
Ruminations on Domain-Based Reliable Broadcast

Svend Frølund Fernando Pedone
Hewlett-Packard Laboratories

Palo Alto, CA 94304, USA

Abstract

A distributed system is no longer confined to a single administrative domain. Peer-to-peer
applications and business-to-business e-commerce systems, for example, typically span mul-
tiple local-area and wide-area networks, raising issues of trust, security, and anonymity. This
paper introduces a distributed systems model with an explicit notion of domain that defines
the scope of trust and local communication within a system. We introduce leader-election or-
acles that distinguish between common and distinct domains, encapsulating failure-detection
information and leading to modular solutions and proofs. We show how Reliable Broadcast
can be implemented in our domain-based model, we analyze the cost of communicating across
groups, and we establish lower-bounds on the number of cross-domain messages necessary
to implement Reliable Broadcast.

1 Introduction

1.1 Motivation

Distributed systems are no longer confined to a single administrative domain. For example, peer-
to-peer applications and business-to-business e-commerce systems typically span multiple local-
area and wide-area networks. In addition, these systems commonly span multiple organizations,
which means that issues of trust, security, and anonymity have to be addressed. Such global
environments present new challenges to the way we program and organize distributed systems.

At the programming level, several researchers have recently proposed constructs to decom-
pose a global system into smaller units that define boundaries of trust and capture locality. An
example of such a construct is the notion of ambient introduced by Cardelli [Car99b]. The trend
reflects a growing realization that one should not treat a global system as a very large local-area
network.

1.2 The Domain-Based Model

We introduce a distributed systems model with an explicit notion of domain that defines the
scope of trust and local communication within a system. A domain is a set of processes, and a
system is a set of domains. A domain-based model allows us to employ novel complexity mea-
sures, such as the number of times a given algorithm communicates across domain boundaries.
Such complexity measures reflect the real-world costs of crossing firewalls and communicating
along wide-area links. In contrast, a conventional “flat” model, with a single set of processes,
attributes the same cost to any point-to-point communication. Besides complexity measures,
a domain-based model also allows us to capture the realistic notion that failure information
within a local-area network is more accurate than failure information obtained across wide-area
networks. We develop a notion of leader-election oracle that provides one level of information
to processes within the same domain, and another, with weaker properties, to processes in
other domains. Finally, domains enable us to reflect the common security policy that a process
trusts other processes in the same organization (domain), but not necessarily processes in other
domains. We introduce Byzantine failures into our model, and having domains allows us to
attribute Byzantine behavior to entire domains (as seen from the outside).

1.3 Domain-Based Algorithms

In building global systems, a fundamental concern is the reliable dissemination of information.
We want the information dissemination to be reliable, but also efficient and scalable. In practice,
an important aspect of efficiency is the amount of wide-area bandwidth consumed by information
dissemination algorithms. In terms of scalability, an important quality is to make the system
decentralized. To address the issue of information dissemination in large-scale systems, we
describe a number of Reliable Broadcast algorithms that work in our domain-based model.

The first set of algorithms tolerate crash failures only. In this context, we start by examining
how to implement Reliable Broadcast in a purely asynchronous, domain-based model. We then
incrementally add synchrony assumptions to this model, and show how one can exploit these
assumptions, in the form of leader-election oracles, to reduce the number of messages that cross
domain boundaries. We analyze the cost of these algorithms in terms of cross-domain messages
and present lower bounds that quantify the inherent cost of reliability in a domain-based model.

1

The second set of algorithms implement Reliable Broadcast in a system with Byzantine
failures. We consider a domain to be Byzantine if it contains a Byzantine process, and we
develop algorithms that can tolerate Byzantine domains. Considering Byzantine behavior at the
domain level reflects the notion that a domain is the unit of trust and security: once a domain
has been compromised, it is likely that an adversary can take over as many processes as it wishes
within that domain. We first provide a protocol that ensures agreement: all correct processes in
all non-Byzantine domains deliver the same set of messages. We then give an algorithm that also
ensures consistency: messages are tagged with unique identifiers, and no two correct processes
in non-Byzantine domains deliver different messages with the same identifier. Consistency is an
important property. It prevents spurious messages from being delivered, which may happen, for
example, if an erroneous sender keeps using the same message identifier with different message
contents.

1.4 Related Work

Compared with the ambient calculus [Car99a], and other wide-area models based on process
algebras, our system model explicitly captures failures and the availability of failure information.

A number of papers have addressed the issue of information dissemination with Reliable
Broadcast. The algorithms in [HT93] use message diffusion, and tolerate crash and link failures.
In [CT90], the authors present time and message efficient Reliable Broadcast algorithms that
tolerate crash and omission failures. The protocol in [GS96] exploits failure detection to more
efficiently diffuse messages. All these protocols assume a flat universe of processes. If we were
to employ them on top of a networking infrastructure with wide-area networks, the resulting
wide-area message complexity would be proportional to the total number of processes. With our
protocols, the wide-area message complexity is proportional to the number of domains (assuming
that there are no wide-area links within a domain).

