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Abstract. Agreement problems, such as consensus, atomic broadcast,
and group membership, are central to the implementation of fault-tolerant
distributed systems. Despite the diversity of algorithms that have been
proposed for solving agreement problems in the past years, almost all
solutions are Crash-Detection Based (CDB). We say that an algorithm
is CDB if it uses some information about the status crashed/not crashed
of processes. In this paper, we revisit the issue of non-CDB algorithms
considering ordering oracles. Ordering oracles have a theoretical interest
as well as a practical interest. To illustrate their use, we present solutions
to consensus and atomic broadcast, and evaluate the performance of the
atomic broadcast algorithm in a cluster of workstations.

1 Introduction

The paper addresses the issue of solving agreement problems, which are central
to the implementation of fault-tolerant distributed systems. Consensus, atomic
broadcast, and group membership are examples of agreement problems. One of
the key issues when solving an agreement problem is the choice of the system
model. Many system models have been proposed in the past years: synchronous
models [8,12,13,4], partially synchronous models [9], asynchronous models with
failure detectors [6,1], timed asynchronous models [7], etc. Despite the diversity
of these models, almost all algorithms that have been proposed to solve agree-
ment problems have the common point of being Crash-Detection Based (CDB).
We say that an algorithm is CDB if it uses some information about the status
crashed/not crashed of processes. Typically, a CDB algorithm contains state-
ments like “if p has crashed then ...” or “if pis suspected to have crashed then
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...” There is a notable exception to the near universality of CDB algorithms:
randomized consensus algorithms [5, 18], which are not CDB.

There are two motivations for this work. The first one is theoretical: it ad-
vances the state of the art of non-CDB algorithms, a class of algorithms that
has been under-explored. The second motivation is practical: CDB algorithms
require tuning of the failure-detection mechanism they use, which has been re-
garded as a nuisance for a long time [11]. To illustrate the problem, consider a
system that wants to react quickly to failures. Since reaction to failures is ulti-
mately triggered by some timer mechanism, such a system should have a very
short timeout. However, due to variations in the system load, a short timeout
may lead to false failure suspicions. False failure suspicions are problematic be-
cause they lead to actions (e.g., selecting a new coordinator) that will increase
the system load and degrade performance even further. Of course, one way to
reduce false failure suspicions is to increase the timeouts, but then the system no
longer has a fast response to failures. By removing the need for failure detection
from the algorithms, we eliminate this problem of tuning: non-CDB algorithms
operate in the presence of failures just as quickly as they operate in their ab-
sence. Given the widespread use of computer clustering — the environment to
which our algorithms are best suited, we believe that non-CDB algorithms rep-
resent an important paradigm to be exploited in the design of high-performance
fault-tolerant systems in the years to come.

The non-CDB algorithms presented in the paper assume an asynchronous
system model in which processes may fail by crashing. It is well known that
consensus (and other agreement problems) are not solvable in an asynchronous
system where processes may fail [10]. To make agreement problems solvable,
we extend the asynchronous system with ordering oracles (Section 2), which
(1) receive queries to broadcast messages and (2) output these messages. The
specification of an oracle links the queries to the outputs. The paper defines two
ordering oracles: the k-Weak Atomic Broadcast oracle (k-WAB oracle) where
k is a positive integer, and the Weak Atomic Broadcast oracle (WAB oracle).
Intuitively, our oracles ensure that messages are delivered in the same order
from time to time. The k-WAB oracle ensures the ordering property &k times.
The WAB oracle ensures the ordering property an unbounded number of times.

Section 3 is devoted to consensus: we give two non-CDB algorithms, both
requiring the 1-WAB oracle. The first one, called B-Consensus algorithm, is
inspired by Ben-Or’s randomized consensus algorithm [5] and requires f < n/2,
where n is the total number of processes and f is the number of faulty processes.
The second, called R-Consensus algorithm, is inspired by Rabin’s randomized
consensus algorithm [18] and requires f < n/3.® These two algorithms show
an interesting resilience/complexity tradeoff: the consensus algorithm inspired
by Ben-Or’s algorithm has a time complexity of 36 and f < n/2, where ¢ is
the maximum message delay, while the consensus algorithm inspired by Rabin’s
algorithm has a time complexity of 2§ and f < n/3.

