Probabilistic Queries in Large-Scale Networks

Fernando Pedone!-2, Nelson L. Duarte®, and Mario Goulart?

! Hewlett-Packard Laboratories
Software Technology Laboratory
Palo Alto, CA 94304, USA
fernando_pedone@hp.com
% Ecole Polytechnique Fédérale de Lausanne (EPFL)
Faculté Informatique & Communications
CH-1015 Lausanne, Switzerland
3 Mathematics Department
Universidade do Rio Grande
Rio Grande, RS 96200, Brazil
dmtnldf@furg.br, mario@proxy.furg.br

Abstract. Resource location is a fundamental problem for large-scale
distributed applications. This paper discusses the problem from a prob-
abilistic perspective. Contrary to deterministic approaches, which strive
to produce a precise outcome, probabilistic approaches may sometimes
expose users with incorrect results. The paper formalizes the probabilis-
tic resource-location problem with the notion of probabilistic queries. A
probabilistic query has a predicate as parameter and returns a set of
sites where the predicate is believed to hold. The query is probabilistic
because there are some chances that the predicate does not hold in all, or
even in any, of the sites returned. To implement probabilistic queries, we
introduce PSEARCH, an epidemic-like algorithm that uses basic concepts
of Bayesian statistical inference. Among its properties, PSEARCH is able
to adapt itself to new system conditions caused, for example, by failures.

1 Introduction

1.1 Motivation and Context

Resource location is a fundamental problem for large-scale distributed applica-
tions, and even though finding resources in a network of computers is a problem
probably as old as distributed computing itself, different system requirements
(e.g., high scalability) and conditions (e.g., unreliable user behavior) of cur-
rent large-scale applications on the Internet have recently led to a flurry of
new approaches to the problem. Good examples of current, and very popular,
large-scale applications are peer-to-peer systems such as Gnutella where users
find and share information on the Internet (e.g., MP3 music files) [1]. Involving
many distributed sites, ability to scale well is a highly-desirable property for
such systems. Moreover, since virtually any sites can take part in the system,
dealing with unreliable sites is also important.

This paper discusses the problem of finding resources in large distributed
systems from a probabilistic perspective. Contrary to deterministic approaches,
which strive to produce a precise outcome, this paper discusses an approach in
which users may be sometimes presented with incorrect results. Algorithms that
provide probabilistic guarantees—also known as probabilistic algorithms—have
recently been exploited in large-scale distributed systems [11,13,6] to improve
scalability. To the best of our knowledge, however, this is the first time the
approach is used in the context of resource location.

1.2 Probabilistic Queries

We formalize the probabilistic resource-location problem with the notion of prob-
abilistic queries. A probabilistic query has a predicate as parameter and returns
a set of sites where the predicate is believed to hold. Predicates are application
dependent; a predicate could be, for example, “the site stores some music file
X,” or “the site is equipped with a high-performance CPU.” After receiving the
result of a query, an application would, in the first case, request file X from one of
the sites returned; and, in the second case, send a CPU-bound task for execution
to one of such sites. The query is probabilistic because there are some chances
that the predicate does not hold in all, or even in any, of the sites returned.
Moreover, a resource-locating protocol should not only find sites where a given
predicate is satisfied, but highly-available sites where this is true. For example,
a site that concentrates many system resources and where most predicates are
satisfied is of little use if it is down too often. Therefore, queries should avoid
including such sites in their results.

1.3 Psearch Algorithm

To implement probabilistic queries, we introduce PSEARCH, an epidemic-like al-
gorithm that uses basic concepts of Bayesian statistical inference. Briefly, sites
exchange information among each other about the execution of previous queries,
and use this information to forward queries to the locations where most likely
a queried predicate holds. Sites use a gossip technique to exchange these tables
among themselves and update entries according to causal relationships between
entries and Bayesian statistical inference. PSEARCH is a robust algorithm, which
tolerates site crashes and recoveries, message losses, and network partitions. We
evaluate the PSEARCH algorithm using a simple analytical model and a simu-
lation model. Our results show that if some of the system sites contain many
resources, an assumption that has been found to hold in some environments [10,
12], the results produced by PSEARCH can be very precise.

1.4 Related Work

Traditionally, locating resources and information in a distributed system has
been accomplished using mechanisms such as global indexes. There are two fun-
damental differences between such kinds of mechanisms and PSEARCH: First,

mechanisms based on indexes perform search by references, while PSEARCH per-
forms search by content. Second, index-based mechanisms are normally deter-
ministic, while PSEARCH is probabilistic. The best example of search by reference
is the Internet Domain Name System (DNS) [5], one of the largest name services
in use today, but many other systems have also been build based on deterministic
mechanisms [2, 8,9, 14, 19, 20].

Differently from deterministic mechanisms, PSEARCH tries to locate informa-
tion based on patterns of use: if a certain information can be found at some site,
there are some chances that this site stores other interesting information of the
same kind—conceptually, this is similar to a cache mechanism. The advantage
of PSEARCH over deterministic approaches is that the system can easily evolve
to adapt itself to changes in the patterns of use and system failures.