The Reliable Broadcast algorithm in [Rei94] assumes a flat model with Byzantine processes.
In our terminology, the algorithm implements agreement but not consistency—there is no notion
of message identifiers to ensure that processes deliver the same message content for the same
identifier. The notion of Byzantine Agreement [PSL80, LSP82] captures a variation of Reliable
Broadcast in the Byzantine model. With Byzantine Agreement, a single process broadcasts
a value, and all correct processes must decide on the same value. The original formulation
of the problem in [PSL80] requires an explicit notion of time. The definition of Asynchronous
Byzantine Agreement [BT85] does not use time and only requires honest processes to decide if the
broadcasting process is honest. Asynchronous Byzantine Agreement ensures consistency relative
to a single message, but the definition of the problem is for a single message. Thus, besides
implementing Byzantine-tolerant Reliable Broadcast in a domain-based model, our algorithms
also bridge the gap between Reliable Broadcast and Byzantine Agreement.

1.5 Summary of Contributions

The paper makes the following contributions:

• We define a domain-based system model, which corresponds to current wide-area dis-
tributed systems, and give a specification of Reliable Broadcast in this model.

• We introduce leader-election oracles that distinguish between common and distinct do-
mains, encapsulate failure-detection information, and lead to modular solutions and proofs.

2

• We show how Reliable Broadcast can be implemented in our domain-based model. We
start with the simple case of only two groups and then build up to more complex cases.

• We analyze the cost of communicating across groups, evaluate the performance of our
protocols in terms of cross-domain messages, and provide lower-bounds on the number of
cross-domain messages necessary to implement Reliable Broadcast.

2 System Model and Definitions

2.1 Processes, Failures and Communication

We assume that the system is composed of groups of processes, that is, Π = {Π1,Π2, ...,Πn},
where Πx = {p1, p2, ..., pnx}. When we need to distinguish processes from different groups, we
will use superscripts: pxi ∈ Πx. Processes may be honest (i.e., they execute according to their
protocols) or malicious (i.e., Byzantine). Honest processes can crash, but before they crash,
they follow their protocols.

A process that is honest and does not crash is correct ; if the process is honest but crashes it is
faulty. If a group has at least one malicious process, then it is bad ; otherwise the group is good.
Therefore, good groups can contain only correct and faulty processes, while bad groups can
contain any kind of processes. In a good group Πx, we assume that at most fx < nx processes
crash.

Processes communicate by message passing. Each message m has three fields: sender(m),
the process where m originated, id(m), a unique identifier associated with m, and val(m), the
actual contents of m. We assume that the network is fully connected, and each link is reliable.
A reliable link guarantees that (a) if pi sends a message m to pj , and both pi are pj are correct,
then pj eventually receives m; (b) each message is received at most once by honest processes;
and (c) if an honest process receives a message m, and if sender(m) is honest, then m was sent.

The system is asynchronous: message-delivery times are un-bounded, as is the time it takes
for a process to execute steps of its local algorithm. We assume the existence of a discrete global
clock, although processes do not have access to it—the global clock is used only to simplify some
definitions. We take the range T of the clock’s ticks to be the set of natural numbers.

2.2 Domain-Based Reliable Broadcast

The domain-based Reliable Broadcast abstraction is defined by the primitives byz-broadcast(m)
and byz-deliver(m), and has the following properties:

• (Validity.) If a correct process in a good group byz-broadcasts m, then it byz-delivers m.

• (Agreement.) If a correct process in a good group byz-delivers m, then each correct process
in every good group also byz-delivers m.

• (Integrity.) Each honest process byz-delivers every message at most once. Moreover, if
sender(m) is honest, then sender(m) byz-broadcast m.

• (Consistency.) Let pi and pj be two processes in good groups. If pi byz-delivers m, pj
byz-delivers m′, and id(m) = id(m′), then val(m) = val(m′).

3

Domain-based Reliable Broadcast without consistency is a generalization of Reliable Broad-
cast in a flat model. Throughout the paper, we use Reliable Broadcast locally in groups as a
building block to implement domain-based Reliable Broadcast. We refer to such an abstraction
as local Reliable Broadcast. Local Reliable Broadcast is defined by the primitives r-broadcast(m)
and r-deliver(m). The properties of local Reliable Broadcast can be obtained from the prop-
erties of domain-based Reliable Broadcast by replacing byz-broadcast(m) and byz-deliver(m)
by r-broadcast(m) and r-deliver(m), and considering a system composed of one good group
only. Without the consistency property, local Reliable Broadcast can implemented with a con-
ventional “flat” algorithm [CT96]. When the consistency property is needed, such as in our
most general algorithm in Section 5.2, the implementation is different from Reliable Broadcast
implementations in the flat model. We discuss such an implementation further in Section 5.2.

2.3 Leader-Election Oracles

In some of our algorithms we use oracles that give hints about process crashes—they do not
provide any information about which processes are malicious. Our oracles are quite similar to
the Ω failure detector in [CHT96]. Where Ω is defined for a “flat” system, our oracles are defined
for a distributed system with groups.

We introduce a notion of group oracle—an oracle that gives information about the processes
in a particular group. For example, the group oracle Ωx gives information about the processes in
Πx. Thus, our system contains a set of oracles, {Ω1,Ω2, . . . ,Ωn}, one per group. Each process
has access to all oracles. Having an oracle per group, rather than a single “global” oracle,
allows us to distinguish between local information and remote information. A process pxi gets
local information from the oracle Ωx (information about other processes in Πx). In contrast,
a process pxi obtains remote information from an oracle Ωy, where y 6= x (information about
processes in other groups). We use the notion of group oracle to model a system where local
information is stronger than remote information.

We use the set G to denote the set of all processes in the system (G = Π1 ∪Π2 ∪ . . . ∪Πn).
Moreover, we use the set good to denote the set of good groups (good ⊆ Π).