3 Contrary to Ben-Or’s and Rabin’s algorithms, our algorithms solve the non-binary
consensus problem.



Our consensus algorithms can be compared to the leader-based consensus
algorithms presented in [15]. Although partly similar in structure to ours*, the
consensus algorithms we propose in this paper have a better time complexity.
This is because the approach in [15] relies on a leader oracle, that is, an oracle
which eventually outputs the same leader process; implementing such an oracle
requires a failure detection mechanism. Failure detection is not needed in our
algorithms, which are based on weak ordering oracles that match the behavior
of current network broadcast primitives, and so, can be efficiently implemented.

In Section 4, we consider atomic broadcast, and we extend our R-Consensus
algorithm to an atomic broadcast algorithm. While the R-Consensus algorithm
requires the 1-WAB oracle, the atomic broadcast algorithm requires the WAB
oracle. The reduction of atomic broadcast to consensus is well known [6]. We
consider here a different solution that closely integrates the ordering oracle with
the atomic broadcast algorithm. Our new atomic broadcast algorithm has a time
complexity of 26 and requires f < n/3. Section 5 discusses some experiments we
have conducted to evaluate the performance of the proposed atomic broadcast
algorithms, and Section 6 concludes the paper.

2 System Model and Ordering Oracles

2.1 System Model

We consider an asynchronous distributed system composed of n processes {p1,

. ,Pn}, which communicate by message passing. A process can only fail by
crashing (i.e., we do not consider Byzantine failures). A process that never
crashes is correct, otherwise it is faulty. We make no assumptions about pro-
cess speeds or message transmission times.

Processes are connected through quasi-reliable channels, defined by the prim-
itives send(m) and receive(m). Quasi-reliable channels have the following prop-
erties: (i) if process ¢ receives message m from p, then p sent m to ¢ (no creation);
(ii) g receives m from p at most once (no duplication); and (iii) if p sends m to
g, and p, q are correct, then ¢ eventually receives m (no loss).

2.2 Ordering Oracles

Every process has access to an ordering oracle, defined by properties relat-
ing queries to outputs. Queries to an oracle are requests to broadcast mes-
sages, and outputs of an oracle are messages (that the oracle had to broadcast).
More formally, an oracle is a set of oracle histories that satisfy properties re-
lating queries to outputs [2].> We introduce the Weak Atomic Broadcast oracle,

* Even though this is not mentioned in [15], similarly to ours, the algorithms in [15]
follow the structure of the randomized algorithms proposed by Ben-Or [5] and Ra-
bin [18].

5 In [2] an oracle is a function that takes a failure pattern F' and returns a set O(F)
of oracle histories. This is because the oracles in [2] include failure detectors. We do
not consider failure detectors here as our approach does not need them.



defined by queries of the type W-ABroadcast(r,m), and outputs of the type
W-ADeliver(r,m), where r is an integer and m is a message. The parameter r
groups queries and outputs, i.e., it relates different queries and outputs with the
same r value. A Weak Atomic Broadcast oracle satisfies an ordering property
(defined below) and the following two properties:

— Validity: If a correct process queries W-ABroadcast(r, m), then all correct
processes eventually get the output W-ADeliver(r, m).

— Uniform Integrity: For every pair (r,m), W-ADeliver(r,m) is output at
most once, and only if W-ABroadcast(r, m) was previously executed.

Our oracle also orders the outputs W-ADeliver(r,m). However, not all outputs
need to be ordered: we call the property weak ordering. To define this prop-
erty, we introduce the notion of canonical sequence of queries, and the nota-
tion first,(r). A canonical sequence of queries, by some process p, is a sequence
of queries (1) that starts with the query W-ABroadcast(0, —), and (2) where
the query W-ABroadcast(r,—) of p, » > 0, can only be followed by the query
W-ABroadcast(r+1,—). A canonical sequence of queries can be finite or infinite.
Given an integer r and a process p, we denote by first,(r) the message m such
that (r,m) is the first pair with integer r that the oracle outputs at p. Using
canonical sequences of queries, we define the following ordering properties:

— Eventual Uniform 1-Order: If all correct processes execute an infinite
canonical sequence of queries, then there exists r such that for all processes
p and g, we have first,(r) = first,(r).

To illustrate this property, consider three processes pi, p2, ps, executing the
following queries to the oracle:

— p1: W-ABroadcast(0,m;); W-ABroadcast(1,m2); W-ABroadcast(2, m3).
— po: W-ABroadcast(0,m4); W-ABroadcast(1,ms); W-ABroadcast(2, mg)-
— p3: W-ABroadcast(0, m7); W-ABroadcast(1,mg); W-ABroadcast(2, my).

