Optimistic Validation of
Electronic Tickets

Fernando Pedone
Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA
pedone@hpl.hp.com

Abstract

Electronic tickets, or e-tickets, give evidence that
their holders have permission to enter a place of
entertainment, use a means of transportation, or
have access to some Internet services. E-tickets
can be stored in desktop computers or personal
digital assistants for future use. Before being
used, e-tickets have to be validated to prevent du-
plication, and ensure authenticity and integrity.
This paper discusses e-ticket validation in contexts
in which users cannot be trusted and validation
servers may fail by crashing. The paper consid-
ers formal definitions for the e-ticket problem and
proposes an optimistic protocol for validation of e-
tickets. The protocol is optimistic in the sense that
its best performance is achieved when e-tickets are
validated only once.

1 Introduction

Widespread use of the Internet has recently led
to the emergence of a variety of electronic ser-
vices, also known as “e-services.” Electronic tick-
ets, or e-tickets, is an example of such a class of
e-services. Generally speaking, e-tickets are the
Internet counterpart of real-world tickets, and give
evidence that the holder has paid or is entitled to
some service (e.g., entering a place of entertain-
ment, upgrading a software from the Internet).
Users can acquire e-tickets by purchasing them
from a web server, or simply receiving them from
a vendor, as part of a promotion, or from another
user who previously acquired them. E-tickets can
be stored in a desktop computer or in a personal
digital assistant (PDA) for future use.

To use an e-ticket, a user first relays it to a
server for validation (e.g., if the e-ticket is stored
in a PDA, the user could actually “beam” the e-
ticket to the server). The validation process, here-
after called e-ticket problem, results in the server
either accepting or rejecting the e-ticket, and is in-
tended to prevent duplication, and ensure authen-
ticity and integrity. Preventing duplication avoids
multiple use of an e-ticket by the same or different
users; ensuring authenticity and integrity guaran-
tees, respectively, that e-tickets are only accepted
if they have been issued by an authorized source
and have not been tampered with [16]. For rea-
somns of privacy, it is also desirable that e-tickets be
anonymous, that is, e-tickets should not contain
any information associated with their holders.

This paper studies the e-ticket problem in con-
texts in which users cannot be trusted (i.e., users
may try to use the same e-ticket several times)
and servers may fail by crashing. The paper dis-
cusses formal specifications of the e-ticket prob-
lem, shows that some intuitive guarantees can-
not be implemented when users are not trusted
and servers may fail, and discusses two specifi-
cations of the e-ticket problem, the at-most-once
and the at-least-once e-ticket problems. In ex-
ecutions without failures, both specifications re-
quire e-tickets to be accepted exactly once. In
executions with failures, the former specification
may result in some e-tickets never being accepted,
and the latter specification may result in some e-
tickets being accepted multiple times.

At a first glance, the e-ticket problem is some-
what similar to the mutual exclusion problem, and
one may think of solving it using mutexes. The
paper discusses the relationships and points out
differences between the e-ticket problem, the mu-
tual exclusion problem, and some of its variations.

A simple highly-available protocol that solves
the at-most-once e-ticket problem is presented.
High availability stems from the fact that the fail-
ure of some server does not prevent the remain-
ing ones from validating e-tickets. The paper also
presents a highly-available optimistic protocol for
validation of at-most-once e-tickets, and compares
its cost to the simple protocol. The protocol is op-
timistic in the sense that its best performance is
achieved when e-tickets are validated only once.

The rest of the paper is structured as follows.
Section 2 describes the system model and provides
specifications for the e-ticket validation problem.
Section 3 presents a simple protocol and the more
efficient optimistic protocol for the at-most-once
e-ticket validation problem. Section 4 compares
the efficiency of the protocols analytically and by
simulation. Section 5 discusses related work, and
Section 6 concludes the paper.

2 System Model and Problem

2.1 Processes, Communication and
Failures

We consider a system composed of a set II, =
{u1,...,um} of user processes and a set II; =
{s1,...,8n} of server processes. User and server
processes execute a sequence of atomic events,
where an event can be any change in the inter-
nal state of a process, the sending of a message,
or the receiving of a message [9]. Server processes
may fail by crashing, but otherwise they respect
their protocols (i.e., no Byzantine behavior). User
processes may behave maliciously and cannot be
trusted by server processes. We make no assump-
tions about process speeds and message transmis-
sion times. Communication between processes is
reliable, and defined by the primitives send and
receive. If a process sends a message m to an-
other process, and both sender and receiver do
not crash, m is eventually received.