In the following, we adapt the model in [CHT96] to define a notion of group oracle. A failure
pattern represents a run of the system. A failure pattern F captures which processes in G crash,
and when they crash. Formally speaking, a failure pattern is a map from time to a subset of G.
Based on a failure pattern F , we can define the set of processes that crash in F as crash(F):

F ∈ F = T → 2G (1)
crash(F) = ∪t∈T F (t) (2)

correctx(F) = Πx \ crash(F), if Πx ∈ good (3)

where F is the set of all failure patterns, and F is an element of this set. For a good group Πx,
the set correctx(F) is the set of correct processes in Πx.

A group-oracle history Hx is a map from process-time pairs to a process in Πx.1 A pair (q, t)
maps to the process pxi if the process q at time t believes that pxi has not crashed. We also say

1The concept of a group-oracle history is similar to the notion of failure-detector history in [CHT96]. Where
a failure-detector history is global, a group-oracle history is local to a particular group. Furthermore, where a
failure-detector history maps to a set of processes (the processes that have failed at a given time), a group-oracle
history maps to a single process (a process that is believed not to have crashed).

4

that q trusts pxi at time t. Intuitively, a failure pattern is what actually happens in a run, and
a group-oracle history represents the output from a group oracle. We can now define a group
oracle Ωx as a map from a failure pattern to a set of group-oracle histories:

Hx ∈ Hx = (G× T)→ Πx (4)

Ωx ∈ Dx = F → 2Hx (5)

The set Hx is the set of all group-oracle histories relative to a group Πx, and the history Hx

is an element in this set. Furthermore, the set Dx is the set of all oracles for Πx, and Ωx is an
element in this set (in other words, Ωx is an oracle).

We can use the above definitions to establish constraints on the information that an oracle
Ωx gives a process p. First of all, if Πx is a bad group, there are no constraints—Ωx may
return arbitrary information. If Πx is a good group, there are two sets of constraints: a set of
constraints for local information (p ∈ Πx) and remote information (p 6∈ Πx):

• Local Trust: For any good group Πx, eventually all correct processes in Πx trust the same
correct process in Πx. Formally:

Πx ∈ good⇒
〈
∀F,∀Hx ∈ Ωx(F),∃t ∈ T ,

∃q ∈ correctx(F),∀p ∈ correctx(F),∀t′ ≥ t : Hx(p, t′) = q
〉

(6)

• Remote Trust: For any good group Πx, eventually, all correct processes in all good groups
trust a correct process in Πx. Formally:

Πx ∈ good⇒
〈
∀F,∀Hx ∈ Ωx(F),∃t ∈ T ,

∀Πy ∈ good,∀p ∈ correcty(F),∀t′ ≥ t : Hx(p, t′) ∈ correctx(F)
〉

(7)

• Stability: For any good group Πx, eventually, any correct process in a good group trusts
the same process in Πx forever. Formally:

Πx ∈ good⇒
〈
∀F,∀Hx ∈ Ωx(F),∃t ∈ T ,

∀Πy ∈ good,∀p ∈ correcty(F),∃q ∈ correctx(F),∀t′ ≥ t : Hx(p, t′) = q
〉

(8)

Roughly speaking, a group oracle Ωx is equivalent to the oracle Ω in [CHT96] in terms of local
information—we use a group oracle Ωx for leader election within the group Πx. In terms of
remote information, Ωx provides slightly weaker information—the processes in a group Πy use
the oracle Ωx to select a process in Πx that serves as destination for inter-group messages that
are sent from Πy. The Remote Trust and Stability properties ensure that any process in a
remote group eventually trust a single process in Πx. However, different processes in remote
groups may trust different processes in Πx. If instead the oracle Ωx guaranteed to eventually
return the same process in Πx to any process (local and remote), this “leader” could become a
bottleneck since it would handle all incoming and outgoing communication in Πx.

3 Abstractions for Solving Reliable Broadcast

It is possible to implement domain-based Reliable Broadcast in a purely asynchronous system.
However, one can come up with more efficient algorithms in a model with oracles. We want to

5

provide insights about both types of algorithms: algorithms that assume a purely asynchronous
model and algorithms that use the oracles introduced in Section 2.3. It turns out that both
types of algorithms share a common principle: for each broadcast message, at least one correct
process in the sending group communicates the message to a correct process in the receiving
group. The choice of underlying model does not change this principle, only how it is achieved.
Rather than describe a number of algorithms that are identical except for their dealing with the
underlying model, we encapsulate model-related concerns in well-defined abstractions. The use
of these abstractions allows us to simplify the description of our algorithms and to modularize
the proof of their correctness.

Our abstractions are specified relative to a given group. Rather than explicitly pass a group
as parameter to every invocation, we supply the group as a subscript of the abstraction. For
example, the abstraction sendersx() means “the senders abstraction relative to a group Πx.”

The sendersx() abstraction. This abstraction is used within a group Πx to select the processes
in Πx that send messages to processes in other groups. The sendersx() abstraction returns a set
of processes in Πx. If pxi in Πx invokes sendersx() and the returned set includes pxj , we say that
pxi selects pxj . The sendersx() abstraction has the following properties:

• Termination: The sendersx() abstraction is non-blocking.

• Validity: Eventually, sendersx() selects a correct process in Πx.

• Agreement: Eventually, any invocation of sendersx() selects the same processes.

Notice that the sendersx() abstraction is only available to processes in the group Πx. Notice also
that the set of processes returned by sendersx() may change over time.