In the context of peer-to-peer networks, some alternative ways of locating
resources by content in large-scale networks have emerged. Systems like Gnutella
[1] execute brute-force searches: processes propagate queries to their neighbors
in order to find the location of files. The work in [3] builds on the assumption
that the number of links connecting processes in large-scale networks follows a
powerlaw distribution, that is, very few processes are connected to most processes
in the system and most processes are connected to a few processes. Based on
this observation, decentralized algorithms are proposed which strive to visit first
processes with a high number of connections. This approach implicitly assumes
that processes with a large number of connections will be also the ones most
likely to answer application queries; otherwise, it risks to flood the network with
messages. PSEARCH is a more general solution, and if the number of connections
is indeed related to the likelihood of successfully resolving queries, PSEARCH will
adapt to this situation.

1.5 Summary of Contributions

Summing up, the contributions of the paper are the following;:

— We propose a formal definition of probabilistic queries. This definition quan-
tifies the result of queries in terms of the probability that they contain use-
ful information and how hard it will be to access this information (i.e., the
“quality” of the result).

— We introduce PSEARCH, an epidemic-like probabilistic algorithm. PSEARCH
is novel in that it combines standard epidemic techniques with Bayesian
statistical inference to adapt to new system conditions (e.g., due to process
failures and network partitions).

— We develop an analytical model to reason about PSEARCH, different from
traditional epidemic-like analytical models, which would not be appropriate
in our context.

— We investigate the performance of PSEARCH by means of simulation, consid-
ering various probabilistic data distributions and system failures.

1.6 Roadmap

The remainder of the paper is structured as follows. Section 2 describes our sys-
tem model. Section 3 formally introduces and discusses the notion of probabilis-
tic queries in the context of large-scale distributed systems. Section 4 presents
PSEARCH, an algorithm that solves probabilistic queries using simple concepts
from distributed systems and Bayesian statistical inference. Section 5 proposes
analytical and simulation models to evaluate the performance of PSEARCH. Sec-
tion 6 concludes the paper.

2 System Model and Assumptions

2.1 Processes and Failures

We model our distributed system as a set IT = {p1, pa, ...} of processes (or sites)
which communicate by message passing. Each process p; is associated with a
unique identifier (e.g., its IP address), and executes a sequence of steps, where a
step can be a change in the process’ local state, sending a message, or receiving a
message. A process may crash and subsequently recover. After a process crashes,
it does not execute any steps until it recovers. The system is asynchronous, that
is, there are no bounds on the time it takes for processes to execute steps nor
on the time it takes for messages to be transmitted.

Processes are distinguished between correct and faulty, according to their be-
havior with regards to failures. A correct process either is permanently up (i.e., it
never crashes) or eventually will be permanently up (i.e., the process crashes and
recovers at least once but eventually recovers and no longer crashes). A faulty
process may crash and recover an unbounded number of times but eventually
crashes and never recovers. All processes, however, whenever up, behave ac-
cording to their protocol—no Byzantine failures. Furthermore, we do not model
processes with a permanent intermittent behavior, that is, processes that keep
crashing and recovering forever without ever performing any useful computa-
tion. Such processes are problematic from a strict viewpoint since they cannot
be satisfactorily distinguished from correct processes that crash and recover an
unbounded, but finite, number of times [4].

The correct and faulty abstractions are meant to capture not only real process
failures but also the behavior of processes that “join” and “leave” the system
spontaneously. This is typically what happens with Internet users with dial-
in connections who are online for short periods of time. Moreover, “eventually
permanently up” is used to simplify the formal treatment of the problem. In
practice, we do not expect correct processes to remain up forever, but “long
enough” to perform some useful computation such as participate in the execution
of a query. Since it would be complicated to determine how long such processes
have to remain up, we simply assume that eventually they remain permanently
up (i-e., if they are correct) or down (i.e., if they are faulty).

2.2 Process Timers

Each process is equipped with a timer. Timers allow processes to give up waiting
for events that may never happen, such as receiving a message sent by a process
that has crashed. But timers give no guarantees with respect to processes crashes
or message losses—as stated previously, there are no bounds on the time it
takes for processes to execute steps nor on the time its takes for messages to be
transmitted. For example, if p; waits for a message from p; and its timer times
out, it can be that p; has crashed, the message has been lost, the communication
link is too slow, or p;’s timer is too fast, and there is no way p; can distinguish
between these cases. The only guarantee provided is that if p; sets its timer and
does not crash, then eventually p;’s timer times out.

2.3 Communication Links

We assume that communication links, defined by the primitives send(m) and
receive(m), can duplicate and lose messages but are fair, that is, if p; sends m
to p; a finite number of times, then p; receives m a finite number of times (e.g.,
maybe p; does not receive m at all), but if p; sends m to p; an infinite number of
times, and p; is correct, then p; receives m an infinite number of times (i.e., p;
receives m at least once); furthermore, p; only receives m if p; sent m to p; (i.e.,
communication links do not create messages). This definition of communication
links captures the intuition that if p; sends m to p; and both processes do not
crash for a “certain period of time,” allowing “enough” re-transmissions of m,
p; eventually receives m.

