Distributed Computing manuscript No.
(will be inserted by the editor)

Handling Message Semantics with Generic Broadcast Protocols*

Fernando Pedone!, André Schiper?

! Hewlett-Packard Laboratories, Software Technology Laboratory, Palo Alto, CA 94304, USA, e-mail: pedone@hpl.hp.com
? Communication Systems Department, EPFL — Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland,

e-mail: andre.schiper@epfl.ch

Summary. Message ordering is a fundamental abstrac-
tion in distributed systems. However, ordering guaran-
tees are usually purely “syntactic,” that is, message “se-
mantics” is not taken into consideration despite the fact
that in several cases semantic information about mes-
sages could be exploited to avoid ordering messages un-
necessarily. In this paper we define the Generic Broad-
cast problem, which orders messages only if needed, based
on the semantics of the messages. The semantic informa-
tion about messages is introduced by conflict relations.
We show that Reliable Broadcast and Atomic Broadcast
are special instances of Generic Broadcast. The paper
also presents two algorithms that solve Generic Broad-
cast.

Key words: semantics-aware primitives — group com-
munication — fault-tolerance — atomic broadcast — reli-
able broadcast — asynchronous systems

1 Introduction

Message ordering is a fundamental abstraction in dis-
tributed systems. Total order, causal order, and view
synchrony are examples of widely used ordering guar-
antees. These ordering guarantees, however, rely only
on “syntactic” information about the messages, ignoring
their “semantics.” In general, ordering messages with-
out taking their semantics into consideration leads to
ordering more messages than actually necessary to en-
sure the correctness of the application. Moreover, as or-
dering messages has a cost, ordering messages unneces-
sarily penalizes the application. Consider for example a
replicated object implemented using active replication—
also called state machine approach [12]. By distinguish-
ing messages containing read operations from messages
containing write operations, one could design a protocol

* A preliminary version of this paper appeared in Pro-
ceedings of the 13th International Symposium on Distributed
Computing (DISC’99, pp. 94-108).

that does not order all messages, since read operations
do not need to be ordered with respect to other read
operations.

This paper introduces Generic Broadcast, a message
ordering abstraction that allows applications to specify
order requirements based on the semantics of messages.
Message ordering requirements are formalized by a mes-
sage conflict relation defined over the set of messages.
Roughly speaking, two messages have to be delivered in
the same order only if they conflict. The definition of
message ordering based on a conflict relation allows for
a very powerful message ordering abstraction. For ex-
ample, the Reliable Broadcast problem is an instance of
Generic Broadcast in which no pair of messages conflict.
The Atomic Broadcast problem is another instance of
Generic Broadcast in which all pairs of messages con-
flict.

The interest in taking application semantics into ac-
count to define more flexible message ordering primitives
in group communication was first pointed out in [5]. In
[8], the authors consider the issue of ordering messages
from the viewpoint of database concurrency control. The
notion of message conflict is introduced to capture ap-
plication semantics, and is used to extend the definitions
of FIFO, causal, and total order message delivery to in-
clude message semantics. Serialization graphs are used
to reason about application correctness along the same
lines of database concurrency control [2]. The authors
also briefly discuss how one could implement such speci-
fications in a distributed system where processes do not
fail. Contrary to [8], we consider here a system model
with process failures.

Any algorithm that solves Atomic Broadcast trivially
solves any instance of Generic Broadcast (i.e., specified
by a given conflict relation): it just orders too many mes-
sages. However, such an algorithm goes against the main
motivation of Generic Broadcast, which is to allow for ef-
ficient message delivery by not ordering messages unnec-
essarily. We present two algorithms that solve Generic
Broadcast, called GB and GB+; both algorithms are more
efficient than Atomic Broadcast when messages do not
conflict. GB and GB+ rely on Consensus [4] when con-
flicts are detected, but can deliver non-conflicting mes-

2 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

sages without using Consensus. GB+ improves the per-
formance of GB by being able, in some cases, to deliver
conflicting messages without Consensus. This last re-
sult is very interesting, as it exhibits an algorithm that
can sometimes solve Atomic Broadcast (an instance of
Generic Broadcast) in an asynchronous system with pro-
cess crashes.

Our Generic Broadcast algorithms require f < n/3,
where n is the total number of processes and f the max-
imum number of faulty processes. If messages do not
conflict, the algorithms GB and GB+ have a time com-
plexity of 24, where § is the maximum network message
delay [1]. In case of conflicts, the time complexity is 46
in the best case, and 74 in the worst case. These results
are to be compared with the time complexity of Atomic
Broadcast algorithms in the model we consider: 3§ in the
best case and 59 in the worst case. These results, which
show the advantage of Generic Broadcast over Atomic
Broadcast if message conflicts are not too frequent, have
been validated by a small prototypical implementation.

The work in [1] is close to the one presented in this
paper: actually, [1] builds upon [10], the preliminary ver-
sion of this paper. The work presented in [1] uses an
Atomic Broadcast oracle (instead of Consensus, as we
do) as the building block for Generic Broadcast, and
formalizes classes of Generic Broadcast algorithms ac-
cording to how they use this oracle. Informally, an algo-
rithm solving Generic Broadcast is non-trivial w.r.t. an
oracle if, when no conflicting messages are g-Broadcast,
the oracle is not used; an algorithm is thrifty w.r.t. an
oracle if it is non-trivial w.r.t. the oracle and guarantees
the following property: if there is a time after which mes-
sages g-Broadcast do not conflict with each other, then
eventually the oracle is no longer used. Non-trivial and
thrifty implementations of Generic Broadcast are given
in [1]. The two Generic Broadcast algorithms given in
this paper are also thrifty implementations of Generic
Broadcast, if we extend the oracle in the definitions of [1]
to include a Consensus oracle. From the point of view of
time complexity, [1] does not improve our results. The
best algorithm in [1] has a time complexity of 2§ and also
requires f < n/3; [1] also gives an algorithm for Generic
Broadcast with f < n/2, which has a time complexity
of 34.

The remainder of the paper is structured as follows.
Section 2 describes the system model and defines the
Generic Broadcast problem. Sections 3 and 4 present
the two Generic Broadcast algorithms GB and GB+, and
Section 5 contains their proofs of correctness. Section 6
evaluates the time complexity of the two algorithms, and
points out the cost of GB and GB+ with respect to
Atomic Broadcast algorithms. Section 7 concludes the

paper.
2 System Model and Definitions

2.1 Model Assumptions

We consider an asynchronous system composed of n pro-
cesses I = {p1,...,pn}, which communicate by message

passing. A process can only fail by crashing (i.e., we do
not consider Byzantine failures). A process that never
crashes is correct, otherwise it is faulty. We make no as-
sumptions about process speeds or message transmission
times.

Processes are connected through quasi-reliable chan-
nels, defined by the primitives send(m) and receive(m).
Messages are unique and taken from a set M. Quasi-
reliable channels have the following properties: (i) if pro-
cess g receives message m from p, then p sent m to ¢ (no
creation); (ii) ¢ receives m from p at most once (no du-
plication); and (iii) if p sends m to ¢, and p and ¢ are
correct, then g eventually receives m (no loss).