We also assume that server processes can com-
municate with one another using Atomic Broad-
cast, defined by the primitives broadcast and de-
liver. Atomic Broadcast guarantees that if a
server broadcasts a message m and does not crash,
it eventually delivers m (validity); if a server de-
livers a message m, then all servers that do not
crash eventually deliver m (uniform agreement);
for every message m, every server delivers m at

most once, and only if m was previously broad-
cast by sender(m) (uniform integrity); and if two
servers, s; and s;, both deliver messages m and
m', they do so in the same order (total order).
Atomic Broadcast is implemented using point-to-
point messages and some additional assumptions
about the model (e.g., failure detectors [5]).

2.2 The E-ticket Problem

In this paper, we are interested in the valida-
tion of e-tickets, and thus, we do not address the
issue of how users acquire e-tickets—we simply as-
sume that they use some means to do so. To use
an e-ticket, a user first sends it to some server
for validation, which will result in the e-ticket be-
ing either accepted or rejected. We model e-ticket
acceptance and rejection as local events in the
servers, without further specifying their seman-
tics. An accept event could be, for example, the
sending of a message containing some access code
to the user. Generally speaking, validation of e-
tickets addresses two concerns: First, the same
e-ticket should not be accepted more than once,
which can happen, for example, when users dis-
tribute copies of their e-tickets to other users. Sec-
ond, no solution to the first concern consisting in
rejecting all e-tickets is admitted—that is, there
must be situations where e-tickets are accepted.
These two concerns correspond, respectively, to
safety and liveness guarantees.'

The e-ticket problem is defined as follows:

(E-1) If a server accepts an e-ticket 7, then no
other server accepts 7, and a server does not
accept the same e-ticket more than once.

(E-2) Let o(7) be the set of servers that validate
the same e-ticket 7. If no server in o(7)
crashes, then there is a server in o(7) that
eventually accepts 7.

If no server in o(7) crashes, properties E-1 and
E-2 ensure that e-ticket 7 is accepted ezactly-once.
If some server in o(7) crashes, however, there is
no guarantee that 7 is accepted. Therefore, in the
presence of crashes, properties E-1 and E-2 ensure
that 7 is accepted at-most-once.

! Authentication and integrity of e-tickets are also of
major importance (e.g., preventing users from forging e-
tickets, changing the e-ticket contents), but we do not elab-
orate on this matter in the paper. Standard security tech-
niques, such as cryptography, are usually used to address
such concerns [16].

In an attempt to enforce exactly-once seman-
tics even in the presence of crashes, property E-2
may be rephrased as “...if not all servers in o(7)
crash, then there is some server in o(7) that ac-
cepts 7 (denoted E-2°). It turns out, however,
that properties E-1 and E-2’ together lead to an
unsolvable problem in the context defined in Sec-
tion 2.1 even if only one server can crash! The in-
tuition behind such a result is that if some server
crashes, the remaining servers cannot tell whether
an accept event took place at the crashed server.

For example, consider the executions depicted
in Figures 1 and 2, where servers si, s2, and s3
receive the same e-ticket 7. In Figure 1, server s;
crashes before accepting 7, and to satisfy property
E-2’, server s» accepts 7. In Figure 2, server s;
crashes after accepting 7. From sy’s viewpoint,
these executions are indistinguishable, and since
s accepts 7 in the former execution, it also ac-
cepts 7 in the latter, contradicting property E-1.
Notice that even if the accept event is the sending
of some message by s; to s3, the problem is still
unsolvable: since s; crashes, there is no guarantee
that any messages it sends will be received.

s >4
N

l accept(T)
52

T

l re jec)‘r)

Figure 1: Execution satisfying E-1 and E-2’

53

r
l accept(T) CRASH

51
r
l accept(T)
52
r
l reject(r)
83 ®

Figure 2: Execution violating E-1

Property E-1 can be modified and combined
with E-2’) leading to the following problem:

(E-1’) If a server accepts an e-ticket 7 and does
not crash, then no other server that does not
crash accepts 7, and a server does not accept
the same e-ticket more than once; and

(E-2’) Let o(7) be the set of servers that receive the
same e-ticket 7. If not all servers in o(1)
crash, then there is a server in o(7) that
eventually accepts 7.

The execution depicted in Figure 2 does not
violate property E-1’, and so, the argument pre-
sented for properties E-1 and E-2’ no longer holds.
Furthermore, as for properties E-1 and E-2, if the
servers in o(7) do not crash, for any e-ticket T,
properties E-1’ and E-2’ guarantee that 7 is ac-
cepted exactly-once. If some servers in o(7) crash,
however, the same e-ticket may be accepted more
than once. Therefore, in the presence of crashes,
properties E-1’ and E-2’ ensure that 7 is accepted
at-least-once.