The network is partially connected. The set of neighbors of p; is denoted by
neighbors(p;). We further assume that there exists a fair path connecting any
two correct processes p; and p; in the system, that is, there is a path p; —
DPki — Pk, — -.. = pj such that every py, is correct and every link in the path
is fair. Such assumptions admit temporary network partitions, since a process
in a unique path between two processes may be temporarily down. However, a
fair path between any two correct processes guarantees that network partitions
eventually heal since eventually every correct process is permanently up.*

3 Probabilistic Queries

3.1 Informal Definition

In this section, we introduce the concept of probabilistic queries. A probabilistic
query is a request to find processes in the system in which some local predicate
holds. A predicate can be, for example, an assertion about the resources or data
available at the process. The query is probabilistic because there is a probability
that the result may not contain processes in which the predicate holds and
contain processes in which the predicate does not hold.

4 This assumption is not necessary to ensure progress of the execution of the algorithms

discussed in this paper, but it allows correct processes to have a convergent view of
the system.

3.2 Formal Definition

To execute a query for predicate X, p; calls function Q(X) and waits for its result.
Q(X) returns a set @ C II of processes. When p; returns from the invocation
of Q(X) with set 7, we say that p; executed query Q(X). Probabilistic queries
are formally defined by properties P1 and P2, presented next, and property P3,
presented in the end of the section.

Let 7 be the result of query Q(X), executed by some process:

— P1. With probability ¢;, there is some p; in 7 in which X holds.
— P2. With probability ¢s, if p; is in 7 then X holds in p;.

Probability ¢; represents the percentage of queries, in a sequence of query
executions, whose results contain at least one process where the queried predicate
holds. Probability ¢» represents the percentage of queries, in a sequence of query
executions, whose results do not contain processes in which the queried predicate
does not hold. Consider the case in which ¢; = 1 and ¢ = 1. From P1, the result
of any query should contain at least a process where the queried predicate holds;?
from P2, the result of any query should not contain processes where the queried
predicate does not hold.

In the absence of property P2, queries could be trivially optimized by always
returning IT as a result. In the absence of property P1, queries could be trivially
optimized by always returning the empty set as a result. Although hardly useful,
these cases help explain why one would not be interested in property P1, or P2,
alone.

A simple algorithm, which does not incur in any communication overhead
among processes, can be used to implement probabilistic queries. Such an algo-
rithm simply chooses a random subset of I as the result of a query. In Section 4
we present an algorithm that improves the values of ¢; and ¢2 by selectively in-
cluding processes in the result set of a query, trying to avoid processes where the
queried predicate does not hold. Such an algorithm, however, requires processes
to exchange local information with each other.

3.3 Excluding Faulty Processes

Only finding processes where some predicate holds may not entirely capture
the intuitive functionality expected from queries. For example, returning sets
of faulty processes is not useful if these process are to be contacted. Therefore,
queries should avoid, whenever possible, returning faulty processes. Properties
Pl and P2 are only concerned with distinguishing between processes in which
some predicate holds and in which it does not. To exclude faulty processes, we
introduce property P3.

— P3. Eventually no faulty process is returned in the result of a query.

5 ¢1 = 1 is only possible to achieve if all queried predicates hold in some process in
the system, which may not always be the case. When not all queried predicates hold
in the system, the maximum ¢; obtainable is smaller than 1.

Actually, one would like to always avoid faulty processes in the result of
queries—and not only eventually. It turns out, however, that such a property
cannot be achieved satisfactorily [4]. The intuitive reason is that no process can
tell in advance whether another process will crash, and if crashed, whether it
will recover. Thus, when trying to always avoid faulty processes in the result of
queries, processes will inevitably exclude from the query result correct processes
that will recover, or include in the query result faulty processes that will crash
and never recover, both unwanted results. Nevertheless, by tring to eventually
remove faulty processes, queries will always strive to minimize the number of
faulty processes returned.

4 The Psearch Algorithm

4.1 Overview of the Algorithm

In this section we introduce PSEARCH, an algorithm that implements probabilis-
tic queries. PSEARCH is a highly-resilient protocol, which guarantees progress in
the presence of process crashes, message loses, and network partitions—although
such events may affect the results produced by the algorithm (i.e., probabilities
¢1 and ¢2). In order to achieve this degree of resilience, PSEARCH combines
epidemic techniques and basic notions of Bayesian statistical inference.

Queries are executed by a recursive algorithm: Upon receiving a query for
execution from the application or from other process, p; evaluates the queried
predicate. If the predicate holds locally, p; replies immediately to the caller—the
application that requested the query or the process it received the query from.
If the predicate does not hold locally, p; forwards the query to other processes
and waits for the results; p; uses the results received from these processes, if any,
together with its local estimates about where the queried predicate may hold to
reply back to the caller.