Assume the following prefix of sequences output by oracle at each process (for
brevity, we denote next W-ADeliver(r,m) by (r,m)):

- P1: (Oaml); (1am2); (Oam4); (2Jm3); (Oam'f); etc.
- p2: (07m4)7 (07m1)7 (17m5)5 (07m7)5 (27m3)7 etc.
— Pps: (07m4); (01m7); (Zam3); (lams); etc.

Here we have first, (0) = ma, first,,(0) = my, first, (0) = my, etc. The even-
tual uniform 1-order property holds since we have first, (2) = first, (2) =
first,,, (2) = ma.

We generalize the eventual uniform 1-order property as follows:
— Eventual Uniform k-Order: If all correct processes execute an infinite

canonical sequence of queries, then there exist k£ values 7y, ... ,r; such that
for all processes p, q and for all i, 1 <4 <k, we have first,(r;) = first,(r;).



If the oracle satisfies the eventual uniform k-order property, we also say that the
oracle satisfies the ordering property k times. We can now define our two oracles:

— k-Weak Atomic Broadcast (k-WAB) Oracle: Oracle that satisfies even-
tual uniform k-order, validity, and uniform integrity.

— Weak Atomic Broadcast (WAB) Oracle: A k-WAB oracle, where
k = oo.

To summarize, k-WAB oracles satisfy the ordering property k times, while the
WAB oracles satisfy the ordering property an infinite number of times.

2.3 Discussion

The idea of the ordering oracles stems from an experimental observation: under
normal execution conditions (e.g., small or moderate load) messages broadcast in
local-area networks are received in total order with high probability. We call this
property spontaneous total order. Under high network loads, this property might
be violated. More generally, one can consider that the system passes through
periods when the spontaneous total order property holds, and periods when it
does not hold. Our Weak Atomic Broadcast Oracles abstract this spontaneous
total order property.

Figure 1 illustrates the spontaneous total order property in a system com-
posed of a cluster of 12 PCs connected by a local-area network (see Section 5
for details about the environment). In the experiments, each workstation broad-
casts messages to all the other workstations, and receives messages from all
workstations over a certain period of time. Broadcasts are implemented with
TP-multicast (loop-back mode disabled).
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Fig. 1. Spontaneous total order property



Figure 1 shows the relation between the time between successive broadcast
calls and the percentage of messages that are received out of order. When mes-
sages are broadcast with a period greater than approximately 0.14 milliseconds,
IP-multicast implements a WAB oracle with a very high probability (i.e., only
about 5% of messages are received out of order).

3 Solving Uniform Consensus with 1-WAB Oracles

3.1 The Consensus Problem

The (uniform) consensus problem is defined over a set of n processes.® Each
process p; proposes an initial value v;, and processes must eventually agree on a
common value v that has been proposed by one of the processes. Formally, the
problem is defined by the following three properties [6]:

— Uniform Agreement: No two processes decide differently.

— Termination: Every correct process eventually decides.

— Uniform Validity: If a process decides v, then v has been proposed by
some process.

In this section we give two algorithms that solve consensus in an asynchronous
system augmented with a 1-WAB oracle. The first algorithm, called B-Consensus
algorithm, is inspired by Ben-Or’s randomized consensus algorithm [5] and the
second one, called R-Consensus algorithm, is inspired by Rabin’s algorithm [18].
While Ben-Or’s and Rabin’s algorithms solve the binary consensus problem,
where the initial values are 0 or 1, our algorithms solve the general (i.e., non-
binary) consensus problem. We present Ben-Or’s and Rabin’s consensus algo-
rithms in [17], expressed in the same syntactic form as our algorithms.

3.2 The B-Consensus Algorithm

We initially provide an overview of the algorithm and then its description in
detail (see Algorithm 1). Similarly to Ben-Or’s algorithm, our algorithm requires
f < n/2 (i.e., a majority of correct processes).

Overview of the algorithm. The algorithm executes in a sequence of rounds,
where each round has three stages (see Figure 2, where for clarity messages from
a process to itself have been omitted). In the first stage of the round processes
ask the 1-WAB oracle to broadcast their estimates to the other processes, and
then wait for the first message of the current round output by the oracle.

The second stage is used to determine whether a majority of processes output
the same estimate in the first stage. A process first sends its current estimate
(updated in the first stage) to the other processes, and waits for the first n — f
messages of the same kind. If the n — f messages received contain the same

% From here on, “consensus” implicitly means “uniform consensus.”



propose(v)
P —

‘ decide(v)

!
a4

1st stage 2nd stage 3rd stage

P2

Pn

Fig. 2. One round of the B-Consensus algorithm

estimate value v, the process takes v as its estimate; otherwise it takes 1 as its
estimate. Notice that the majority constraint guarantees that the only possible
outcomes of the second stage for all processes is either v or L.