We assume that our asynchronous system is aug-
mented with further abstractions (e.g., failure detectors)
allowing us to solve Uniform Consensus [4]. Uniform
Consensus is defined by the primitives propose(v) and
decide(v), and the following properties: (i) every correct
process eventually decides some value (termination);
(ii) every correct process decides at most once (uniform
integrity); (iii) no two processes decide differently (uni-
form agreement); and (iv) if a process decides v, then v
was proposed by some process (uniform validity).

2.2 Generic Broadcast

Generic Broadcast is defined by the two primitives g-
Broadcast(m) and g-Deliver(m).! When a process p in-
vokes g-Broadcast with a message m, we say that p g-
Broadcasts m, and when p returns from the execution of
g-Deliver with message m, we say that p g-Delivers m.
Message m is taken from a set M to which all messages
belong. Generic Broadcast depends on a (symmetric and
non-reflexive) conflict relation on M x M denoted by ~
(i.e., ~ C M x M).2If (m,m') € ~ then we say that m
and m' conflict. To simplify, we use hereafter the infix
notation m ~ m/' instead of (m,m’) € ~. Generic Broad-
cast is specified by (1) a conflict relation ~ and (2) the
following conditions:

(VALIDITY) If a correct process p g-Broadcasts a mes-
sage m, then p eventually g-Delivers m.

(UNIFORM AGREEMENT) If a process p g-Delivers a
message m, then every correct process g eventually
g-Delivers m.

(UnN1rORM INTEGRITY) For any message m, every pro-
cess g-Delivers m at most once, and only if m was
previously g-Broadcast by some process.

(UN1FORM ORDER) If processes p and ¢ both g-Deliver
conflicting messages m and m/', then p and ¢ g-Deliver
m and m' in the same order.

The conflict relation ~ determines the pair of messages
that are sensitive to order, that is, the pair of messages
for which the g-Deliver order should be the same at all
processes that g-Deliver the messages. The conflict rela-
tion ~ renders the above specification generic, as shown
next.

! g-Broadcast has no relation with the GBCAST primitive
defined in the Isis system [3].
2 The operand ~ was introduced in [1].

Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols 3

2.8 Reliable and Atomic Broadcast as Instances of
Generic Broadcast

We consider in the following two special cases of con-
flict relations: (1) the empty conflict relation, denoted
by ~g (i.e., ~g= 0), and (2) the cross product con-
flict relation, denoted by ~rxm (i€, ~pxm = M X
M). In case (1), no pair of messages conflict, that is,
the uniform order property of Generic Broadcast im-
poses no constraints on the order of messages, which is
called Reliable Broadcast [7]—or, more precisely, Uni-
form Reliable Broadcast. In case (2), any pair (m,m’)
of messages conflict, that is, the uniform order prop-
erty of Generic Broadcast requires that all pairs of mes-
sages be ordered, which is called Atomic Broadcast [7]—
or, Uniform Atomic Broadcast. In other words, Reliable
Broadcast and Atomic Broadcast lie at the two ends of
the spectrum defined by Generic Broadcast. In between,
any other conflict relation defines an instance of Generic
Broadcast.

Conflict relations lying in between the two extremes
of the conflict spectrum can be better illustrated by an
example. Consider a replicated Account object, defined
by the operations deposit(z) and withdraw(z). Clearly,
deposit operations commute with each other, while
withdraw operations do not—neither with each other
nor with deposit operations.® Let M, denote the set of
messages that carry a deposit operation, and M,, the set
of messages that carry a withdraw operation. This leads
to the following conflict relation ~ 4ccount:

~ Account = { (m,ml) :mé€e M, or m' € Mw}
Generic Broadcast with the ~ g.coune conflict relation de-
fines a weaker ordering primitive than Atomic Broadcast
(e.g., messages in My are not required to be ordered with
respect to each other), and a stronger ordering primitive
than Reliable Broadcast (e.g., messages in M,, have to
be ordered with each other).

3 GB: a Generic Broadcast Algorithm

In this section and in the next one, we present two Generic
Broadcast algorithms: GB and GB+, respectively. Both
algorithms are parameterized by two constants, n4.r and
Nenk- From the relationship between ng,., and mnepp—
explained later—both algorithms require at least (2n +
1)/3 correct processes, which corresponds to the case
where nger = nepr = [(2n+1)/3].

3.1 Overview of the GB Algorithm

We start by illustrating the GB algorithm with a run in
which only two messages are g-Broadcast, and then gen-
eralize for the case of n messages. The algorithm uses Re-

3 This is the case for instance if we consider that a with-
draw(z) operation can only be performed if the current bal-
ance is larger than or equal to z.

liable Broadcast, defined by the primitives R-broadcast
and R-deliver [7].*

Run with 2 messages. Consider a run in which only mes-
sages m and m' are g-Broadcast. The g-Broadcast of
message m leads to the execution of R-broadcast(m).
Upon R-delivery of m by some process p;, there are three
cases to consider:

1. p; has not R-delivered message m/’,

2. p; has R-delivered message m', and m' does not con-
flict with m, or

3. p; has R-delivered message m’', and m’' conflicts with
m.

In cases 1 and 2, p; sends a message to all processes
acknowledging the R-delivery of m-—hereafter such a
message is denoted ACK(m). A process that receives
ACK (m) from ng,.p processes g-Delivers m. In a run in
which no process falls into case 3 above, all correct pro-
cesses eventually receive m,.; messages ACK(m) and
g-Deliver m.

In case 3, p; launches an instance of Consensus to
decide on the g-Delivery order of m and m'. This should
be done carefully because if some process has already
g-Delivered m’, then p; should g-Deliver m' before m.
Thus, before executing Consensus, every process p; sends
to all processes a message—hereafter denoted CHK, con-
taining all messages m such that ACK (m) was send by
p;i- Process p; then waits for CHK messages from ncpg
processes.

Upon receiving n.p messages CHK, process p; builds
a set of messages, denoted by msgSet;. Set msgSet;
contains message m if m is in a majority of the npk
messages of type CHK received by p;. As shown next,
this ensures that if some process has g-Delivered m,
m € msgSet;.

To understand msgSet;, consider n = 4, nger =
Nepr = 3, and assume that process p; has g-Delivered
m. So p; has received ny., messages ACK(m), i.e., 3
processes have sent ACK(m). So, if p; waits for ncpg
messages of type CHK, it will get at least 2 messages
containing m. So p; includes m in msgSet;.

After building set msgSet;, p; executes Consensus
proposing (msgSet;, conflictSet;), where conflictSet;
contains all messages that p; R-delivered and are not
in msgSet;—that is, con flictSet; = {m'}. Let (NCset,
Cset) be the Consensus’ decision—NC' stands for Non-
Conflicting, as this set never contains conflicting mes-
sages, and C stands for Conflicting. Process p; g-Delivers
first the messages in NC'set, it has not yet g-Delivered,
and then the messages in C'set.