The destinationsx() abstraction. Processes in a group Πy can use the destinationsx() ab-
straction to select the recipients in Πx of inter-group messages. That is, processes in Πy use
destinationsx() to determine which processes in Πx to send messages to. If a process in Πy, p

y
i ,

invokes destinationsx(), and if the returned set includes a process pxj , we say that pyi selects pxj .
The destinationsx() abstraction has the following properties:

• Termination: The destinationsx() abstraction is non-blocking.

• Validity: Eventually, destinationsx() selects a correct process in Πx.

• Agreement: For any process p, eventually any invocation of destinationsx() by p selects
the same processes.

Notice that destinationsx() is a global abstraction—any process in any group can invoke this ab-
straction under the above guarantees. Although the properties of destinationsx() and sendersx()
are quite similar, the Agreement properties are different. For sendersx(), the Agreement property
ensures that all processes in Πx eventually select the same set of senders. For destinationsx(),
the Agreement property only ensures that any individual process “stabilizes” on the same set
of destinations, different processes may stabilize on different sets of destinations. The weaker
Agreement property for destinationsx() implies that processes within Πx can share the load: the
abstractions do not insist that only a single process receives all messages in Πx.

6

Implementing the sendersx() and destinationsx() abstractions. In an asynchronous model,
we can implement the abstractions by returning a subset of Πx that contains at least fx + 1
processes (such a set will contain at least one correct process). In a model with oracles, we can
implement the abstractions by simply returning the single process output from the oracle. We
show these implementations in Table 1.

asynchronous implementation oracle-based implementation
sendersx(), destinationsx() return {pxj | j ≤ fx + 1} return Ωx

Table 1: Implementation of the abstractions with or without oracles

In the asynchronous implementation, we return the same set of processes in both abstrac-
tions. However, there is no requirement to do so: the implementation of sendersx() could return
one subset of size fx + 1 and the implementation of destinationsx() could return another. More-
over, although the oracle-based implementation of sendersx() is identical to the implementation
of destinationsx(), the abstractions still provide different agreement properties: sendersx() is only
called by processes in Πx, and the oracle gives stronger guarantees to processes within Πx.

The sendx() and receivex() abstractions. The sendx() and receivex() abstractions capture
reliable communication between groups. The sendx() abstraction takes a message as argument,
and the receivex() abstraction returns a message. The two abstractions have the following
properties:

• Termination: The sendx() abstraction is non-blocking.

• Validity: If a correct process in Πy invokes sendx() with a message m then eventually a
correct process in Πx can receive m by invoking receivex().

• Integrity: If receivex() returns a message m to an honest process p, and if sender(m) is
honest, then sender(m) called sendx() with m.

Unlike a traditional message-sending operation, sendx() takes a group, not a process, as the
message destination—we use a subscript to designate the group. The sendx() abstraction encap-
sulates the concern of sending to a correct process. This is in contrast to destinationsx(), which
simply ensures that some correct process is selected.

We can implement sendx() with regular point-to-point communication primitives and the
destinationsx() abstraction previously introduced (see Algorithm 1).

4 A Special Case: Two Good Groups

4.1 The Algorithm

We examine how to implement domain-based Reliable Broadcast. For simplicity, we restrict our
scope to systems with only two good groups—our algorithm tolerates crash failures only. We
introduce algorithms that work for any number of groups and tolerate malicious processes in
Section 5. Throughout this section, we consider two good groups, Πx and Πy, and assume that
messages originate in Πx.

7

Algorithm 1 Implementation of sendx() and receivex() based on destination selection
1: procedure sendx(m)
2: dest← destinationsx()
3: send [GS,m] to all processes in dest
4: fork task watch(m,dest,x)

5: task watch(m,dest,x)
6: while true

7: if dest 6= destinationsx() then
8: dest← destinationsx()
9: send [GS,m] to all processes in dest

10: when receive([GS,m])
11: receivex(m)

We are interested in algorithms that are judicious about the number of inter-group messages
used to deliver a broadcast message in both groups. We present a generic algorithm that relies
on the abstractions in Section 3. By instantiating the abstractions in different ways (with or
without using oracles), we achieve solutions for different models.

Algorithm 2 has four when clauses, but only one executes at a time. Whenever one of the
when conditions evaluates true, the clause is executed until the end. If more than one condition
evaluates true at the same time, one clause is arbitrarily chosen.

Algorithm 2 Reliable broadcast for two good groups
1: Initially:
2: rcvMsgs← ∅
3: fwdMsgs← ∅

4: procedure byz-broadcast(m)
5: r-broadcast({m})

6: when r-deliver(mset)
7: for all m ∈ mset \ rcvMsgs do byz-deliver(m)
8: rcvMsgs← rcvMsgs ∪mset

9: when pi ∈ sendersx() and rcvMsgs \ fwdMsgs 6= ∅
10: for all m ∈ rcvMsgs \ fwdMsgs do sendy([FW,m])
11: fwdMsgs← rcvMsgs

12: when receivey([FW,m])
13: send [LC,m] to all processes in Πy

14: when receive [LC,m] for the first time
15: byz-deliver(m)

8

4.2 Algorithm Assessment

Because Algorithm 2 only relies on the specification of our abstractions, and not on their im-
plementation, it is possible to mix and match abstractions with different implementations. For
example, it is possible to combine an oracle-based implementation of senders() with an asyn-
chronous implementation of destinations(). Such a combination would exploit synchrony as-
sumptions within groups but not across groups.