In the third stage, each process sends its estimate to the other processes and
again waits for n — f responses. If the same non-_L value is received from f + 1
processes, the process decides (if it has not yet decided in a previous round) and
proceeds to the next round. The algorithm, as it is, requires processes to keep
executing even after they have decided. Stopping is discussed in Section 4.

B-Consensus in detail. Algorithm 1 is the B-Consensus algorithm. In each round
(lines 6-24), every process p first queries the oracle (line 6), waits for the first an-
swer tagged with the current round number r;, (line 7) and updates its estimate,
value (line 8). Then p sends estimate, to all in a message of type FIRST (line 9)
and waits for n — f such messages (line 10). After updating estimate,, process
p sends again estimate, to all in a message of type SECOND (line 15) and waits
for n — f such messages. If f + 1 messages received contain a value v different
from L then p decides v (line 18). After deciding, p continues the algorithm.

Compared to Ben-Or’s algorithm, the coin toss has been replaced by an
assignment of the initial value to estimate, (line 23). Notice that while Ben-
Or’s algorithm solves the binary consensus problem, Algorithm 1 solves the
generalized consensus problem with non-binary initial values.

It is easy to see that the validity property holds. The proof of uniform agree-
ment is very similar to the proof of Ben-Or’s algorithm, and is given in [17],
together with the proof of termination.

3.3 The R-Consensus Algorithm

We now present the R-Consensus algorithm, inspired by Rabin’s algorithm. Sim-
ilarly to Rabin’s algorithm, it requires f < n/3. As before, we first provide an
overview of the algorithm and then present it in more detail.



Overview of the algorithm. The R-Consensus algorithm also solves consensus
with a 1-WAB oracle. The algorithm executes in a sequence of rounds divided
in two stages (instead of three stages in the B-consensus algorithm). In the first
stage, processes use the 1-WAB oracle to propagate their estimates to the other
processes, and wait for the first message output by the oracle in the current
round. In the second stage, processes send the estimates they received in the
first stage and wait for two thirds of replies. If a majority of the values received
are the same, the process adopts this value as its current estimate. If all values
received by the process are the same, the process decides.

Algorithm 1 B-Consensus algorithm (f < n/2)
1: To execute propose(initVal):

2:  estimate, < initVal
3:  decided, < false
4 rp 0

5: while true do

@

W-ABroadcast(rp, estimate,)
wait until W-ADeliver of the first message (rp,v)
8: estimate, < v

Y

9:  send (FIRST, rp, estimate,) to all
10:  wait until received (FIRST,7p,v) from n — f processes
11:  if 3 v s.t. received (FIRST, 7p,v) from n — f processes then

12: estimate, < v
13: else
14: estimate, < L

15:  send (SECOND, rp, estimatep) to all
16:  wait until received (SECOND, 1p,v) from n — f processes
17:  if not decided, and (3T # L s.t. received (second, r,,v) from f+ 1 processes)

then
18: decide T {continue the algorithm after the decision}
19: decidedp, < true
20: if 37 # L s.t. received (SECOND, 7p,7) then
21: estimate, < U
22: else
23: estimate, < initVal

24: rprp+1

R-Consensus in detail. Algorithm 2 (page 9) is the R-Consensus algorithm. In
each round (lines 6-16), just like the B-Consensus algorithm, every process first



queries the oracle (line 6), waits for the first answer tagged with the current
round number r,, (line 7) and updates its estimate, value (line 8). Then p sends
estimate, to all in a message of type FIRST (line 9) and waits for n — f such
messages (line 10). If a majority of the values received are identical, p updates
estimate,. If n — f values received are equal to U, then p decides T (line 14).
After deciding, p continues the algorithm. Stopping is discussed in the context
of atomic broadcast (Section 4).