Generalizing for n messages. A run of algorithm GB
is decomposed into a sequence of two phases: the first

* Reliable Broadcast satisfies the validity, agreement (if a
process R-delivers a message m, then every correct process
eventually R-delivers m) and uniform integrity properties
(Section 2).

4 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

phase—phase 1—lasts as long as no conflicting messages
are R-delivered; the second phase—phase 1I—handles
the g-Delivery of conflicting messages thanks to the exe-
cution of a Consensus algorithm. These two phases define
a stage. So, processes progress in a sequence of stages,
numbered 1,...,%,.... In the run considered in the pre-
vious paragraph (2 messages), we have one single stage.
When some process p; starts stage k, it is initially in
phase 1. Phase I terminates at process p; iff p; R-delivers
two conflicting messages. In phase 11 of stage k, process
p; first builds msgSet; and con flictSet;, as described in
the previous paragraph, and then executes a Consensus
with (msgSet;, conflictSet;) as the initial value. When
Consensus terminates with a decision (NCset, Cset), p;
g-Delivers messages in NC'set not yet g-Delivered, then
those in C'set not yet g-Delivered, and proceeds to phase 1
of stage k + 1.

The parameters nger and nepr. The GB algorithm re-
quires (1) ngck > n/2, (2) nepr > n/2, (3) 2nger +nchr >
2n + 1, and (4) maz(ngck, Nenk) correct processes. Con-
dition (1) guarantees that if m and m' conflict, at most
one of them can be g-Delivered without Consensus. Con-
dition (2) ensures that msgSet;, constructed by p; be-
fore Consensus, does not contain conflicting messages.
Condition (3) ensures that if some process, say p;, has
g-Delivered m before Consensus, and m conflicts with
m', then for every process p; we have m € msgSet;.
Thus, after Consensus, every process first g-Delivers m.
Condition (4) ensures that no wait statement in the al-
gorithm lasts forever. The minimum of condition (4) is
for nger = nenk- From this and (3), we get that that our
algorithm requires at least [(2n+1)/3] correct processes.

3.2 The GB Algorithm in Detail

We present now the GB algorithm (see Figure 1). Mes-
sages are g-Broadcast at line 7 and g-Delivered at lines
22, 23, and 31. The algorithm consists of three concur-
rent tasks. Process p; in stage k£ manages the following
sets of messages:

o R _delivered: set of messages R-delivered by p; up to
the current time,

o (G_delivered: set of messages g-Delivered by p; in all
stages k' < k,

e pending®: set of messages R-delivered by p; up to the
current time in phase 1 of stage k and acknowledged
to the other processes, and

e g_Deliver®: set of messages that p; has g-Delivered
in phase 1 of stage k, up to the current time.

Let process p; be in phase 1 of stage k. When p; wants
to g-Broadcast a message m, p; executes R-broadcast(m)
(Figure 1, line 8). After m is R-delivered (line 10), m is
included in the sequence R_delivered (line 11). Process
p; then eventually evaluates lines 12 and 13; there are
two cases to consider.

Case 1: no message in R_delivered \ (G_delivered U
pending®) conflicts with m. In this case, p; includes m in
pending® (line 14), and sends message (k, pending®, ACK)
to all other processes (line 15), acknowledging that m
does not conflict with any previous message R-delivered
by p;, but not g-Delivered so far. When a process p;
receives messages of the type (k,pending®, ACK), with
m € pending®, from n,. processes (lines 28-29), p; g-
Delivers m, if it has not done so (line 31).

Case 2: some message m' in R_delivered\(G_delivered U
pending®) conflicts with m. In this case, p; proceeds to
phase 11 (lines 17-27). If one process proceeds to phase
11, then the algorithm ensures that all correct processes
eventually also proceed to phase II. In phase II, process
p; sends a message of the type (k, pending®, CHK) to all
processes (line 17), where pending® contains all messages
that where acknowledged by p;, and waits for the receipt
of messages of the same type from n.x, processes. Based
on the CHK messages received, p; determines which mes-
sages could have been g-Delivered in phase 1 by some
process (line 19), and executes Consensus (lines 20—21).
Messages decided by Consensus and not g-Delivered yet
by p; are g-Delivered (lines 22-23), and p; starts the next
stage in phase I (lines 25-27).

4 GB+: Improving the GB Algorithm

We present now GB+, an improved version of the GB al-
gorithm. To understand the difference between GB and
GB+, consider a run in which only two conflicting mes-
sages m and m' are g-Broadcast, and m is g-Delivered by
some process p; in phase 1 of stage 1. Assume that later in
phase 1 of stage 1, process p; R-delivers m/. In this case,
with GB, process p; starts phase II to terminate the cur-
rent stage by an instance of Consensus. However, this
is not necessary as the Consensus decision is known be-
forehand: m has already been g-Delivered, before m/'. So,
while p; executing GB proceeds to phase 11, with GB+,
process p; remains in phase I and may g-Deliver m' in
phase 1 even though m and m' conflict. So, GB+ can
sometimes g-Deliver conflicting messages without Con-
sensus.

4.1 The GB+ Algorithm

In addition to the sets of messages, R_delivered,
G_delivered, and pending® of GB, the GB+ algorithm
(see Figure 2) uses also g_Deliver* which is a “sequence”
of messages. This variable keeps track of the order in
which messages are locally g-Delivered at a process. Be-
sides the traditional set operands, we also use the &
operand to append messages to g_Deliver®.

Tasks 1 and 2 are the same for both GB and GB+. In
Task 3 GB and GB+ are similar, except for the following
differences:

e Processes executing GB+ ignore messages that have
already been locally g-Delivered in the current stage

Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols 5

1:

7:

8:

9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:

28:
29:

30:
31:

O T W N

Initialization:

R_delivered < 0
G _delivered + 0
pending' < 0
g-Deliver! < 0
k+1

To execute g-Broadcast(m):
R-broadcast(m)
g-Deliver(m) occurs as follows:

when R-deliver(m)
R_delivered « R_delivered U {m}

when (R_delivered \ (G_delivered U pending®) # 0)

{Task 1}

{Task 2}

{Task 3}

if [for all m, m' € (R_delivered \ G_delivered) : m # m'] then

pending® < R_delivered \ G_delivered
send(k, pending®, ACK) to all

else
send(k, pending®, cHK) to all

wait until [for n.p, processes p; : received (k,pendmg}“, CHK) from p;]
msgSet® < {m | for [22:+L] processes p; : received (k, pending¥, CHK) from p; and m € pendingk}
propose(k, msgSet®, (R_delivered \ (G_delivered U msgSet*)))

wait until decide(k, NCset*, Cset®)

for each m € NCset* \ (g_Deliver® U G_delivered) do g-Deliver(m)
in ID order: for each m € Cset* \ (g_Deliver® U G_delivered) do g-Deliver(m)

G _delivered « G_delivered U NCset* U Cset*
k+—k+1

pending® « 0

g_Deliver® « ()

when (receive(k, pending}, ACK) from p;)

while 3 m such that [for n,., processes p; : received (k, pendingf, ACK) from p; and

g-Deliver® « g_Deliver* U {m}
g-Deliver(m,)

Fig. 1. Generic Broadcast algorithm (GB)

(lines 13-14) to detect whether Consensus is needed.
Moreover, in GB+, messages of type ACK have one
additional field (g_Deliver®), to carry the messages
that a process has locally g-Delivered so far in the
current stage (line 16). This leads to a difference in
the when clause that treats ACK messages (lines 21—
23).