The various combinations of abstraction implementations give rise to different costs in inter-
group messages for the resulting Reliable Broadcast algorithm. If we use the asynchronous
implementation of both abstractions in Algorithm 2, we achieve a performance of (fx+1)(fy+1)
inter-group messages per broadcast.

If we combine the asynchronous implementation of destinationsy() with an oracle-based im-
plementation of sendersx(), we obtain a domain-based Reliable Broadcast algorithm with a
best-case message cost of fy + 1. The algorithm may have a higher message cost for arbitrary
periods of time, but the properties of Ωx ensure that eventually only a single process in Πx will
be selected. Thus, eventually only a single process will send inter-group messages. Moreover,
with the asynchronous implementation of destinationsy(), the number of destinations is constant
(i.e., fy + 1), and so is the number of messages sent by each selected sender.

If instead we combine the asynchronous implementation of sendersx() with an oracle-based
implementation of destinationsy(), we obtain a domain-based Reliable Broadcast algorithm with
best-case message cost of fx+ 1. With an asynchronous implementation of sendersx(), there will
always be fx + 1 senders. Due to the stability property of the oracle Ωy, each of the fx + 1
senders will eventually trust a correct process in Πy forever. Thus, at any of the fx + 1 senders
there is a time t after which destinationsy() returns the same process forever. This means that
after t, the watch task in Algorithm 1 does not send any messages. Thus, after t, each broadcast
message results in each of the fx + 1 senders sending exactly one inter-group message. Notice
that the senders do not necessarily send to the same process in Πy.

Finally, if we combine the oracle-based implementation of sendersx() with the oracle-based
implementation of destinationsy(), the resulting Reliable Broadcast algorithm will have best case
of 1 inter-group message per broadcast. As we discussed above, there is a time after which the
oracle Ωx results in the selection of the single sender in Πx. Furthermore, there is a time after
which the Ωy oracle returns the same destination forever to each sender. In combination, the
two oracles ensure that, eventually, each broadcast message results in only a single process in
Πx sending a single message to a single process in Πy.

4.3 Some Lower Bounds

It is easy to see that when both sendersx() and destinationsy() use oracle-based implementations,
our resulting algorithm has an optimal best-case cost in terms of inter-group messages: no
algorithm can solve Reliable Broadcast without exchanging at least one message between groups.

We informally argue now that if either sendersx() or destinationsy() (but not both) has an
oracle-based implementation, our resulting algorithms also have optimal best-case costs. The
argument is similar for both situations, and so, assume that sendersx() has an implementation
that uses oracles. What we want to show is that the inter-group message cost of our algorithm,
namely fy+1, is a lower bound for algorithms where the sending group does not have information
about failures in the receiving group. In the best case, a correct process pi in Πx is selected to
send messages to processes in Πy. Assume for a contradiction that pi sends only fy messages.

9

Consider a run where each process in Πy that receives a message fails right after receiving
the message; the remaining processes in Πy will then never receive the message, and therefore,
cannot deliver it.

In a purely asynchronous system (when neither the implementation of sendersx() nor the
implementation of destinationsy() use oracles), our algorithm has inter-group message cost of
(fx+1)(fy +1), which is not optimal. Consider, for example, the special case when both nx and
ny are greater than fx + fy. In this case, the following algorithms solves domain-based Reliable
Broadcast: the first fx+fy+1 processes in Πx send one message to the first fx+fy+1 processes
in Πy. The resulting message cost is fx + fy + 1. Moreover, from Proposition 1, it turns out
that this algorithm is optimal.

Proposition 1 Let A be a reliable broadcast algorithm in which processes do not query any
oracle. For every run of A in which a correct process in Πx byz-broadcasts some message, at
least fx + fy + 1 messages are sent from Πx to Πy.

Proof: The proof is by contradiction. Assume that processes in Πx send only fx+fy messages
to Πy. Let R be a failure-free run in which pi in Πx byz-broadcasts message m and S the set of
processes that send messages to Πy in R.

We claim that there exists a run R′ in which pi also byz-broadcasts m, each process in Sx ⊆ S
crashes, and no process sends more messages in R′ than it sends in R. Let pj be a process in Sx
that crashes at time tj and pk some process that sends one more message in R′ at time t > tj .
Then, we can construct a run R′j such that from time tj until time t, pj is very slow and does
not execute any steps, and so, does not send any message—this can be done since processes can
be arbitrarily delayed. Process pk cannot distinguish between Rj and R′j , and will also send a
message to Πy in R′j . After t, pj is back to normal and sends a message to Πy. Thus, fx+fy + 1
messages are sent to Πy, a contradiction.

We now show that |S| > fx. Assume |S| ≤ fx. Then, we can construct a run in which
Sx = S, every pj in Sx crashes and from our claim above, no other process in Πx \ S sends a
message to processes in Πy. Thus, correct processes in Πx deliver m, and processes in Πy never
receive m, and so, cannot deliver it.

Without loss of generality assume that each process in Sx sends only one message to Πy.
Thus, processes in S \Sx can send up to fx+fy−|Sx| = fy messages to processes in Πy. Let set
Sy denote such processes in Πy. Since any fy processes may crash in Πy, assume that processes
in Sy crash in R′. Therefore, in R′ correct processes in Πx deliver m, but correct processes in
Πy do not, a contradiction. 2

Even when nx or ny are smaller than fx+fy+1, our algorithm, which exchanges (fx+1)(fy+1)
messages is not optimal. Consider the following case in which nx = ny = 4 and fx = fy = 2.
With our algorithm, processes in Πx will send 9 messages to processes in Πy. While this is
certainly enough to guarantee correctness, it is possible to do better: instead of sending to three
distinct processes in Πy, each process pxi sends a message to processes pyi and py(imod 4)+1. With
such an algorithm, only 8 messages are exchanged!