In the rest of the paper, we focus the discus-
sion on the at-most-once e-ticket problem—in [11]
we show that to solve the at-least-once e-ticket
problem, additional assumptions have to be made
about our system model.

3 Solving the E-ticket Problem
3.1 Quorum-Based E-ticket Protocol

We initially try to solve the at-most-once e-
ticket problem with a quorum-based protocol: to
accept an e-ticket 7, a server s; has to gather a
quorum () of servers that agree with the accep-
tance of 7. Thus, to validate 7, s; sends a message
with 7 to all servers and waits for the replies from
a quorum of servers. A server replies with an ACK
if it has not agreed with 7 before, and replies with
a NACK otherwise. Server s; accepts 7 if it gath-
ers a quorum of servers that reply with AcK’s. Of
course, if |@Q| > n/2, then property E-1 is guaran-
teed, since two servers cannot both gather a quo-
rum for 7. However, this simple protocol can lead
to situations where 7 is not accepted at all, even if
no server in o(7) crashes, violating property E-2.
For example, consider the case where two servers
obtain each n/2 replies with ACK: neither server
can accept 7, even though no server crashes.

The problem with the quorum-based e-ticket
protocol is similar to the deadlock problem in
replicated databases that use a locking-based
mechanism to synchronize transactions (e.g., two-
phase locking) [4], and one could think of detect-
ing it using some deadlock-detection mechanism
and solve it by having servers cancel the first at-
tempt and try to acquire a quorum again if they
fail the first time. This approach, however, offers
no guarantee that servers will not find themselves
again in a similar situation, where no one can ac-
cept the e-ticket. Besides, it has been shown, in
the context of replicated databases, that dead-
locks rise as the third power of the number of
database replicas [7], and so, we could also expect
such a behavior from the quorum-based e-ticket
protocol. In the next section we present a proto-
col that solves this problem.

3.2 A Simple E-ticket Protocol

The e-ticket validation problem can be solved
with a simple protocol based on Atomic Broadcast
(hereafter, SE protocol): when s; receives an e-
ticket 7 from some user, s; broadcasts 7 and waits
for the delivery of a message with 7. If the first
message delivered by s; is the message s; broad-
cast, s; accepts 7; otherwise s; rejects 7. This
protocol solves the at-most-once e-ticket problem:
property E-1 comes from uniform agreement and
total order of Atomic Broadcast, and property E-
2 comes from validity and uniform integrity of
Atomic Broadcast.

Although simple, the SE protocol does not
solve the at-most-once e-ticket problem efficiently:
the SE protocol orders all e-tickets in the system,
but order is only needed to resolve cases where the
same e-ticket is submitted multiple times, which
hopefully only occurs in rare occasions. Thus,
since ordering messages has a cost, users who use
their e-tickets only once end up penalized by the
protocol. We present next an optimized protocol
for the common case where e-tickets are used only
once.

3.3 The Optimistic E-ticket Protocol

The optimistic e-ticket protocol (hereafter,
OPT protocol) is divided into two phases: Phase
1 and Phase 2. The protocol is optimistic in the
sense that when e-tickets are used only once, the
validation process is very efficient (i.e., e-tickets

are validated in Phase 1), but when users try to
use the same e-ticket multiple times, the valida-
tion process becomes inefficient (i.e., e-tickets are
validated in Phase 2). The notion of efficiency is
taken relative to the SE protocol: the validation
in Phase 1 of the OPT protocol is more efficient
than the validation using the SE protocol, but the
validation in Phase 2 of the OPT protocol is less
efficient than the validation using the SE protocol.

Overview of the OPT Protocol. Phase 1 of
the OPT protocol is similar to the quorum-based
e-ticket protocol. Once a server s; receives an e-
ticket 7 from some user, s; sends 7 to all servers
to find out whether some server has already ac-
cepted 7. When a server s; receives 7 from s;, if
s; has not received 7 before, s; sends an ACK mes-
sage to s;; otherwise, s; sends a NACK message to
s;. Server s; waits for replies from a majority of
servers—to ensure termination, at least a major-
ity of servers should be up (i.e., f < n/2). If s;
receives a majority of ACK messages, s; accepts 7
in Phase 1; otherwise, s; proceeds to Phase 2.