With GB+, it is possible that some process detects a
situation where Consensus is needed, and the other
processes do not. This happens because the condition
to start Consensus depends on the the order in which
messages are locally R-delivered (which may not be
the same for all processes). Thus, a process can start
Consensus in two circumstances: either (a) because

m € (pending® \ g_Deliver*)] do

it detected that Consensus is needed (line 14), or (b)
because it received a message of type CHK from some
process (line 27), who has detected that Consensus
is needed.

Messages of type CHK (lines 19 and 30) also include
an additional field (g_Deliver*) containing the se-
quencer of messages g-Delivered so far by the sender
in the current stage. Whenever a process receives a
message of the type (k,g_Deliver®, pending®, CHK),
it g-Delivers all messages in g_Deliver® that it has
not g-Delivered so far, following the order in
g_Deliver® (lines 31-33). Variable chk_flag is used
to make sure that a process only sends a message of
type CHK once in a stage.

6 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

4.2 GB+ as a Solution to Atomic Broadcast

By considering an instance of GB+ where any two mes-
sages conflict, we can use GB+ to solve Atomic Broad-
cast. Taking into account the properties of GB+, we have
an Atomic Broadcast algorithm that, in some runs, or-
ders messages without Consensus and without any other
assumptions about the model (e.g., failure detectors).
Notice that even though this leads to situations where
some messages can be ordered in a pure asynchronous
model, it is not in contradiction with the FLP impossi-
bility result [6], and the fact that Atomic Broadcast and
Consensus are equivalent [4], since it does not apply to
all runs.

5 Proof of Correctness
5.1 Proof of Correctness of GB

We initially define the following notation, used in Lem-
mas 1 and 2. Given message m, we denote by ackSet*(m)
the set of processes that execute send(k, pending®, ACK)
(line 17) in stage k, with m € pending®. Given process
pi, we denote by chkSet*(p;) the set of processes from
which p; receives messages of the type (k, pending®, CHK)
(line 18) in stage k.

Lemma 1. (Assumes 2ngcr, + Nepg, > 20+ 1.)
If |lackSet*(m)| = ngcr and |chkSet®(p;)| = nenk, then
there are at least [(ncwr + 1)/2] processes in the set

chkSet*(m,p:) "< ackSet*(m) N chkSet* (p;).

PROOF: Because 2n4cr + Nenr > 2n+ 1, we have ngep, —
n > (]- - nchk)/2- 807 Ngek — N+ Nerk > (]- - nchk)/2 +
Nenk = (Nenp+1)/2 (a). By definition, |chkSetk (m, p;)| =
lackSet*(m) N chkSet*(p;)| and |ackSetk(m) N
chkSett(p;))] = |ackSet*(m)| + |chkSetk(p;)| —
lackSet*(m) U chkSet*(p;)| > nack + Nenr, — n- So we
have |chkSet®(m,p;)| > nack+ncne—n (b). From (a) and
(b), we have |chkSet*(m,p;)| > (nenr + 1)/2, and since
|chkSet*(m,p;)| € N, it follows that |chkSet*(m,p;)| >
[Mecnk +1)/2]. o

Lemma 2. (Assumes 2ngcr, + Nepr > 2n+ 1.)

If message m is g-Delivered by process p; in the first
phase of stage k, and (k, NCset*, Cset®) is the value
decided in the k-th execution of Consensus, then m €
NCsetk.

PROOF: (uses Lemma 1) Before g-Delivering m, p; re-
ceived ng., messages of the type (k, pending®, ACK) with
m € pending® (line 15). Let (k, NCset*, Cset*) be the
decision of Consensus of stage k. From uniform validity
of Consensus, there is some process p; that has proposed
value (k,msgSet*, —) = (k, NCset®, —) at line 20. Be-
fore executing propose(k,msgSet*,—), p; has received
nenk messages of the type (k, pending®, CHK) in stage k.
From Lemma 1, |ackSet*(m) N chkSet*(p;)| > [(nenr +
1)/2], and so, p; has included m in msgSet*. Thus,
m € NCsetk. O

Lemma 3. (Assumes 2ngck, + Nepr, > 2n + 1.)

If message m is g-Delivered by some process in stage k,
then every process that terminates stage k (i.e., executes
line 24 in stage k) g-Delivers m.

PROOF: (uses Lemma 2) Let k be the smallest stage in
which some process, say p;, g-Delivers m (at lines 22, 23,
or 31), and let p; # p; be a process that terminates stage
k. Thus, p; executes Consensus in stage k and g-Delivers
all messages in NCset* U Cset*, where (NCset, Cset*)
is the value decided in Consensus in stage k. There are
two cases to consider: (a) If p; g-Delivers m in the first
phase of stage k, from Lemma 2, m € NCset*. (b) If
p; g-Delivers m in the second phase of stage k, then
m € NCsetk U Cset*. In both cases, p; g-Delivers m. O

Lemma 4. (Assumes 2ngcp+nepr > 2n+1, nepg > n/2,
Nepk correct processes.)

For all stage k > 0, if some process p; terminates stage
k (i.e., executes line 2/ in stage k), then every correct
process also terminates stage k.

PROOF: (uses Lemma, 3) The proof is by induction; how-
ever, as the base step is very similar to the inductive
step, we only give the proof of the inductive step. As-
sume the result holds for &, and let process p; terminate
stage k+ 1. So p; has terminated stage k, and by the in-
duction hypothesis every correct process also terminates
stage k.

Before terminating stage k + 1, p; has received np
messages (k+1, pending®+!, cHK) (line 18). As there are
Nepg correct processes and nepp > n/2, at least one mes-
sage (k + 1,pending®*t!, cHK) was sent (line 17) by a
correct process, say p;. Before executing line 17, p; has
evaluated the condition of line 13 to false, that is, p; has
R-delivered two conflicting messages m and m’ that are
not in G _delivered, and so, p; has not g-Delivered m and
m' in some stage k' < k + 1. By the agreement property
of Reliable Broadcast, every correct process p, eventu-
ally also R-delivers m and m'. By Lemma 3, as p; has not
g-Delivered m and m’ in some previous stage k' < k+1,
the same holds for p,.. So every correct process p, even-
tually also evaluates the condition of line 13 to false, and
sends at the message (k + 1, pending*+1, cHK) (line 17).
As there are n.pj, correct processes, every correct process
eventually receives (line 18) n.p such messages and pro-
ceed to line 19. So every correct process eventually start
Consensus at line 20. By the termination of Consensus
every correct process eventually decides, and terminates
stage k + 1 at line 25. a

Proposition 1. (UNIFORM AGREEMENT).