10

5 The General Case

5.1 A Reliable Broadcast Algorithm without Consistency

Algorithm 3 implements Reliable Broadcast (without the consistency property) for any number
of groups and tolerates any number of failures, that is, there is no limit on the number of bad
groups and on the number of correct processes in good groups.

Algorithm 3 Reliable broadcast algorithm without the consistency property
1: Initially:
2: rcvMsgs← ∅
3: fwdMsgs← ∅

4: procedure byz-broadcast(m)
5: r-broadcast({m})

6: when r-deliver(mset)
7: for all m ∈ mset \ rcvMsgs do byz-deliver(m)
8: rcvMsgs← rcvMsgs ∪mset

9: when pi ∈ sendersx() and rcvMsgs \ fwdMsgs 6= ∅
10: for all Πy ∈ Π do sendy([FW, rcvMsgs \ fwdMsgs])
11: fwdMsgs← rcvMsgs

12: when receivey([FW, mset])
13: r-broadcast(mset)

Algorithm 3 builds on Algorithm 2. It works as follows. In order for some process in a good
group to byz-deliver a message, it has to r-deliver it (i.e., using local Reliable Broadcast). This
guarantees that all correct processes in the group will r-deliver the message. Using a mechanism
similar to the one used in Algorithm 2, the message will eventually reach some correct process
in each good group, which will r-broadcast the message locally, and also propagate it to other
groups. In principle, the inter-group communication of Algorithm 3 is similar to the Reliable
Broadcast algorithm presented in [CT96], for a “flat” process model.

5.2 A Reliable Broadcast Algorithm with Consistency

We now extend Algorithm 3 to also enforce the consistency property. Algorithm 4 resembles
Algorithm 3. The main differences are the first when clause, the fact that all messages are signed
to guarantee authenticity, and the fact that the local Reliable Broadcast requires the consistency
property.

Local Reliable Broadcast with the consistency property can be implemented with an algo-
rithm similar, in principle, to Algorithm 4. To r-broadcast some message m, pi in Πx signs m
and sends it to all processes in Πx (we use mset : ki to denote that the message set mset is
signed by pi). When a process pj receives m for the first time, it also signs m and sends it to all
processes in Πx. If a process receives m from d(2n+1)/3e processes, it r-delivers m. (A detailed
description of this algorithm is given in the Appendix.)

11

Algorithm 4 Reliable broadcast algorithm with the consistency property
1: Initially:
2: rcvMsgs← ∅
3: fwdMsgs← ∅
4: dlvMsgs← ∅

5: procedure byz-broadcast(m)
6: r-broadcast({m} : ki)

7: when r-deliver(mset : kj)
8: rcvMsgs← rcvMsgs ∪mset
9: for each m ∈ rcvMsgs \ dlvMsgs do

10: if [for d(2n+ 1)/3e groups Πy,∃pl ∈ Πy : r-delivered (mset′ : kl) and m ∈ mset′] then
11: byz-deliver(m)
12: dlvMsgs← dlvMsgs ∪ {m}

13: when pi ∈ sendersx() and rcvMsgs \ fwdMsgs 6= ∅
14: for each Πy ∈ Π do sendy([FW, (rcvMsgs \ fwdMsgs) : ki])
15: fwdMsgs← rcvMsgs

16: when receivey([FW, mset : kj])
17: r-broadcast(mset : kj)

References

[BT85] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM, 32(4),
October 1985.

[Car99a] L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming: Security Issues for
Distributed and Mobile Objects. Springer Verlag, 1999.

[Car99b] L. Cardelli. Wide area computation. In Proceedings of the 26th International Colloqium on Automata,
Languages, and Programming (ICALP), 1999. LNCS 1644.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685–722, July 1996.

[CT90] T. D. Chandra and S. Toueg. Time and message efficient reliable broadcasts. In Proceedings of the 4th
International Workshop on Distributed Algorithms, September 1990.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, March 1996.

[GS96] R. Guerraoui and A. Schiper. Consensus service: A modular approach for building fault-tolerant
agreement protocols in distributed systems. In Proceedings of the 26th International Symposium on
Fault-Tolerant Computing (FTCS-26), pages 168–177, Sendai, Japan, June 1996.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed Systems,
chapter 5. Addison-Wesley, 2nd edition, 1993.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, July 1982.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the
ACM, 27(2), April 1980.

[Rei94] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicasts in rampart. In
Proceedings of the 2nd ACM Conference on Computer and Communications Security, 1994.

12

Appendix: Proofs

Algorithm 1: Implementation of sendx() and receivex()

Proposition 2 (Termination.) The sendx() abstraction is non-blocking.

Proof: Follows from the fact that the destinationsx() abstraction, the send primitive, and the
fork operation are all non-blocking. 2

Proposition 3 (Validity.) If a correct process in Πy invokes sendx() with a message m then
eventually a correct process in Πx can receive m by invoking receivex().