To decide where to forward queries, p; keeps a local list of processes in which
p; believes predicates may hold. This list, denoted s_table, has a collection of
entries, each one for a different process (including p;). Each entry contains a
process id, an estimate of the probability that a predicate holds at this process,
denoted probability of success, and a timestamp associated with the probability of
success. Process p; continuously updates the entry to itself in its s_table based
on the execution of past queries and periodically propagates its s_table to its
neighbors; s_tables received by p; from its neighbors are used to update the
entries to other processes in p;’s s_table.

4.2 The Update Algorithm

The update algorithm (see Algorithm 1) is an epidemic-like protocol where pro-
cesses periodically send their s_tables to their neighbors (according to the net-
work topology). As local s_tables are updated with the information received from
other processes, data travels the network, from process to process. When p; sends

its s_table to other processes, its entry in the table is more up-to-date, or recent,
than any other entries in the table since it is continuously updated by p; while
the other entries have to travel the network, possibly suffering delays.

Algorithm 1 Updating s_tables (for process p;)

1: Initialization:

o]

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:

s_table; + 0 {s-table; initially empty}
I+ 100 {determines the precision of the model}
for!l=1..1do {build table with probabilities and believes}
P[B]' < 1/I {initial value of the belief a priori}
P[S|B)' « (21 —1)/21 {tentative probabilities of success}

P[S|B] + P[S|B]' s.t. P[S|B]' € {P[S|B]", ..., P[S|B]"} {probability of success}

: To update the search table:

periodically do {epidemic propagation:}
new_tmp < greatest timestamp in s_table; + 1 {determine biggest timestamp}
s_table; < s_table; \ {[ps, P[S|B], *|} {remove own entry, in order to...}
s_table; < s_table; U {[pi, P[S|B], new_tmp]} {...include updated entry}
for each p; € neighbors(p;) do {for each neighbor:}
send s_table; to p; {send s_table;}
when receive s_table; from p; {when receive an s_table;:}
for each [px, P[S|B]k,tmpx] € s_table; do {for each process...}
if [px, P[S|Blis, tmpys] € s_table; then {...in both tables...}

if tmpy < tmpy, then {...take the most up-to-date entry}

s_table; < s_table; \ {[px, P[S|Blx,tmpy:]} {remove old entry for py}
s_table; < s_table; U {[pk, P[S|Br,tmpr]} {include new entry for py}

else
s-table; < s_table; U {[px, P[S|Blk, tmpx]} {include the new entry}
while |s_table;| > M do {keep table in its right size}

oldestEntries < {[pk, *,tmpx] | [Pk, *, trmpe] is the oldest entry in s_table; }
s_table; < s_table; \ oldestEntries

Processes assign timestamps to their entries using a mechanism similar to

Lamport’s timestamps [15]. If an entry e is more recent than an entry e’ in p;’s
s_table, the timestamp assigned to e is greater than the timestamp assigned to
e' (the converse is not necessarily true). Thus, before sending the s_table to its
neighbors, p; updates the timestamp of its entry with a value bigger than any
other timestamps in the table.

When p; receives s_table; from p;, it updates its s_table using the entries in
s_table; and taking into account the timestamps associated with the entries. The
idea is to try to keep only the most recent entries from both s_tables. For entries
in both s_tables related to the same process, p; can safely determine which one
is the most recent (i.e., the one with the biggest timestamp). For entries related
to different processes, we face two problems. First, since the relation between
entries is a partial order [15], two entries may be not related, and it does not
make sense to talk about which one is more recent than the other. Second, from
the way timestamps are created, an entry with a timestamp bigger than the
timestamp of another entry does not necessarily mean that it is the most recent
one [16], if the entries refer to different processes.

The epidemic nature of the algorithm leads to a simple way to handle network
partitions. In case of a network partition, s_tables from processes in on partition
will fail to reach processes in the other partition. If the partition lasts a long time,
the algorithm will tend to make the system converge to a state where s_tables of
processes in a partition only contain entries for processes in the same partition.
However, since processes keep trying to send their s_tables to all their neighbors,
once the partition heals, s_tables will reach processes in both partition, and the
system will tend to converge back to the state prior to the partition.

4.3 Executing Queries

To execute query Q(X) upon request from a local application or from other
process, p; evaluates X' and depending on the outcome either replies back to
the caller or forwards the query to other processes. Each message received from
a process with a query also contains a set of wisited processes. The visited set
aims to reduce the chances that the same query will be received more than once
by the same processes (this mechanism is similar to the one used by Gnutella
[1]). To forward a query, p; chooses those processes in its s_table with the highest
probability of success that are not in the visited set. Before p; forwards the query,
if it decides to do so, it updates the visited set with such processes. The use of
a visited set, however, does not completely prevent the reception of duplicated
requests.5

To limit the diameter of Q(X), that is, the maximum number of times D—a
parameter of the algorithm—that Q(X) can be forwarded to other processes, a
message containing Q(X') also carries a diameter counter, decremented each time
the query is forwarded. If the counter reaches zero at some process p; and X' does
not hold at p;, instead of forwarding Q(X') to another process, p; returns to the
caller a subset of size L—a parameter of the algorithm—of its s_table with the
processes in which most probably X holds. Once p; receives the response back
from the processes it sent the query to, it determines its own response, based
on the probability of success of the entries in its s_table and the probability of
success of the results received from other processes.