Phase 2 handles cases where more than one user
tries to use the same e-ticket. Phase 2 has to take
into account two constraints: (a) if every server
that validates 7 proceeds to Phase 2—that is, no
server accepts 7 in Phase 1 and does not crash,
then some server should accept 7 in Phase 2; and
(b) if some server accepts 7 in Phase 1, then no
server should accept 7 in Phase 2.

Servers in Phase 2 initially broadcast a message
with 7, and then execute a deterministic proce-
dure whose parameters are the messages they de-
liver. Since all servers deliver the same messages
in the same order, and they use a deterministic
procedure, they all reach the same decision on
which server should accept 7. The deterministic
procedure is designed in such a way as to fulfill
constraints (a) and (b), described above.

Figures 3 and 4 depict executions of the OPT
protocol. In Figure 3, server s; receives e-ticket
T from user u; and sends it to all servers. Server
s1 receives ACK messages from servers sp, sz, and
s3. Therefore, s1 accepts 7. Server sz receives
the same e-ticket 7 from user us, sends 7 to all
servers, and receives a NACK message from ss.
Thus, server s5 executes Phase 2, and rejects 7.
In Figure 4, neither s, nor s5 gathers a majority
of ACK messages in Phase 1. Thus, both servers
start Phase 2, s5 accepts the e-ticket sent by wus,
and s» rejects the e-ticket sent by u;.

from user u;

ACK
7 accept(T)
51 Lt
ACK
ACK

52 - / /
83

84

from user ug

55

reject(r)

Phase 1

Phase 2

Figure 3: E-ticket accepted in Phase 1

OPT Protocol in Detail. Algorithm 1
presents a detailed description of the OPT e-ticket
protocol. To validate an e-ticket 7 sent by some
user u, server s; sends message (s;, 7, NEWTKT) to
all servers (line 12). When a server s; receives
a message (s;,7, NEWTKT) from server s; (line
13), if s; has received some message of the type
(sk, T, NEWTKT) before, where s, # s; (line 14),
s; sends (sg,T,NACK) to s; (line 15); otherwise,
s; sends (sj,7,ACK) to s; (line 18). Upon receiv-
ing a reply message (i.e., a message of the type
(*,7,ACK) or (¥,7,NACK)) (line 19), s; updates
set Replies] (line 20), which stores the identifiers
of every server sj contained in each reply mes-
sage received by s; for e-ticket 7. Once s; receives
[(n + 1)/2] reply messages and all messages re-
ceived by s; are of the type (s;, 7, ACK) (lines 21—
22), s; accepts 7(line 23). If there is a message
(sj,T,NACK) among the messages received by s;,
s; starts Phase 2 of the protocol (lines 26-36).

In Phase 2, s; broadcasts (s;, 7, Replies]) (line
27), and waits for the delivery of any message of
the type (x, 7, RepliesT) (line 29). Server s; stores
in Srvs] the identifiers of the servers whose mes-
sages it already delivered (line 30), and remains
in the repeat loop until: (a) it delivers the mes-

sage it broadcast, or (b) it delivers a message
(sk, T, Repliesy,) that allows some server sy to ac-
cept 7, that is, Repliesj, C Srvs] (line 31). The
condition for s; to accept an e-ticket is deliver the
message (s;, 7, Replies]) it broadcast such that
Replies] C Srvs] (line 32). Validated e-tickets
are stored in vT'kts so that they are not accepted
again (line 36).

For a proof of correctness of the Optimistic E-
ticket protocol see [10].

4 Evaluating the OPT Protocol
4.1 Analytical Evaluation

In the following, we evaluate the SE and the
OPT protocols analytically. For the SE protocol
we consider an implementation of Atomic Broad-
cast and an implementation of Generic Broad-
cast [12], which can be used instead of Atomic
Broadcast to improve the performance of the SE
protocol.2 Qur analytical evaluation assumes ex-

2The Atomic Broadcast and Generic Broadcast imple-
mentations we evaluate assume that the system model pre-
sented in Section 2 is augmented with failure detectors of
class S [5].

CRASH

51

from user ug

T ACK

52 o

53

54

Jrom user ug
T ;

55 j ‘ ® -
WCK accept(T)