Proof: Assume that a correct process pi in Πy invokes sendx() with a message m. There are now
two cases to consider: (a) the dest set in line 3 contains a correct process pj or (b) the dest set
does not contain a correct process. With case (a), pi will send m to pj . By the properties of the
send and receive primitives, pj can eventually receive m. Consider now case (b). By the Validity
property of destinationsx(), the destinationsx() abstraction eventually returns a correct process
pj in Πx. Since pj is not contained in dest initially, there is an invocation of destinationsx() that
returns pj and where the test in line 7 becomes true. In this iteration of the while loop, pi will
send [GS,m] to pj . The Proposition then follows from the properties of the send and receive
primitives as above in case (a). 2

Proposition 4 (Integrity.) If receivex() returns a message m to an honest process p, and if
sender(m) is honest, then sender(m) called sendx() with m.

Proof: Given an honest process p that calls receivex() and thereby receives a message m.
Assume that sender(m) is honest. For receivex() to return m at p, p must have received a
message of the form [GS,m]. Since sender(m) is honest, sender(m) only sends such a message
as part of the sendx() abstraction. 2

Algorithm 2: Reliable Broadcast for Two good Groups

Proposition 5 (Validity.) If a correct process pi in a good group Πx byz-broadcasts a message
m, then it byz-delivers m.

Proof: Since pi byz-broadcasts m, it r-broadcasts m. From validity of reliable broadcast,
it eventually r-delivers some message mset such that m ∈ mset. Assume for the sake of a
contradiction that pi does not byz-deliver m. So, it must be that pi has included m in rcvMsgs,
but when this happens, pi byz-delivers m, a contradiction that concludes the proof. 2

Proposition 6 (Agreement.) If a correct process pi in a good group Πx byz-delivers m, then
for every good group Πy and each correct process pj in Πy, pj also byz-delivers m.

Proof: Assume for a contradiction that pj does not byz-deliver m. There are two cases to
consider: (a) pj and pi are in the same group or (b) pj and pi are in different groups.

13

• Case (a). Since pi has byz-delivered m, by lines 6–7, pi has r-delivered m. From agreement
of reliable broadcast, eventually pj also r-delivers m. Since pj does not byz-deliver m, m
must already be part of the set rcvMsgs. Consider the execution of the when clause
in line 6 when m is added to rcvMsgs. In this execution, pj byz-delivers m, which is a
contradiction.

• Case (b). There is a time t after which the sendersx() abstraction returns the same set of
correct processes for every invocation. Consider a correct process pr in Πx that is part of
this set. There are two subcases to consider: (b.1) pr invokes the sendx() abstraction with
m in line 10 and (b.2) pr does not invoke the sendx() abstraction with m in line 10.

Consider first case (b.1). The properties of sendx() and receivex() ensure that a correct
process pk in Πy can receive m with receivex(). When pk receives m, pk sends m to all
processes in Πy including pj . Because both pk and pj are correct, the properties of send
and receive ensure that pj will receive m. When pj receives m, pj also byz-delivers m,
which is a contradiction.

Consider next case (b.2). The set rcvMsgsr\fwdMsgsr never contains m after t. Because
of the agreement of Local Reliable Broadcast, pr will eventually r-deliver m and add it to
rcvMsgsr. Thus, the set fwdMsgsr contains m before t. However, we only add to the
set fwdMsgsr in line 11, and when m is added to the set in line 11, pr invoked sendx()
with m in line 10, which is a contradiction.

2

Proposition 7 (Integrity.) Each honest process pi byz-delivers every message at most once.
Moreover, if sender(m) is honest, then sender(m) byz-broadcast m.

Proof: There are two cases to consider: (a) pi and sender(m) are in the same group and (b)
pi and sender(m) are in different groups.

• Case (a). If pi is in the same group as sender(m), then pi byz-delivers m in line 7. Thus, pi
also r-deliversm. Integrity of Local Reliable Broadcast implies that sender(m) r-broadcasts
m. According to the algorithm, this only happens if sender(m) byz-broadcasts m. The
at-most-once byz-delivery by pi follows from the assignment in line 8: if pi byz-delivers m,
then the assignment adds m to rcvMsgs.

• Case (b). If pi is in a different group than sender(m), then pi byz-delivers m in line 15.
Thus, pi also receives [LC,m]. Integrity of send and receive guarantees that some process pr
sent [LC,m] in line 13. Moreover, the integrity of sendx() and receivex() ensures that some
process pk in Πx invoked sendx() with m. This means that pk added m to its rcvMsgs
set, which only happens if pk r-delivers m. The integrity of Local Reliable Broadcast now
ensures that some process pm in Πx invoked byz-broadcast with m. The at-most-once
byz-delivery follows from the integrity of the various primitives and abstractions and from
the assignment in line 11, which ensures that a process never invokes sendx() twice with
the same message.

2

14

Algorithm 3: Reliable Broadcast Without Consistency

Proposition 8 (Validity.) If a correct process pi in a good group Πx byz-broadcasts a message
m, then it byz-delivers m.

Proof: Similar to the proof of Proposition 5. 2

Proposition 9 (Agreement.) If a correct process pi in a good group Πx byz-delivers m, then
for every good group Πy and each correct process pj in Πy, pj also byz-delivers m.

Proof: Assume for a contradiction that pj does not byz-deliver m. We claim that pj does not
r-deliver any set mset containing m. Denote such a set mset(m). If pj r-delivers mset(m), and
does not byz-deliver m, then from lines 6–8, it has to be that m ∈ rcvMsgs. But rcvMsgs is
initially empty, and so, pj included m in rcvMsgs. This can only happen at line 8 if m ∈ mset;
right before this happens, pj executed line 7 such that m 6∈ rcvMsgs. Thus, pj byz-delivers m
at this time. Therefore, pj does not r-deliver any set mset(m). There are two cases: (a) pj and
pi are in the same group, (b) pj and pi are in different groups.