(Assumes ngek, Nepr, > N/2, maz(Nger, Nepk) correct pro-
cesses, 2Ngck + Nepk > 2n + 1.)

If a process p; g-Delivers a message m, then every correct
process p; eventually g-Delivers m.

PROOF: (uses Lemmas 2, 3, and 4) Process p; g-Delivers
messages at lines 22, 23 and 31. If p; g-Delivers m at
line 22 (m € NCset*) or at line 23 (m € Cset*), then
p; terminates stage k, and from Lemma 4, p; also ter-
minates stage k. Before terminating stage k, p; decides

Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols 7

1: Initialization:

R_delivered + 0
G_delivered + 0
pending' < 0
g-Deliver! < ¢
k+1

chk_flag < false

[0

: To execute g-Broadcast(m): {Task 1}
9: R-broadcast(m)

10: g-Deliver(—) occurs as follows:

11: when R-deliver(m) {Task 2}
12: R_delivered < R_delivered U {m}
13: when (R_delivered \ (G_delivered U g_Deliver® U pending®) # () {Task 3}
14: if [for all m, m' € (R_delivered \ (G_delivered U g_Deliver*)) : m o m' | then
15: pending® < R_delivered \ (G _delivered U g_Deliver®)
16: send(k, g_Deliver®, pending®, ACK) to all
17: else
18: chk_flag < true
19: send (k, g_Deliver®, pending®, CHK) to all
20: when (receive(k,gﬂeliverf,pendingf,ACK) from p;) and not(chk_flag)
21: in sequence order: for each m € g_Deliver} \ (g_Deliver® U G_delivered) do
22: g_Deliver* «+ g_Deliver* @ (m)
23: g-Deliver(m)
24: while 3 m such that [for ng., processes p; : received (k, —, pending;-“, ACK) from p; and
m € (pending¥ \ g_Deliver*) | do
25: g-Deliver® « g_Deliver* & (m)
26: g-Deliver(m)
27: when (receive (k,g_Deliverf,pendingf, CHK) from pj;)
28: if not(chk_flag) then
29: chk_flag < true
30: send (k, g_Deliver*, pending®, CHK) to all
31: in sequence order: for each m € g_Deliver;? \ (g_Deliver* U G _delivered) do
32: g-Deliver® + g_Deliver* & (m)
33: g-Deliver(m)
34: if [for ncnr processes p; : received (k,g_Deliverf,pendmgf, CHK) | then
35: msgSett « {m | for [22:1] processes p; : received (k, g-Deliver¥, pending®, cux) and m € pending’}
36: propose(k, msgSet* (R_delivered \ (G _delivered UmsgSet*)))
37: wait until decide(k, NCset*, Cset®)
38: for each m € NCset* \ (g_Deliver* U G_delivered) do g-Deliver(m)
39: in ID order: for each m € Cset* \ (g_Deliver® U G_delivered) do g-Deliver(m)
40: G _delivered + G _delivered U g_Deliver®
41: k+—k+1
42: pending® « ()
43: g_Deliver® « e
44: chk_flag < false

Fig. 2. Improved Generic Broadcast algorithm (GB+)

8 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

for Consensus at line 21; by uniform agreement of Con-
sensus, p; also decides with m € NCset® or m € C'set*,
and so, also g-Delivers m at line 22 or 23.

Thus, assume that p; does not execute Consensus at
stage k, that is, p; g-Delivers m in the first phase of
stage k (at line 31). We claim that no process evaluates
the condition at line 13 to false in stage k. The proof
is immediate from the fact that p; does not terminate
stage k and from Lemma 4.

As p; g-Delivers m at line 31, p; has received mes-
sages (k,pending®, ACK) with m € pending® from ng
processes (line 28). Since there are n,., correct processes
and ngex > n/2, p; has received (k, pending®, ACK) from
at least one correct process, say p,. At line 15, p, has sent
(k, pending®, ACK) with m € pending®, thus at line 14
we have for p, m € R_delivered, \ G_delivered,, and p,
has R-delivered m at line 10. Since p,. is correct, by the
agreement property of Reliable Broadcast every correct
process ps eventually also R-delivers m. By Lemma 3,
ps has not g-Delivered m in any stage k' < k, so every
correct process p,; evaluates the condition of line 12 to
true and starts Task 3.

From our claim above, no process evaluates the con-
dition of line 13 to false, and so, every correct process
p, sends (k,pending®, ACK) to all with m € pending®
(line 15). As there are nqcx correct processes, p; receives
Nack messages (k,pending®, ACK) with m € pending*®
(line 28), and p; g-Delivers m at line 31. |

Lemma 5. (Assumes ngcr > n/2.)

Let m and m' be two conflicting messages, and k any
stage. If process p; g-Delivers message m in the first
phase of stage k, then no process g-Delivers m' in the
first phase of stage k.

PROOF: For a contradiction, assume that in the first
phase of stage k process p; g-Delivers m and p; g-Delivers
m’. So, p; (resp., p;) has received (line 28) ny., messages
of the type (k, pending®, ACK), such that m € pending*
(resp., m' € pending®). By the condition of line 13,
m and m' cannot be in the same set pending®, and
s0, there must exist 2n,.; different processes that have
sent (k, pending®, ACK) at line 15—a contradiction since
Ngek > NJ2. O

Lemma 6. (Assumes nep, > n/2.)
For any stage k > 0, the set NCset® decided in Consen-
sus in stage k cannot include two conflicting messages.

PROOF: Let m and m' be two conflicting messages. For a
contradiction, assume that we have m,m’ € NCset*. By
the validity property of Consensus some process p; has
proposed at line 20 (k,msgSet*, —) = (k, NCset*, —)
such that m,m’ € msgSet. Thus, p; receives at line 18
[225417 messages (k, pending®, CHK) such that pending®
includes m, and [2:%17 messages (k, pending®, CHK)
such that pending® includes m'. By the condition of
line 13, pending® cannot include conflicting messages,
and so there must exist 2n.p; different processes that
have sent (k, pending®, CHK) at line 19 — a contradiction
since nepg > n/2. O

Proposition 2. (UNIFORM ORDER).

(Assumes Ngek, Nehk > N/2, 2Ngek + Nepk > 20+ 1.)

If processes p; and p; both g-Deliver conflicting messages
m and m', then p; and p; g-Deliver m and m' in the
same order.

PROOF: (uses Lemmas 2, 3, 5, and 6) Without loss of
generality, assume that p; g-Delivers m before m/'. If p;
g-Delivers m in stage k and m' in stage k' > k, it follows
from Lemma 3 that p; also g-Delivers m in stage k and
m' in stage k' > k and the result holds.

So, assume that p; g-Delivers m and m' in stage k.
From Lemma 5 m and m’ cannot be g-Delivered by p; in
the first phase of stage k. So, either (1) p; g-Delivers m
in the first phase of stage k and m' in the second phase
of stage k, or (2) p; g-Delivers m and m' in the second
phase of stage k.