Algorithm 2 R-Consensus algorithm (f < n/3)

1: To execute propose(initV al):

2:  estimatep < initVal
3:  decided, < false
4: rp+0

5: while true do

@

W-ABroadcast(rp, estimate,)
wait until W-ADeliver of the first message (rp,v)
8: estimate, < v

o

9:  send (FIRST, rp, estimate,) to all

10:  wait until received (FIRST,7p,v) from n — f processes
11:  if a majority of values received are equal to v then
12: estimate, < U

13:  if not decided, and (all values received are equal to v) then
14: decide © {continue the algorithm after the decision}

15: decidedp, < true

160 rp<rp+1

Notice that while Rabin’s algorithm solves the binary consensus problem,
Algorithm 2 solves the generalized consensus problem with non-binary initial
values. It is easy to see that the validity property holds. The proof of uniform
agreement is very similar to the proof of Rabin’s algorithm, and is given in [17],
together with the proof of termination.

3.4 Time Complexity vs. Resilience

We compare now the time complexity of the B-Consensus and the R-Consensus
algorithms in “good runs.” In CDB algorithms, a good run is usually defined
as a run in which processes do not fail and are not falsely suspected by other
processes. Here we define a good run as a run in which, for all correct processes
D, ¢, we have first,(1) = firsty(1). So, contrary to the definition of good runs
in the context of CDB algorithms, a good run can include process crashes.



We measure the time complexity in terms of the maximum message de-
lay & [2]. We assume a cost of § for our oracle. In good runs, with Algorithm 1,
every process decides after 36. Remember that the algorithm assumes f < n/2.
In good runs, with Algorithm 2, every process decides after 26. The algorithm
assumes f < n/3. This shows an interesting trade-off between time complexity
and resilience: 30 and f < n/2 vs. 26 and f < n/3.

These time complexities are similar to the results of consensus algorithms
based on failure detectors. For example, the consensus algorithms in [19,14],
based on ©S&, have a time complexity of 2§ and assume f < n/2; however, the
time complexity 3§ for B-Consensus and 26 for R-Consensus can be achieved in
“less favorable” circumstances, that is, in the presence of process crashes.

4 Solving Atomic Broadcast with WAB Oracles

4.1 The Atomic Broadcast Problem

Atomic broadcast is defined by the primitives A-Broadcast and A-Deliver and
the following properties:

— Validity: If a correct process A-broadcasts message m, then eventually it

A-delivers m.

— Uniform Agreement: If a process A-delivers m, then all correct processes

eventually A-deliver m.

— Uniform Integrity: Every message is A-delivered at most once at each
process, and only if it was previously A-broadcast.
— Uniform Total Order: If two processes p and ¢ both A-deliver messages

m and m/, then p A-delivers m before m/' if and only if ¢ A-delivers m before

m'.

Solving atomic broadcast by reduction to a sequence of consensus is well
known [6]. We consider here a different solution that closely integrates the or-
dering oracle with the atomic broadcast algorithm.” Qur atomic broadcast al-
gorithm is based on Algorithm 2 (considering Algorithm 1 instead leads to a
similar solution), and assumes a WAB oracle, which satisfies the ordering prop-
erty first,(r) = first,(r) for an infinite number of rounds r.

Note that the atomic braodcast algorithm in [3], similarly to the algorithm
hereafter, is based on prefix agreement. However, the structure of our algorithm
is completely different: [3] is based on a variant of consensus.

4.2 Sequences of Messages

We express the atomic broadcast algorithm using message sequences. In addition
to the traditional set operators, we use the concatenation operator & and the
prefix operator ® to handle sequences.

" When reducing atomic broadcast to consensus, see [6], we get a solution in which
the ordering oracle, used in the consensus algorithm, is decoupled from the atomic
broadcast algorithm.



— Concatenation s; ® s, : The sequence s def S1 @ s9 is defined as s; followed
by s2 \ s1, that is, all the messages in s; followed by all the messages in sq
that are not in s; (in the same order as they appear in s5). For example,
let s1 = (mo;m1;me;ms;), and sa = (mg;m1;mq). We have 51 @ so =
(mo; my; ma;ms;my), and sy @ s1 = (mo; my;ma; Ma; ms3).

— Prefix s; ® s5 : The sequence s dgsl ® 82 is defined as the longest common
prefix of s; and s5. The ® operator is commutative and associative. For
example, taking s; and s, as defined above, s1 ® s2 = 82 ® 81 = (mg;m1).
We say that a sequence s is a prefix of another sequence s, denoted s < s/,
if and only if s = s®s'. Notice that the empty sequence e is a prefix of every
sequence.

4.3 From WAB Oracles to Atomic Broadcast: Version 1

In this section we give a simple version of our atomic broadcast algorithm; we
extend it in Section 4.4 with some optimizations.