• Case (a). Since pi has byz-delivered m, by lines 7–8, pi has r-delivered m. From agreement
of reliable broadcast, eventually pj also r-delivers m, a contradiction.

• Case (b). Since pj is correct, from the reliable broadcast properties, no correct process pk
in Πy r-broadcasts a message mset(m)—otherwise pj would r-deliver mset(m), and so, no
such process executes receivey([FW, {mset(m)}]).
Let pr be some correct process in Πx. Thus, from the sendx() and receivex() abstractions,
pr does not execute sendy([FW, mset(m)]). From case (a), m ∈ rcvMsgsr, and so, it must
be that pr does not execute sendy([FW, mset(m)]).

Variable fwdMsgsr is initially empty, and is only updated by pr with some message
after pr sends this messages to other groups (lines 10–11). Therefore, eventually m ∈
rcvMsgsr \fwdMsgsr and from line 9, pr is never in sendersx(). It follows that no correct
process is ever selected by sendersx(), a contradiction. 2

Proposition 10 (Integrity.) Each honest process pi byz-delivers every message at most once.
Moreover, if sender(m) is honest, then sender(m) byz-broadcast m.

Proof: Messages are all byz-delivered at line 7 and only if they are not in rcvMsgs. Right
after byz-delivering a message, unless it fails, every honest process includes in rcvMsgs. Thus,
no message is byz-delivered more than once. From the algorithm, it follows immediately that if
sender(m) is honest, then sender(m) byz-broadcast m. 2

Algorithm 4: Reliable Broadcast With Consistency

Proposition 11 (Validity.) If a correct process pi in a good group Πx byz-broadcasts a message
m, then it byz-delivers m.

15

Proof: To byz-broadcast m, pi signs it and r-broadcasts the signed message (lines 5–6). From
validity of reliable broadcast, pi eventually r-delivers some message mset such that m ∈ mset—
we denote such a set mset(m). From agreement of reliable broadcast, every correct process in Πx

r-delivers some set mset(m). From lines 13–15 and the fact that sendersx() eventually outputs
some correct process in Πx, some correct process in Πx will execute sendy([FW, mset(m)]),
for every group Πy in Π. From the properties of the sendx() and receivex() abstractions, some
correct process in each good group will receive mset(m) (line 16), and locally r-broadcast it.
Applying a similar argument, it follows that eventually every good group executes sendy([FW,
mset(m)]), for every group Πy in Π. Since there are d(2n+ 1)/3e good groups, each correct in
each good group will r-deliver d(2n+ 1)/3e sets of the type mset(m), signed by some process in
a good group. Thus, pi byz-delivers m. 2

Proposition 12 (Agreement.) If a correct process pi in a good group Πx byz-delivers m, then
for every good group Πy and each correct process pj in Πy, pj also byz-delivers m.

Proof: If pi byz-delivers m, then it has r-delivered d(2n + 1)/3e sets mset containing m, and
signed by processes from different groups. Thus, pi r-delivered such a set signed by at least one
process in a good group Πz. It follows that this process, or some other process in Πz sends some
set with m to all groups. Therefore, it can be shown that every correct process in each good
group receives d(2n+1)/3e sets mset containing m. From lines 7–12, such a process byz-delivers
m. 2

Proposition 13 (Integrity.) Each honest process pi byz-delivers every message at most once.
Moreover, if sender(m) is honest, then sender(m) byz-broadcast m.

Proof: Similar to the proof of Proposition 10. 2

Proposition 14 (Consistency.) Let pi and pj be two processes in good groups. If pi byz-delivers
m, pj byz-delivers m′, and id(m) = id(m′), then val(m) = val(m′).

Proof: For a contradiction, assume that pi and pj deliver messages m and m′, respectively, and
even though id(m) = id(m′), val(m) 6= val(m′). From lines 11–12, both pi and pj r-delivered
d(2n+1)/3e sets mset containing m and signed by processes in different groups. Since there are
at most b(n− 1)/3c malicious processes, there must be at least one good group Πz from which
both pi and pj r-delivered a signed message with mset(m) and mset(m′), respectively. Let pr
and ps be processes in Πz that signed, respectively, the messages mset(m) and mset(m′). Before
pr signs and sends mset(m) to some process in pi’s group, it r-delivered mset(m). Likewise,
before ps signs and sends mset(m′) to some process in pj ’s group, it r-delivered mset(m). Since
id(m) = id(m′) and val(m) 6= val(m′), consistency of local reliable broadcast is violated—a
contradiction that concludes the proof. 2

16

Algorithm 5: Solving Local Reliable Broadcast With Consistency

Algorithm 5 solves local Reliable Broadcast. We omit the correctness proof since it is similar to
the proof of Algorithm 4.

Algorithm 5 Local Reliable Broadcast with consistency
1: Initially:
2: rcvMsgs← ∅
3: dlvMsgs← ∅

4: procedure r-broadcast(m)
5: send m : ki to all

6: when receive m : kj
7: if m 6∈ rcvMsgs then
8: send m : ki to all
9: rcvMsgs← rcvMsgs ∪ {m}

10: for each m ∈ rcvMsgs \ dlvMsgs do
11: if [for d(2n+ 1)/3e processes pr: received m : kr from pr] then
12: r-deliver(m)
13: dlvMsgs← dlvMsgs ∪ {m}

17