8 For example, consider that p; forwards Q(X) to p2 and ps. Even though p» and ps
will not forward Q(X) to processes that already received it through pi, they may
both decide to forward Q(X') to the same process that has not yet received Q(X).

To execute query Q(X), p; calls function Q(X, D, {p;}) (see Algorithm 2).
Function maxy (set) returns a subset of size L containing those processes in set
with the highest probability of success.” For each query received, p; calculates
the believes a posteriori of each probability of success interval, explained in the
next section. The probability of success is taken as the average value of the
interval with highest degree of belief.

Algorithm 2 Query execution (for process p;)

1: function Q(X)
2: return(Q(X, D, {p:}))

3: function Q(X,d, visited)

4: if X holds at p; then

5: for I =1..1 do P[B]' + % {update table after success and...}
6: result < {[pi,1, -]} {...returns result}
7o else 1 P[B]' x P[S|B]! .

8: for | =1..1 do P[B] «+ S PIBTF X P[5| BT {update table after failure}
9: bestSet < maxy, (s_table; \ visited) {determine best set of processes}
10: result «+ 0 {initially no result is known}
11: if d > 0 then {if can forward query:}
12: visited < visited U bestSet {update current visited processes and...}
13: for each p; € bestSet do send Q(X,d — 1, visited) to p; {...forward query}
14: set timer {...to be ready for failures and message losses}
15: wait until [(Vp; € bestSet : (receive(response) from p;)) or timeout]

16: for each p;, received response; from p; do {for each response received:}
17: result < maxy, (result U response;) {compute its own response}
18: else

19: result < bestSet {return its best guess}

20: P[S|B] < P[S|B]; s.t. P[B]; is the max in P[B]1, P[B)s,..., P[B]; {determine
new prob. of success}

21: s_table; < s_table; \ {[ps, *, *]} {update s_table;}

22: s_table; + s_table; U {[p;, P[S|B], -]} {done!}

23: return(result)
24: when receive Q(X,d, visited) from p;

25: response < Q(X,d, visited)
26: send response to p;

7 In line 9 of Algorithm 2, we simplify the notation, denoting the set of processes in
entries in s_table that are not in wvisited by s_table \ visited. Thus, “\” is not the
“standard” set operator since s_table and visited sets are not of the same type.

4.4 The Probability of Success

The probability of success of a process is a local estimate of the likelihood that
the next queried predicate received by the process will hold. It is an estimate
because the process never knows what the real chances of success are. Processes
permanently re-calculate their probabilities of success after executing a query
using some heuristics. In PSEARCH, processes use the relation between past suc-
cesses with respect to the total number of queries locally executed, which roughly
means that the more queries the process is able to successfully execute, the higher
the chances that future queries will also be successful.

To determine its local probability of success P[S|B], each process keeps a
list of probabilities of success intervals [0, A1), [AL, A2), ..., [A*, 1], where 0 < Al <
A2 < ... < AF < 1, and degrees of belief P[B]', P[B]?, ..., P[B]**! that P[S|B]
lies within each one of these intervals—notice that Y, P[B]' = 1. Each interval
has an approximate probability of success, P[S|B]', equal to the average of the
values in the interval. Probability P[S|B] is taken as the P[S|B]' with the highest
degree of belief. Figure 1 illustrates an initial configuration with 5 intervals. Since
all entries have the same degree of belief, P[S|B] can be any value among 0.1,
0.3, 0.5, 0.7, and 0.9.

P[B] P[S|B] P[B|S]' (new P[B]")|P[S|B]
[0.0,0.2) 0.2 ~ 0.1 [0.0,0.2) 0.04 ~ 0.1
[0.2,0.4) 0.2 ~ 0.3 [0.2,0.4) 0.12 =~ 0.3
[0.4,0.6) 0.2 ~ 0.5 [0.4,0.6) 0.20 ~ 0.5
[0.6,0.8) 0.2 =~ 0.7 [0.6,0.8) 0.28 =~ 0.7
[0.8,1.0] 0.2 =~ 0.9 [0.8,1.0] 0.36 =~ 0.9
Fig. 1. Initial configuration Fig. 2. Successful query

Bayesian networks are direct acyclic graphs, where the vertices represent
random variables and the edges their relationships. Thus, each process maintains
a small Bayesian network b — s, where b is associated to the probability P[B]'
and s is associated to the probability P[S|B)! [18]. A Bayesian network can be
used to make inferences like: ”What is the new degree of belief on a probability
interval given that the last query was successful?” To compute the new degree of
belief on a given interval, P[B|S]', we use basic conditional probability: P[B|S]' x
P[S])} = P[S|B])! x P[B]!, and Bayes theorem:

. P[S|B} x P[B]!
PIBIST = 1[3[|S|f]9]k x[P[]B]k ' @

Equation (1) is used to compute the belief a posteriori on P[S|B]! (denoted
P[B|S]"), which will be the new value of P[B]! after a query executed at the
process holds. If the queried predicate does not hold at the process, a similar
equation is used, derived from P[B|S]' x P[S]' = P[S|B]' x P[B]}, to re-compute

its table. Figure 2 illustrates the new values for P[B]' when the queried predicate
holds. If the heuristic used to determine P[S|B] is effective, then as the execution
evolves, P[S|B] becomes the average value of the interval whose belief tends to

4.5 Classes of Resources

We have simplified the discussion about the algorithm by assuming that all
possible queried predicates in the system belong to the same “class.” Greater
accuracy of the results can be obtained by dividing predicates into different
classes (e.g., one class could group predicates involving MP3 Bossa Nova music
files and another predicates involving MP3 Jazz music files).

While distinguishing between classes will increase the amount of information
that processes have to keep locally—each class has to have its own s_table and
probability of success, we note that not all processes have to keep information
about all classes in the system; however, the more information a process has
about a class of predicates, the higher the chances that queries executed by this
process for predicates in this class will be successful.

Even though a discussion about how predicates can be divided into classes
is beyond the scope of this paper (for a discussion, see for example [17]), the
propagation and update mechanisms used to execute queries in such contexts
are the same ones used for a single class.

5 Psearch Assessment

5.1 Analytical Analysis

In the following, we assess the PSEARCH algorithm by characterizing ¢; and ¢,
analytically. We simplify the analysis by considering executions where no pro-
cesses fail and timers do not time out. Probabilities ¢; and ¢2 can be estimated
from the local probabilities ¢¢ and ¢} at each p;:

number of queries executed by p; .
$1,2 = Z - X P12

- total number of queries executed

We model processes and the entries in their s_tables with a directed graph
G(II, E), where II is the set of all processes and E the the set of “logical links”
between processes: there is a link from p; to p; in G if and only if p; is in p;’s
best_set. @i is the probability that Q(X), initiated in p; with diameter D, can
be successfully executed by some process in A;, the set of all processes that can
be returned by the query. We define C¥(d), the k-th simple path® of length d
in G with origin in p;, as C¥(d) = (Pkg,Pky, -+ Pks)> Where pr, = p; and link
(Pky» Priyr) € G,0 < 1 < d (see Figure 3). The set C;(d) of all simple paths of
length d in G with origin in p; is defined as C;(d) = Uy, CF(d).

8 A path is simple if it only contains different processes.

Fig. 3. Paths of length 2 Fig. 4. Paths with the same processes

We calculate A; by considering all processes in simple paths of length equal
to or smaller than D + 1 and with origin at p; in G: A; = Ug<p+1 Up,ec;(a) Pj-
¢! is the probability that Q(X) can be solved at some process in A;:

¢i=1-][PISIB;:. (2)

PjEA;

To calculate ¢4, the probability that ¥ holds at all processes returned as the
result of query Q(X), we determine first the probability that X' does not hold at
any process returned by Q(X). From the PSEARCH algorithm, processes where
X/ does not hold can only be returned by processes at distance D. To see why,
consider that some process p; where X does not hold receives Q(X). If p; is at
distance d < D from p;, p; forwards Q(X) to the processes in its best_set; if
p; is at distance D from p;, p; returns such processes instead. Thus, if p; is a
process returned by Q(X) in which ¥ does not hold, and C¥(D + 1) is a simple
path of length D + 1 in G from p; to p;, then X does not hold in any process in
CF(D + 1), and we say that X does not hold in path C¥(D + 1).

Therefore, the probability that X~ does not hold at some process returned by
Q(X) is the probability that X does not hold in some path C¥(D + 1). Such a
probability would be straightforward to calculate if not for the fact that paths
are not independent. Consider for example Figure 4 where both paths C¥ and
Cf' contain processes p; and p;;. When calculating the probability that X' does
not hold at Cf and Cfl, we should consider p;, pj, and p;» only once.

To solve this problem, we point out that paths CF and Cf' correspond to
the same events in the space of events determined by paths in G: both C¥ and
Cf' correspond to the event that X fails in p;, p;, and p;.® Thus, we initially
determine the set 2; = {e},e?,...} of events of interest, that is, a subset of the
space of events (2 corresponding to all paths in G starting in p; of length D + 1
in which X fails in all processes in the path and then calculate the probability
that these events happen. The probability that event e} happens, denoted P(e]),
is calculated as P(e!) = wy, X wy, X ..., where wy, is the probability of success at

9 This case follows directly from the commutative property of intersection: P[A] x
P[B] = P[B] x P[A]. Our solution also works in more complex cases, such as “Y-
shaped” paths (e.g., CF = (pi;pj; pr) and Cq;kl = (ps; pj; Px'}), but for brevity we do
not further discuss the issue in this paper.

process py, or its converse. Finally, probability ¢} is determined by:

gh=1-) P(e]). 3)

E'Z:Eni

To illustrate our analysis, we consider the simple case of a regular graph where
each process has the same number L — 1 of neighbors and the same probability
of success a. Queries are executed with a diameter D = 0. In this case, the
probability that Q(X) returns a process where predicate X holds is:

zi:]-_(]-_o“)La

which is 1 minus the probability that X' does not hold in any processes among
the L involved (i.e., the process where the query originated plus its L — 1 neigh-
bors). For the case of a completely connected graph, if L = n then ¢; represents
the probability that the ”system” can resolve queries. Such a value is the max-
imum probability achieved by any algorithm—even a deterministic one—when
processes have a probability of success equal to a.

