that is, the
processes that are believed to be the correct members of the
group at time �. Whenever a process wants to join the group,
leave the group, or is suspected to have failed, a new view is
installed to reflect the new membership.

Roughly speaking, if a process member of group � cur-
rently in view ����� broadcasts a message �, Virtual Syn-
chronous Systems guarantee that if some process � in �����
delivers � before installing view �������, then no process in-
stalls view ������� before having first delivered �.

4.2. Handling Failures Consistently

Our approach consists in associating to each variable a
group of owners, instead of a single owner. Thus, each vari-
able is associated to a fixed group, whose identity is the
variable name. Process joins and leaves are handled by the
Group Communication system, as described in the previous
section. Likewise, processes suspected to have failed are au-
tomatically excluded from the group by the group member-
ship mechanism. We describe a simple mechanism to handle
variable updates.

Only processes belonging to some variable group can per-
form updates to that variable. Thus, if a process that does
not belong to the group variable wants to modify the variable,
it has first to join the group. To join a group, a process has
to find another process that is currently member of the group
and then send it a request. Finding such a process can be done
with a mechanism similar to the one described in Section 3.2
to find the current owner of a variable. Notice that this join
operation is performed after the process has already joined the
network.

Since several processes may simultaneously decide to up-
date the state of a variable, care must be taken so that the vari-
able state remains consistent after the operations have been
executed. To guarantee a correct execution we require each
process to broadcast its update to all the members of the vari-
able group, that is, variable updates are performed using ac-
tive replication [18]. Active replication requires that each pro-
cess execute the request deterministically, so that they will all
end up in the same state after the execution of the operation.
Since the operations in our case are simple requests to change
the state of a local variable, determinism is easily enforced.

Furthermore, as before, updated variable states have to be
forwarded to the other processes in the system. To make sure
that an old update does not overwrites a more recent one,
timestamps are used. So, besides executing the update lo-
cally, processes in a group also compute the update times-
tamp. Computing a local timestamp can be easily done deter-

ministically. Once the update timestamp has been calculated,
the process in the variable group forwards it to each of the
processes in its process list.

A process does not forward the update to other processes in
its group, since from the Atomic Broadcast properties, unless
such processes crash, they will eventually receive the opera-
tion. Processes that do not belong to the variable group will
receive, possibly more than once, the new variable state and
perform the update locally. Read operations do not incur in
any network traffic: the current value of the variable is simple
returned. As in the previous section, the appendix provides
a discussion of correctness for the augmented algorithm pre-
sented here.

5. Related Work

Peer-to-peer systems have received much attention re-
cently for sharing information among a large number of par-
ticipants. Despite their immense popularity, systems such
as Napster[3], Freenet [1] and Gnutella [2], fail to provide
consistency, availability or scalability guarantees to the dis-
tributed applications.

This first generation of peer-to-peer systems has motivated
the development of more robust solutions for sharing infor-
mation in a large-scale, decentralized environment.

The Oceanstore system [9] is a utility infrastructure de-
signed to provide secure, highly available access to persistent
objects in a large-scale environment. Its main attractive fea-
tures include persistent storage, fault tolerance and support
for nomadic data in a fundamentally untrusted environment.
They focus primarily on ensuring atomic operations on the
data objects; changes to objects are made by client-generated
updates and concurrent updates are handled through a con-
flict resolution scheme. In this regard, they employ primary
and secondary tiers of replicas and use a Byzantine agreement
protocol to choose the final commit order for the updates.

The Past system [17] is an Internet based global-scale stor-
age utility that relies on the notion of immutable data objects.
Its main goals are strong persistence, high availability, scala-
bility and security. The key idea is that storage nodes and files
are assigned uniformly distributed identifiers, and replicas of
the files are stored at the nodes whose identifiers are numeri-
cally closest to the file’s id. In contrast to our approach, Past is
not intended to address the problem of changing data. Rather,
it aims at providing efficient request routing, deterministic ob-
ject location and load balancing.

The Farsire project [20] buils a servless, distributed file
system that exploits the underutilized storage and communi-
cation resources of a large organization. Its distinguish char-
acteristic is security; it can be employed on an existing desk-
top infrastructure without assuming careful administration or
mutual trust among the client machines. The system exhibits
location-transparent access to private and public files, secu-
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rity and resistence to Byzantine threats, self-configuration and
adaptability. It is not clear however, how well it scales in a
wide-area environment.

Peer-to-peer systems have inspired work on algorithms for
efficient location and routing [19, 14, 16]. These are dictated
by a consistent mapping between an object key and a hosting
node. Locating an object is reduced to the problem of routing
the request to the node responsible for storing the object’s
key. Similar to our objective, their goal is to minimize the
number of logical hops that need to be traversed to locate an
object. The difference with our work is that we assume that
the topology of the network is unknown, efficient routing is
handled by intelligently manipulating the connections among
the peers.

The problems faced today by the peer-to-peer systems are
similar to issues addressed by existing directory services such
as the Internet Domain Name System (DNS) [12]. DNS uses
a hierarchical namespace where each domain has authority for
serving parts of the DNS database. Similar to our approach,
DNS uses a weak consistency model for updating replicated
information. DNS hosts can query each other and cooperate
by propagating data requests across the network.

6. Conclusions and Future Work

This paper describes the properties and implementation of
a decentralized state manager we have developed. We de-
compose our system into two modules: a state propagation
module and a discovery module. This modular design al-
lows us to focus on specific problems and use existing work
where appropriate. Our state propagation algorithm provides
a consistency guarantee which reflects the semantics typically
associated with existing large-scale information-sharing sys-
tems, such as the Domain Name System (DNS), the World-
Wide Web, and wide-area publish-subscribe systems. Our
notion of consistency, while strong enough to be useful, al-
lows an efficient implementation. The discovery capability
extends Gnutella-like search network mechanisms to allow
better scalability and arbitrary meta-data queries.

The state management system and the consistency notions
it provides are intended to be building blocks for other appli-
cations. We are developing two applications on top of our pro-
totype. One provides file system functionality and the other
supports e-mail type messaging. In both cases, the applica-
tions support standard protocols, WebDAV and IMAP respec-
tively, to allow them to interoperate with off-the-shelf clients.
We believe that this approach will allow us to use the system
effectively, and validate our beliefs about the usefulness of our
consistency model and the efficiency of our implementations.
We also intend to augment the system with the group com-
munication schemes described to eliminate the single point
of failure in the current approach.
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