In case (1), from Lemma 5, p; cannot g-Deliver m/'
in the first phase of stage k. From Lemma 2, when p;
decides at line 21, we have m € NCset*. By Lemma 6,
NCset* cannot contain m and m’. So m' € Cset*, and
p; also g-Delivers m (at line 22) before m' (at line 23).

In case (2), from Lemma 6, m and m’ cannot both
be in NCset* decided by p;. Therefore, either (2a) m €
NCsett, m' € Csett decided by Consensus, or (2b)
m,m' € Cset® decided by Consensus. In case (2a), p;
also g-Delivers m € NCset* (line 22) before m' € Cset*
(line 23). In case (2b), because p; g-Delivers m before
m', m has a smallest ID than m'. So p; also g-Delivers
m before m/'. O

Proposition 3. (VALIDITY).

(Assumes ek, Nepg > N/2, maxz(Ngek, Nerk) correct pro-
cesses, 2Ngek + Nepk > 2n + 1.)

If a correct process p; g-Broadcasts a message m, then
p; eventually g-Delivers m.

PROOF: (uses Lemma 4 and Proposition 1) For a con-
tradiction, assume that p; g-Broadcasts m but never g-
Delivers it. From Proposition 1, no correct process g-
Delivers m. To g-Broadcast m, p; R-broadcasts it (line 8),
and by validity of Reliable Broadcast, p; eventually R-
delivers m. From agreement of Reliable Broadcast, every
correct process eventually R-delivers m (line 10). Since
no correct process g-Delivers m, there is a time ¢ af-
ter which, for every correct process p;, we have m €
(R-delivered \ G_delivered).

Let t' > t be a time such that at ¢’ all faulty processes
have crashed. Let k be the highest stage reached by some
process, say pj, at time ¢'. From Lemma 4 all correct
processes eventually start stage k.

Since no correct process g-Delivers m, no correct pro-
cess g-Delivers m in the first phase of stage k. Therefore,
no correct process receives n,., messages (k, pending®,
ACK) (line 28) such that m € pending®. Since there
are mgep, correct processes, at least one correct process,
say pj, does not send the message (k,pending®, ACK)
to all with m € pending® (line 15). So p; evaluates
the condition at line 12 to false, and sends the message
(k, pending®, cHK) to all (line 17), which is only pos-
sible if p; has R-delivered a message m' that conflicts

Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols 9

with m. As p; is correct, by the agreement property of
Reliable Broadcast, every correct process eventually R-
delivers m', evaluates the condition at line 13 to false
and sends message (k,pending®, CHK) to all. As there
are n.pp correct processes, all correct processes eventu-
ally stop waiting at line 18 and execute propose(k, s, s'),
with m € sU s’ (line 19). From Consensus, we have at
line 21 m € NCset* U Cset*. So all correct processes
g-Deliver m at line 22 or 23—a contradiction. |

Proposition 4. (UNIFORM INTEGRITY). For any mes-
sage m, each process g-Delivers m at most once, and only
if m was previously g-Broadcast.

PROOF (SKETCH): Assume that m is never g-Broadcast.
So m is never R-broadcast, and by the uniform integrity
of Reliable Broadcast, m is never R-delivered (line 10).
So m is not in any pending® set, and it follows that m
can never be g-Delivered, either at line 31 or at lines 22,
23.

It is not hard to see, from the delivery condition (lines 22,
23, 29), that m is not g-Delivered more than once. O

Theorem 1. Assume that there are max(Nack, Nenk) COT-
rect processes, Nock,Nekh > N/2, and 2Nger, + Nepke >
2n+ 1. The algorithm in Figure 1 solves Generic Broad-
cast, or reduces Generic Broadcast to a sequence of Con-
sensus problems.

PROOF: Immediate from Propositions 1, 2, 3, and 4. O

5.2 Proof of Correctness of GB+

Since the algorithm GB+ is derived from GB, some re-
sults established for GB hold for GB+:

e Lemmas 1, 2 and 6 hold for GB+ with the same proof.

e Lemma 3 holds for GB+, but the proof requires a tiny
adaptation. Indeed, with GB+, messages can addi-
tionally be g-Delivered at lines 23 and 33. However,
this does not require changes in the arguments of the
proof of Lemma 3.

Lemma 4 also holds for GB+, but the proof is not the
same.

Lemma 4. (Assumes 2ngcr+nepk > 2n+1, nepr, > n/2,
Nepk correct processes.)

For all stage k > 0, if some process p; terminates stage
k (i.e., executes line 40 in stage k), then every correct
process also terminates stage k.

PROOF: (uses Lemma, 3) The proof is by induction; how-
ever, as the base step is very similar to the inductive step,
we only give the proof of the inductive step. Assume
the result holds for k, and let process p; terminate stage
k+ 1. So p; has terminated stage k, and by the induction
hypothesis every correct process also terminates stage k.
Before terminating stage k+ 1, p; has received n.pj mes-
sages (k + 1, g_Deliver**! pending*t!, cHK) (line 34).
As there are n.py correct processes and nqpp > n/2,
at least one message (k + 1, g_Deliver*+! pending*+!,

CHK) was sent (line 19 or 30) by a correct process, say p;.
So every correct process eventually receives message (k-+
1, g_Deliver®*! pending**!, cHK) (line 27) and sends
message (k + 1, g_Deliver*+! pending**!, cHK) to all
(line 30). As there are n.p, correct processes, every cor-
rect process eventually evaluates the condition of line 34
to true and starts Consensus at line 36. By the termi-
nation of Consensus every correct process eventually de-
cides, and terminates stage k£ + 1 at line 40. O

Proposition 5. (UNIFORM AGREEMENT).

(Assumes ngek, Nehk > 1/2, Maz(Ngck, Nerk) correct pro-
cesses, 2ngek + Nenk > 2n+1.)

If a process p; g-Delivers a message m, then every correct
process p; eventually g-Delivers m.

PROOF: (uses Lemmas 2, 3, and 4) Process p; g-Delivers
messages at lines 23, 26, 33, 38, and 39. If p; g-Delivers
m at line 38 or 39 after the execution of Consensus,
the result holds with the same arguments as those for
GB (Proposition 1). Thus, assume that p; does not ex-
ecute Consensus at stage k, that is, p; g-Delivers m at
line 23, 26, or 33. If p; g-Delivers m at line 23 or 33,
there exists a process, say p;, that has g-Delivered m at
line 26 after having received n,., messages of the type
(k, —, pending®, ACK). From here on, we can establish
the result by using the arguments of the proof of Propo-
sition 1 for the case where p; g-Delivers m at line 31
(Figure 1) after having received ng,.x messages of the
type (k, —, pending®, ACK). O

Lemma 5 no longer holds for GB+, as GB+ allows the
g-Delivery of conflicting messages in the first phase of a
stage. We replace Lemma 5 with the following lemma:

Lemma 7. (Assumes ngcr, > n/2.)