The probability that Q(X) does not return any process where X does not
hold is:

¢p=1-(1-a)x(1-a""),

which is 1 minus the probability that processes in which X' does not hold are
returned in all paths considered by Q(X): (1 — «) is the probability that Q(X)
fails at the process where it originated, and (1 — a*~!) is the probability that
Q(X) fails in at least one of the remaining L — 1 processes (i.e., L — 1 paths of
length 1).

Figures 5 and 6 show the variations in ¢ and ¢, respectively, with the vari-
ation in L and «. As a reference, we have also included a curve with simulation
results; details about our simulation are given in the next section. The simula-
tion values shown in Figures 5 and 6 consider a completely connected network
and processes with a probability of success equal to 0.1.

! — e T T e T — T
P a= - a=09 ——
B » a= 09 Tt a=07-—-—- 7
ost- 7 . o= 08 T o =05 -
B - . oz = z
a=0. 07 a=01-—— -
.- simulatio y simulation -~ + --
06 . I . 06 N . -
.- e R B
05 L e
- - o W
04 T - 04 AR .
' AT T 03 Ve -
. T \

021 .7 =T - 0.2 A - I

LT R T
- 01 B Hrcseaeans e 1

o I I I I o I I I I
1 2 3 4 5 6 1 2 3 4 5 6
L L

Fig. 5. ¢! in a fully connected graph Fig. 6. ¢} in a fully connected graph

For high values of a (i.e., > 0.5), ¢¢ quickly tends to 1. For low values of a,
and given enough processes, ¢! can be reasonable high—notice that the proba-
bilities are assumed to be independent. Conversely, ¢4 is much more susceptible
to variations in « than to variations in L. Actually, for L > 3, ¢} almost only
depends on «a. From Figures 5 and 6 we can conclude that PSEARCH is effective
in scenarios where predicates hold with high probability in a subset of processes,
and provided that the system evolves to identify what these processes are.

5.2 Simulation-Based Analysis

To better understand the behavior of PSEARCH, we have build a simulation model
in C++ using the simulation package CSIM [7]. In the beginning of the execution
each process is assigned a real probability of success, according to a certain
distribution of probability, which determines the chances that a queried predicate
holds at the process. This is the probability that processes try to determine
using Bayesian statistical inference. Processes generate queries regularly and
data starts to be collected once the local probability of success determined by
processes become near the real values (i.e., around 5% of difference).

The impact of the probability distribution. Figures 7 and 8 compare different dis-
tributions of the real probabilities assigned to processes. To minimize the effects
of other parameters, we considered a network completely connected and very
large s_tables (i.e., able to store 50 processes). We have conducted experiments
where all processes have a real probability of 0.1, a uniform distribution of real
probabilities, and a powerlaw distribution of real probabilities. In a powerlaw dis-
tribution, a very few processes have a very high real probability of success, and
most processes have a low real probability of success (i.e., in our experiments,
only three processes have a real probability of success greater than 50%).

T T
uniform ——
powerlaw —----
constant -----

0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2

0.1

Fig. 7. ¢! in a fully connected graph Fig. 8. ¢} in a fully connected graph

For the uniform and the powerlaw distributions, some processes have a high
probability of executing queries with success. Such processes eventually end up
in the s_tables of all processes, which explains the high values of ¢; and ¢-

for these two distributions. Probability ¢» decreases with the increase in the
number of processes in the result because there are not so many processes with
high probabilities of success, and those with high probability are included first
in the result of queries. Therefore, when processes of low probability of success
are included (L > 7) the chances that the queried predicate does not hold in all
processes in the result raises.

The effect of failures. In these experiments, we consider a random network: We
initially randomly generate links of varying latencies connecting processes and
then take the biggest connected component as our network—processes not con-
nected to the main component are discarded as are any connections involving
them. To achieve a connected component with 100 processes, we interactively
increased the initial number of processes until we reached 100 in the main com-
ponent. The real probabilities of success are generated according to a powerlaw
distribution, and each s_table can contain 10 processes. In Figures 9 and 10, 8
represents the percentage of faulty processes. Faulty processes proceed in cycles:
they execute for a certain period of time, crash and lose all the information they
gathered, and recover. In the execution, each faulty process spends half of the
simulation time up.