Overview of the algorithm. The structure of our atomic broadcast algorithm
is close to the structure of the R-Consensus algorithm (Section 3.3) and also
assumes f < n/3. The main difference is that the atomic broadcast algorithm
uses sequences of messages instead of single messages. The execution proceeds
in rounds; to broadcast a message, process p concatenates the message with a
sequence that it keeps locally, denoted estimate. Processes send their estimate
sequence to other processes in the first stage of a round using the WAB oracle,
and wait for the first sequence, with the current round number, output by the
oracle. In the second stage, processes exchange the estimate sequences output
by the oracle in the first stage (possibly with some other messages appended).
Each process waits for n — f messages. If all sequences received have a common
non-empty prefix, the process A-delivers the messages in the common prefix
not yet A-delivered. Then, the process determines the longest prefix among a
majority of the sequences received; this prefix, followed by any other messages
the process may have received, is the process’ new estimate. The process then
starts the next round.

The algorithm in detail. Algorithm 3, page 12, is the first version of our atomic
broadcast algorithm. Tasks 1, 2 and 3 execute concurrently. Variable r, (line 2)
is the current round number, estimate, (line 3) contains a sequence of messages
broadcast by p or by any other process, and delivered, (line 4) contains the se-
quence of messages A-delivered by p, in the order in which they were A-delivered.

To broadcast a message m, process p appends m to estimate, (line 6, Task 1).
The main algorithm and actual broadcasting of messages is performed by Task 2
(lines 8-20). Task 3 (lines 21-22) ensures the validity property of atomic broad-
cast. The variable estimate, is concurrently accessed by Task 1, Task 2, and
Task 3; we implicitly assume that it is accessed in mutual exclusion (e.g., using
semaphores).



The proof of the algorithm is given in [17]. Correctness follows from the
following invariants. Let p and ¢ be two processes:

— If p terminates round r and q is correct, then ¢ terminates round r.

— If p and g terminate round r, either deliveredy, is a prefix of delivered; or
deliveredy is a prefix of delivered;,.

— If p executes round r until the end, and ¢ executes round r + 1 until the end,
then delivered;, is a prefix of deliveredg“.

Algorithm 3 Atomic Broadcast with the WAB oracle (f < n/3)—version 1

1: Initialization

2: rp+1

3. estimatep < ¢

4:  delivered, < €

5: To ezecute A-broadcast(m): {Task 1}

6: estimate, < estimate, ® (m)

7: A-deliver(—) occurs as follows: {Task 2}
8:  while true do
9: W-ABroadcast(rp, estimate,)
10: wait until W-ADeliver of the first message (rp,v)
11: estimate, < v @ estimate,
12: send (FIRST, rp, estimatep) to all
13: wait until received (FIRST, 7p,v) from n — f processes
14: majSeq < the longest sequence ®(majority of (FIRsT,rp,v) received} ¥
15: estimate, < majSeq & estimate,
16: allSeq — ®{all (FIRST,Tp,v) received} U
17: for each m € (allSeq \ delivered,) do
18: A-deliver m
19: delivered, < allSeq
20: Tp—Tp+1

21:  when W-ADeliver(—,v) the second and next messages of any round {Task 3}
22: estimate, < estimate, v

Example. Figure 3 shows an execution of Algorithm 3. Processes p; and ps
broadcast m and m/, respectively, by appending them to their estimate sequence.
All processes W-ABroadcast their sequences in the first stage, and ps crashes at



the beginning of the second stage; nevertheless p;, p2 and ps W-ADeliver first
the sequence (m'). The estimate of p; becomes (m';m), and the estimates of po
and py become {m’'). In the second stage p1, p2, and ps exchange their estimates.
Since all their sequences have m' as a common prefix, they A-deliver m/'. In the
next round (not shown in the figure), p; will W-ABroadcast m again.

| estimate; = (m) iestimatel = (m';m) \delivered; = (m')
. &: | N

iestzmatez = e estzmatez (m') / ideliveredz = (m')
P2 — v i

3 estimates = L' CRASH 3
b3 — 1

iestimatq =¢ % ‘estzmat&; (m') % ideliveredzg = (m’)
P4 ! " :

1st stage 2nd stage

Fig. 3. Execution of the atomic broadcast algorithm

4.4 From WAB Oracles to Atomic Broadcast: Version 2

Algorithm 3 has two shortcomings. First, the estimate, sequence used by pro-
cesses to store broadcast messages keeps growing: messages are never garbage
collected. Second, processes never stop executing the while loop (lines 8-20) and,
consequently, continue the execution even after all messages A-Broadcast have
been A-delivered. To avoid wasting resources, processes should stop executing
the while loop after all previously A-Broadcast messages have been A-delivered.