Let m and m' be two conflicting messages, and k any
stage. If process p; g-Delivers m in stage k before Con-
sensus, and p; g-Delivers m' in stage k before Consen-
sus, then either p; has g-Delivered m' before m, or p;
has g-Delivered m before m/.

Proor: For a contradiction assume that p; g-Delivers
m before m’, and p; g-Delivers m’ before m. Processes
can g-Deliver messages before Consensus at line 23, 26,
or 33.

We first prove that there exists a process p, that has
g-Delivered m at line 26, and has not g-Delivered m/'
before m. If p; g-Delivers m at line 26, take p, = p;.
If p; g-Delivers m at line 23 or 33, there must exist a
process, say p,, that has g-Delivered m at line 26. If
pr has g-Delivered m’ before m, then p; also g-Delivers
m' before m at line 23 or 33 (since m' is before m in
g_Deliver® received from p,)—a contradiction with the
fact that p; has not g-Delivered m' before m. So p, has
not g-Delivered m' before m. By a similar argument,
there must exist a process, say ps, that has g-Delivered
m' at line 26, and m' before m.

So there exists a process p, that g-Delivers m at
line 26, and not m' before m, and there exists a process
ps that g-Delivers m/' at line 26, and not m before m'. To
g-Deliver m at line 26, process p, has received (line 20)

10 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

Nack messages of the type (k, g_Deliver®, pending®, ACK),
such that m € pending®. Similarly, to g-Deliver m' at
line 26, process p; has received (line 20) 1,1, messages of
the type (k, g_Deliver®, pending®, ACK), such that m' €
pending®.

By the condition of line 14, the conflicting messages
m and m' cannot be in the same set pending®, and there-
fore, there must exist 2n,.;, different processes that have
sent (k, g_Deliver®, pending®, ACK) at line 16—a contra-
diction since nger > n/2. O

Proposition 6. (UNIFORM ORDER).

(Assumes Nock, Nepk > n/2, and 2ngep + nepg > 2n+1.)
If processes p; and p; both g-Deliver conflicting messages
m and m', then p; and p; g-Deliver m and m' in the
same order.

PROOF: (uses Lemmas 2, 3, 6, and 7) The proof is close
the proof of the corresponding property of GB (Proposi-
tion 2). The difference stems from the fact that Proposi-
tion 2 relies on Lemma 5, which does not hold for GB+
and has been replaced with Lemma, 7.

Without loss of generality, assume that p; g-Delivers
m before m'. As in the proof of Proposition 2, the result
holds immediately if p; g-Delivers m in stage k and m/’
in stage k' > k. From Lemma 7 the result also holds if p;
g-Delivers m and m/' before the Consensus. It remains to
consider the following cases: (1) p; g-Delivers m before
Consensus and m' after Consensus, and (2) p; g-Delivers
m and m' after Consensus. In case (1), from Lemma 7, p;
cannot g-Deliver m' before Consensus. The rest of case
(1) can be proved as in the proof of Proposition 2. Case
(2) can be proved as in the proof of Proposition 2. O

Proposition 7. (VALIDITY).

(Assumes ngek, Nepk > N/2, maz(Ngek, Nerk) correct pro-
cesses, 2Ngek + Nep > 2n+1.)

If a correct process p; g-Broadcasts a message m, then
p; eventually g-Delivers m.

Proof: Similar to the proof of Proposition 3. m|

Proposition 8. (UNIFORM INTEGRITY). For any mes-
sage m, each process g-Delivers m at most once, and only
if m was previously g-Broadcast by sender(m).

Proof: Similar to the proof of Proposition 4. O

Theorem 2. Assume that there are max(ngcr, Nepg) cor-
rect processes, Mack,Nekh > N2, and 2Nger, + Nepk >
2n+ 1. The algorithm in Figure 2 solves Generic Broad-
cast, or reduces Generic Broadcast to a sequence of Con-
sensus problems.

PROOF: Immediate from Propositions 5, 6, 7, and 8. O
6 Evaluation of the Generic Broadcast
Algorithms

6.1 Time Complezity in Good Runs

To assess the cost of Generic Broadcast, we consider
“g00d” runs (i.e., runs with no failures and no failure

suspicions). We express the delivery cost of a message m
in terms of the maximum network message delay ¢ [1].
We show below that if Consensus is not needed, GB and
GB+ g-Deliver messages in 2§. However, if Consensus is
necessary, at least 46 are needed. By comparison, known
Atomic Broadcast algorithms, in the model considered in
the paper, can A-Deliver messages in 36,> which shows
the potential benefit of Generic Broadcast over Atomic
Broadcast: if the message conflict rate is low, our Generic
Broadcast algorithms are an interesting alternative to
Atomic Broadcast algorithms. However, if the message
conflict rate is high our Generic Broadcast algorithms
become less efficient than known Atomic Broadcast al-
gorithms.

6.2 Time complexity of GB and GB+

We evaluate now the time between the execution of g-
Broadcast(m) and g-Deliver(m), in terms of §, the max-
imum message delay.

6.2.1 Time Complexity in the First Phase

For the first phase, we can do the same analysis for GB
and GB+. Consider GB, and let a process p g-Broadcast
some message m (line 7). Message m is first R-broadcast
(line 8), and upon R-delivery of m at line 10 (in the ab-
sence of failures, this takes d), every process sends an
ACK message to all, with m € pending® (line 15). Upon
reception of ACK messages from n,j processes (max de-
lay =), m is g-Delivered (line 31). So, the time com-
plexity of GB and GB+ for message delivery in the first
phase is 24.

6.2.2 Time Complexity in the Second Phase

We discuss now the cost of GB and GB+ when Consensus
is needed. Time complexity is more difficult to evaluate
here, as the result depends on the interleaving of con-
current events. We give for each algorithm the best-case
and the worst-case figures. For Consensus, we assume
the algorithm in [11] that has a time complexity of 24 in
good runs.

Best case for GB. At time t, let process p g-Broadcast
message m (line 7). Message m is R-delivered at line 10
(at time ¢ + §). In the best case, upon R-delivery of m,
every process detects a conflict with some other message
m' (line 13), and sends a message of type CHK to all,
with m € pending® (line 17). All processes receive the
message at time ¢t + 20 (line 18) and start Consensus.
As Consensus costs 20, message m is g-Delivered at time
t 4 46.

® An exception is the Optimistic Atomic Broadcast algo-
rithm [9], which can deliver messages in 24 if the spontaneous
total order property holds—that is, if messages are “sponta-
neously” received in the same order.

Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols 11

Worst case for GB. Let p again g-Broadcast m at time
t. At time t + § all processes have R-delivered m, but
not all processes detect a conflict at that time. So, not
all processes send immediately a message of type CHK.
However, at least one process ¢ detects a conflict with
some message m' at time t + § (otherwise Consensus
is not needed). If ¢ has R-delivered m' at time ¢ + 4,
then all processes R-deliver m' at time ¢ + 2§, detect the
conflict with m, and send the message of type CHK. So,
all processes start Consensus at time ¢ + 39, and end
Consensus at t+ 56. However, this analysis assumes that
between t+9 and t+ 34, Task 3 is not involved in another
Consensus not related to message m, in which case, such
an execution of Consensus would have to terminate first,
adding 2§. Thus, in the worst case the g-Delivery of m
takes 74.