0.8 [~

s

5 —-——

06 [~ -

0.4 = -

02~

L L

Fig. 9. ¢! in the presence of failures Fig. 10. ¢} in the presence of failures

Although the effects of process failures is not very significant on the values of
¢1 and ¢o, even the best case scenario (i.e., no failures) has low values of ¢; and
¢». This happens because with a powerlaw distribution, only very few processes
have high real probabilities of success. As all processes periodically forward their
s_tables to their neighbors, processes with high probability of success never last
long in the s_tables—notice that in order to be able to get rid of faulty processes,
we have to remove processes from s_tables based on their timestamps, and not
on their probability of success. We discuss in next paragraph a way to improve

¢1 and ¢2 .

Improving ¢1 and ¢2. To improve ¢; and ¢ and still be able to remove faulty
processes, we modified our algorithm as follows: Initially, every process uses the
same time interval to forward s_tables. After executing a query without success,

this value is increased (until it reaches some maximum threshold); after a query
is executed with success by the process, the value is decreased (until it reaches
some minimum threshold). Therefore, processes with very high probability will
send their s_tables more frequently than processes with low probability, and so,
will dominate the occupancy of s_tables. As depicted in Figures 11 and 12, this
technique proved to be very effective. Moreover, the impact of failures on ¢; and
@2 is still small.

0.8

s

06 [~ - 0.6

0.4~ - 0.4

Fig. 11. ¢ with improved PSEARCH Fig. 12. ¢} with improved PSEARCH

6 Conclusion

This paper introduced the notion of probabilistic queries, an abstraction used to
find resources and information (e.g., data files, processing capabilities) in large-
scale systems. Contrary to deterministic solutions to the problem, probabilistic
queries admit mistakes. The quality of a probabilistic query algorithm can be
measured by two parameters: ¢; and ¢s; the former is related to the chances
that a query result contains a process of interest and the latter is related to
the chances that “useless” processes are returned in the result of the query.
Parameters ¢ and ¢o are complementary. Without ¢, optimal queries could
return all processes in the system; without ¢1, optimal queries could return no
processes at all. The paper also presents PSEARCH, an algorithm that implements
probabilistic queries using basic concepts of Bayesian statistical inference.
Preliminary results, by analytical and simulation models, show that if the
system contains processes that concentrate most of the resources, an assumption
that has been observed in some environments [10, 12], PSEARCH can be reasonable
precise. PSEARCH is a promising way of dealing with the location problem in
distributed system. Part of its power comes from its ability to adapt to system
changes, that is, if the patterns of use chance over time, with some resources
being more requested than others or some processes being more able to respond
to request than others, PSEARCH adapts itself to new demands. We are currently
working on a large set of experiments whose goal is to better understand the
behavior of PSEARCH under various system loads and network partitions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Peer-to-peer: Harnessing the Benefits of a Disruptive Technology. O'Reilly & As-
sociates, Inc., 2001.

K. Aberer. P-grid: A self-organizing access structure for p2p information systems.
In 9th International Conference on Cooperative Information Systems, volume 2172
of Lecture Notes in Computer Science. Springer, 2001.

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in
power-law networks. Technical report, Hewlett-Packard Laboratories, 2001.

. M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the

crash-recovery model. In Proceedings of the International Symposium on Dis-
tributed Computing (DISC’98), pages 231-245, September 1998.

P. Albitz and C. Liu. DNS and BIND. O’Reilly & Associates, 3rd edition, 1998.
K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2):41-88, May 1999.
CSIM 18 simulation engine (C++ wversion). Mesquite Software, Inc. 3925 W.
Braker Lane, Austin, TX 78755-0306.

F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and
H. Balakrishnan. Building peer-to-peer systems with chord, a distributed lookup
service. In 8th IEEE Workshop on Hot Topics in Operating Systems, May 2001.
M. J. Demmer and M. P. Herlihy. The arrow distributed directory protocol. Lecture
Notes in Computer Science, 1499, 1998.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. Computer Communication Review, 29(4), 1999.

I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable and efficient dis-
tributed failure detectors. In Proceedings of the 20th ACM Symposium on Princi-
ples of Distributed Computing (PODC’2001), August 2001.

B. A. Huberman and L. A. Adamic. Growth dynamics of the World-Wide Web.
Nature, 401(6749), September 1999.

K. P. Birman I. Gupta, R. van Renesse. Scalable fault-tolerant aggregation in
large process groups. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN’2001), July 2001.

J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. Geels, R. Gummadi, S. Rhea,
W. Weimer, C. Wells, H. Weatherspoon, and B. Zhao. OceanStore: An architec-
ture for global-scale persistent storage. ACM SIGPLAN Notices, 35(11):190-201,
November 2000.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

F. Mattern. Virtual time and global states of distributed systems. In M. Cosnard
et al., editor, Proceedings of the International Workshop on Parallel and Distributed
Algorithms. Elsevier Science Publishers, 1989.

Open Directory Project. http://dmoz.org.

D. S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford Science Publications,
1996.

A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S.J. Mullender,
J. Jansen, and G. van. Rossum. Experiences with the amoeba distributed operating
system. Communications of the ACM, 33(12), December 1990.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz.
Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemina-
tion. In International Workshop on Network and Operating System Support for
Digital Audio and Video, 2001.