The two problems can be solved with small modifications to Algorithm 3.
Algorithm 4 is similar to Algorithm 3, but for the underlined lines (14, 16, 19, 21,
23, and 24). To remove messages from estimate,, Algorithm 4 takes advantage
of the following property of Algorithm 3: if the first process to A-deliver m does
so at round r, then every process that terminates round r + 1 also A-delivers m.
So, at the end of round r, the messages A-delivered in rounds »' < r — 1 can be
discarded from estimate,,.

To address the second shortcoming of Algorithm 3, whenever estimate,, is
empty at the end of some round r,, at p, process p stops executing the while loop
(line 8) and waits until either (a) it W-ADelivers some message for the next
round (line 24), or (b) some message is included in estimate, — which may
happen if p itself broadcasts a message (line 6) or if p W-ADelivers at line 25 the
second or next message of any round. Notice that if p exits the wait statement
at line 24 by W-ADelivering the first message of round r,, then p does not wait
at line 10, since it has already W-ADelivered the first message of round 7.



Algorithm 4 Atomic Broadcast with the WAB oracle (f < n/3)—version 2
1: Initialization

20 rp+1
3:  estimate, < €
4:  delivered, < €

5: To ezecute A-broadcast(m): {Task 1}

6: estimatep < estimate, ® (m)

7: A-deliver(—) occurs as follows: {Task 2}
8:  while true do
9: W-ABroadcast(r,, estimate,)
10: wait until W-ADeliver of the first message (7p, v)
11: estimate, < v @ estimate,
12: send (FIRST, 7p, estimate,) to all
13: wait until received (FIRST,7p,v) from n — f processes
14: majSeq < the longest sequence ® majority of (FIRsT,rp,v) received} deliveredy ® v
15: estimate, < majSeq @ estimate,
16: allseq «— ®{all (FIRST,7p,v) received} deliveredp D
17: for each m € (allSeq \ delivered,) do
18: A-deliver m
19: m.round ¢ rp
20: delivered, + allSeq
21: estimate, < estimate, \ {m|m € delivered, and m.round < rp}
22: Tp—Tp+1
23: if estimate, = € then
24: wait until W-ADeliver of the first message (rp,v) or estimate, # €

25:  when W-ADeliver(—,v) the second and next messages of any round {Task 3}
26: estimate, < estimate, ® v




4.5 Time Complexity vs. Resilience

If we define time complexity as in Section 3.4, we get the following result. In
good runs, our atomic broadcast algorithms deliver messages within 26 and re-
quire f < m/3. This result is for an atomic broadcast algorithm inspired by
Rabin’s algorithm. Similarly, we could have derived an atomic broadcast algo-
rithm from Ben-Or’s algorithm, which would have led to a time complexity of
30 and f < n/2. So we have the same “time complexity vs. resilience” trade-off
as for consensus (Section 3.4).

5 Performance Evaluation

5.1 The Experiments

In order to evaluate our approach, we implemented version 2 of the atomic
broadcast algorithm, and compared its performance to a Crash-Detection Based
(CDB) algorithm. We chose the atomic broadcast algorithm proposed by Chan-
dra and Toueg [6], along with the ¢S consensus algorithm [6]. In the rest of this
section, we refer to these algorithms as WABCast and CT-ABCast.

We chose to compare WABCast to CT-ABCast because (a) both algorithms
are proved correct in the asynchronous model augmented with some additional
assumptions: the WAB oracle (for WABCast) and a ©S failure detector (for
CT-ABCast), and (b) in both algorithms, each process proceeds in a sequence
of asynchronous rounds (not all processes necessarily execute the same round at
a given time). The algorithms differ with respect to the number of crashes they
tolerate: WABCast tolerates f < n/3 crashes and CT-ABCast f < n/2 crashes.
In the experiments, we executed the two algorithms with the minimal number of
processes that could tolerate one crash, i.e., WABCast with n = 4 was compared
to CT-ABCast with n = 3.

Processes communicate using TCP/IP connections. The WAB oracle is im-
plemented as follows: W-ABroadcast(r,m) results in a UDP/IP multicast of
(r,m) to all participants of the algorithm, and the receipt of (r,m) corresponds
to W-ADeliver(r,m). In a local area network, UDP /IP multicast datagrams are
very much likely to arrive in the same order (see Section 2.3). Notice that WAB-
Cast only uses the first W-ADeliver event of a given round r, and works even if
the other W-ADeliver events of round r do not occur (message loss).?