Best case for GB+. At time t, let process p g-Broadcast
message m (line 8). Message m is R-delivered at line 11
(at time ¢ + 0). In the best case, upon R-delivery of m,
every process detects a conflict with some other message
m' (line 14), and sends a message of type CHK to all,
with m € pending® (line 19). All processes receive the
message at time ¢t + 2§ (line 27), and start Consensus.
As Consensus costs 24, message m is g-Delivered at time
t + 46.

Worst case for GB+. Let p again g-Broadcast m at time
t. At time t + § all processes have R-delivered m, but
not all processes detect a conflict at that time. So, not
all processes send immediately a message of type CHK.
However, at least one process ¢ detects a conflict with
some message m' at time t + § (otherwise Consensus is
not needed). Upon detecting the conflict, process ¢ sends
a message of type CHK to all (line 19). Upon reception of
this message (time t+24), the processes that have not yet
sent the message of type CHK do so, with m € pending®
(line 30). These messages are received at time t + 34.
So, all processes start Consensus at time ¢t + 3§, and
end Consensus at t + 56. As for the worst case of GB,
the analysis ignores that at any time, between t 4+ ¢ and
t + 39, Task 3 might be involved in another Consensus
not related to message m, which adds 2J. So, in the worst
case the g-Delivery of m takes 74.

6.3 Generic Broadcast vs. Atomic Broadcast

Table 1 summarizes the time complexity of GB and GB+:
26 in the first phase, and between 44 (best case) and 74
(worst case) if the second phase is needed. By comparison
the time complexity of Atomic Broadcast is between 36
(best case) and 56 (worst case).

6 We consider Atomic Broadcast solved by reduction to
Consensus [4] and the Consensus algorithm of [11].

Protocols Best Case | Worst Case
GB and GB+: Phase 1 only 20

Phase 1 and 11 40 76
Atomic Broadcast 30 50

Table 1. Generic Broadcast vs. Atomic Broadcast

6.4 Experimental validation

The results of Section 6.3 are confirmed by an exper-
iment conducted with 10 processes (n = 10) running
on Sun’s UltraSparc workstations interconnected by an
Ethernet network (10 MBit/s) and communicating us-
ing TCP/IP (see Figure 3). The experiment measures
the cost of the “Best Case” of Table 1. Processes im-
plement the GB algorithm with ng., = nepr = 7. The
vertical axis of Figure 3 represents the time elapsed be-
tween the events g-Broadcast(m) and g-Deliver(m) at
the sender of m. The horizontal axis represents the mes-
sage conflict rate, that is, the ratio of the number of
g-Broadcast messages that conflict to the total number
of g-Broadcast messages.

Thus, @ = 0 means that only non-conflicting mes-
sages were g-Broadcast, while @ = 1 means that only
conflicting messages were g-Broadcast. In other words,
a = 0 measures the cost of the first phase of GB, while
a = 1 measures the cost of the first and the second
phases. The Atomic Broadcast algorithm is the one men-
tioned in Section 6.3 (notice that this algorithm requires
a majority of correct processes, i.e., 6). Experiments were
repeated to build a confidence interval of 95%, and in
each experiment, processes g-Broadcast messages at a
constant rate. From Figure 3, if less than 60% of the
messages g-Broadcast conflict, the GB algorithm can g-
Deliver messages more efficiently than the Atomic Broad-
cast algorithm considered.

90 T T T T

Generic Broadcast —— |
80 Atomic Broadcast 7=

70

60

50

latency (msec)

40

30

20

10] L L L L
0 0.2 0.4 0.6 0.8 1
message conflict rate (a)

Fig. 3. Comparing Generic Broadcast to Atomic Broadcast
(a = 0: only non-conflicting messages are g-Broadcast; o = 1:
only conflicting messages are g-Broadcast)

7 Conclusion

The paper has introduced the Generic Broadcast prob-
lem, whose definition is based on a conflict relation on

12 Fernando Pedone, André Schiper: Handling Message Semantics with Generic Broadcast Protocols

the set of messages that are broadcast. The conflict rela-
tion can be derived from the semantics of the messages,
and only conflicting messages have to be delivered by all
processes in the same order. As such, Generic Broadcast
is a powerful message ordering abstraction, which in-
cludes Reliable and Atomic Broadcast as special cases.
Generic Broadcast algorithms GB and GB+ have been
shown to be more efficient than Atomic Broadcast algo-
rithms if message conflicts are not too frequent.

This paper, together with [1], show a time complexity
vs. resilience tradeoff for Generic Broadcast algorithms.
Our Generic Broadcast algorithms require f < n/3 with
a best case time complexity of 2§ (if messages do not
conflict). In [1], the authors propose Generic Broadcast
algorithms that require only f < n/2, with a time com-
plexity of 36 in the best case. So additional resilience
increases the best time complexity. An interesting open
question is whether there exist Generic Broadcast algo-
rithms that can—in the best case—deliver messages in
24, and still require only a majority of correct processes.

Acknowledgements. We would like to thank the anonymous
reviewers for their comments and suggestions that helped im-
prove the paper.

References

1. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Thrifty generic broadcast. In Proceedings of the
14th International Symposium on Distributed Computing
(DISC’2000), October 2000.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

3. K. P. Birman and T. A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In Proceedings of the
11th ACM Symposium on OS Principles, pages 123138,
November 1987.

4. T.D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225-267, March 1996.

5. D. Cheriton and D. Skeen. Understanding the limita-
tions of causally and totally ordered communication. In
Proceedings of the 14th ACM Symposium on Operating
Systems Principles, Asheville (USA), December 1993.

6. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossi-
bility of distributed consensus with one faulty processor.
Journal of the ACM, 32(2):374-382, 1985.

7. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Distributed Systems, chapter 5.
Addison-Wesley, 2nd edition, 1993.

8. P. A. Jensen, N. R. Soparkar, and A. G. Mathur. Char-
acterizing multicast orderings using concurrency control
theory. In Proceedings of the 17th International Con-
ference on Distributed Computing Systems (ICDCS’97),
Baltimore (USA), May 1997.

9. F. Pedone. The Database State Machine and Group
Communication Issues. PhD thesis, Ecole Polytech-
nique Fédérale de Lausanne, Switzerland, December
1999. Number 2090.

10.

11.

12.

F. Pedone and A. Schiper. Generic broadcast. In
Proceedings of the 13th International Symposium on
Distributed Computing (DISC’99, formerly WDAG),
September 1999.

A. Schiper. Early consensus in an asynchronous system
with a weak failure detector. Distributed Computing,
10(3):149-157, 1997.

F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial. ACM Com-
puting Surveys, 22(4):299-319, December 1990.