In the experiment, messages are around 100 bytes. We define the latency of
an atomic broadcast algorithm as the time between the A-Broadcast(m) event
and the first A-Deliver(m) event (these events do not necessarily occur on the
same process). In each of our test runs, messages are A-Broadcast by all n
processes. The A-Broadcast events follow a Poisson arrival distribution with the
same fixed rate on each process. We call the overall rate of A-Broadcast events
“throughput”. Throughput, given in s~1, is also the average number of messages

& The algorithm does not need that these messages are reliably transmitted (Validity
property of the WAB oracle, Section 2) because of line 12 of the algorithm.



A-Delivered in a time unit. We ran a lot of test runs with different throughput
values, and determined the mean latency in each test run. Qur results are plots
representing the mean latency (and its 95% confidence interval) as a function of
throughput.

The experiments were run on a cluster of 12 PCs running Red Hat Linux 7.2
(kernel 2.4.9). The hosts have Intel Pentium III 766 MHz processors with 128 MB
of RAM. They are interconnected by a simplex 100 Base-TX Ethernet hub. The
algorithms were implemented in Java (Sun’s JDK 1.4.0 beta 2) on top of the
Neko development framework [20]. In our environment, we could synchronize the
clocks of processes up to a precision of 50 us. This enabled us to determine the
latency of the algorithms (3> 50 us) rather precisely.
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Fig. 4. WABCast vs. CT-ABCast. CT-ABCast was run with a variety of failure
detection timeouts.

5.2 Results

Figure 4 depicts the results obtained. CT-ABCast was run with a variety of set-
tings for failure detection: we used timeouts of 2, 4, 10 and 100 ms, respectively,
to detect crashes. One can see that WABCast has a higher latency than CT-
ABCast at high failure detection timeouts. However, note that this corresponds
to “optimal” conditions for CT-ABCast: a case where failure detectors never
make mistakes. Moreover, the big advantage of WABCast over CT-ABCast is
that the latency of the algorithm does not increase in case of a crash — which is
not the case with CT-ABCast: with a timeout of 100 ms, it is possible that the



algorithm is blocked for 100 ms after a crash. To achieve similar performances
in the case of a crash, CT-ABCast requires an extremely aggressive failure de-
tection mechanism (timeouts of 2 and 4 milliseconds and “I am alive” messages
sent every few milliseconds). As the two latency curves on the top show, Such
a failure detection mechanism significantly slows down the CT-ABCAST algo-
rithm in the absence of failures, because (1) failure detection messages load the
CPUs and the network, and (2) failure detectors often wrongly suspect correct
processes, which increases the cost of the consensus algorithm that is part of
CT-ABCAST. With such an aggressive failure detection mechanism, WABCast
performs better (except at low throughputs when compared with CT-ABCast
with a timeout of 4 ms).

The figure also shows that at high throughputs, the latency of WABCast
increases faster than the latency of CT-ABCast as throughput increases. This
is because the spontaneous ordering property, on which the oracle of WABCast
is based, starts breaking down due to the high number of messages per time
unit. The spontaneous total order property breaks down totally at around 400
requests/s, as predicted by Figure 1 (a request generates ~16 messages alto-
gether, i.e., 0.15 ms elapses between two messages).

We believe that the performances of the WABCast algorithm may further
be improved, e.g., by using UDP/IP multicast for the send to all of line 12 in
Algorithm 4.

6 Conclusion

From a practical viewpoint, algorithms based on weak ordering oracles do not
have to deal with the tradeoffs involved in tuning timeouts. This is a quite
interesting characteristic. With CDB algorithms, in order to decide on timeout
values, one is faced with the following dilemma: short fail-over time requires
short timeouts; to prevent false failure suspicions, timeouts should be long. The
“ideal” timeout value is somewhere between the two extremes, and the problem
is not only finding it, but also constantly re-adapting to the environment changes
that make this ideal value sway back and forth.

From a theoretical point of view, our algorithms derived from Rabin’s algo-
rithm have in good runs a time complexity of 26 and require f < n/3, while the
corresponding algorithms derived from Ben-Or’s algorithm have in good runs a
time complexity of 3 and require f < n/2. It would be interesting to understand
this trade-off from a more general perspective.

Finally, we are currently extending the atomic broadcast algorithm to effi-
ciently solve generic broadcast [16] using weak ordering oracles.
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