Phase 1

Phase 2

Figure 4: E-ticket accepted in Phase 2

ecutions without failures and the most common
case where the same e-ticket is only used once
by the users—multiple use of the same e-ticket
is evaluated in the next section by simulation.
We compare the protocols based on (a) their re-
silience, and (b) the latency and (c) the number
of messages exchanged to validate an e-ticket.
We consider the Atomic Broadcast proto-
col presented in [5] (hereafter, CT-broadcast).
Briefly, in the CT-broadcast protocol, broadcast
messages are first sent to the servers, which decide
on a common delivery order for the messages using
Consensus [5]. The performance of the SE proto-
col can be improved by replacing Atomic Broad-
cast by Generic Broadcast [12]. Generic Broad-
cast takes application semantics into account to
order messages only when really necessary, ac-
cording to the application. Since ordering mes-
sages has a cost, if not all messages are ordered,
Generic Broadcast is more efficient than Atomic
Broadcast. Considering SE, only messages con-
cerning the same e-tickets have to be ordered with
respect to one another, and so, in this case Generic
Broadcast performs better than Atomic Broad-
cast. Before ordering some message m, a server
using Generic Broadcast checks with the other
servers if there are messages with which m has

to be ordered. If not, m can be delivered without
the cost of a Consensus execution.

In the OPT protocol, e-tickets are accepted in
Phase 1 after two communication steps: the ini-
tial (—, —, NEWTKT) message sent to all servers by
the server that receives the e-ticket, and the reply
message sent by each server. This amounts to a
latency of 24, where § is the maximum message
delay, and 2(n — 1) messages. To accept or re-
ject an e-ticket, the OPT protocol requires that a
majority of servers do not crash (i.e., f < n/2).

Summing up (see Table 1), the OPT protocol
can tolerate as many failures as the SE protocol
with CT-broadcast [5] but its Phase 1 is more effi-
cient in terms of latency and number of messages
necessary to validate an e-ticket. Compared to the
SE protocol with Generic Broadcast [12], the OPT
protocol has the same latency but better resilience
and needs fewer messages to validate e-tickets in
Phase 1.

Protocol Resilience | Latency Messages
OPT (Phase 1) f<n/2 24 2(n—1)
SE with [5] f<n/2 44 4(n—1)
SE with [12] f<n/3 24 (n+1)(n—1)

Table 1: OPT wvs. SE

Algorithm 1 OPT protocol (for every server s;)

1: Initialization:

2 rTkts; <0 {received e-tickets set}

3: vTkts; + 0 {validated e-tickets set}

4: aTkts; 0 {acked e-tickets set}
: Phase 1:

: when receive 7 from u
if 7 € rTkts; then

{Task 1}
{if already received T...}

© PR :

reject(r) {...reject it,}

else {else start validation:}

10: rTkts; < rTkts; U {r} {keep 7,}
11: Replies] < 0 {get ready to count replies, and}
12: send (s;, 7, NEWTKT) to all {contact others}

13: when receive (sj, 7, NEWTKT) from s; {Task 2}
14: if [Isgs.t.(sk, 7) € aTkts;] then {if know 7...}

15: send (sg, T, NACK) to s; {...send nack to s;,}
16: else {else T has been received for the first time:}
17: aTkts; < aTkts; U {(s;,7)} {keep 7, and}

18: send (sj,T,ACK) to s; {send ack to s;}
19: when (receive(s;, 7, ACK) or (s;, T, NACK) from s,)
and (7 & vTkts;) {Task 3}

20: Replies] < Replies] U{s;} {get replies for 7}
21: if [for [(n+1)/2] servers si: received (%, T, ACK)
or (%, T,NACK) from s;] then

22: if [for [(n + 1)/2] servers sg:
received (#,7, ACK) from s;] then
23: accept(T)
24: else
25: Phase 2:
26: Srvs] < 0 {senders of delivered messages}
27: broadcast(s;, 7, Replies]) {broadcast acks}
28: repeat {repeat until can accept/reject T}
29: wait until deliver(s;, 7, Replies])
30: Srvs] « Srvs] U{s;}
31: until (j =i or s, € Srvs] s.t.
Replies}, C Srvs])
32: if (delivered (s;, 7, Replies])) and
(Replies; C Srvsj) then
33: accept(T)
34: else
35: reject(r)
36: vTkts; < vTkts; U {7}

4.2 Simulation-Based Evaluation

To evaluate the performance of the OPT and
the SE protocols under different system loads, we
developed a simple simulation model in C++ us-
ing the simulation package CSIM [6]. The sim-
ulation model consists of a group of servers con-
nected by a local-area network. Each server has
two threads, one to create e-tickets and one to
validate them. The former thread only creates
e-tickets, and the latter thread runs the actual
validation protocol.

There are two parameters to control the cre-
ation of e-tickets: the think time and the con-
flict rate (CR). The think time and the number
of servers determine the load of the system—that
is, the number of e-tickets submitted in one exe-
cution, as described next. The conflict rate deter-
mines the percentage of e-tickets that are submit-
ted more than once in an execution—that is, e-
tickets that are rejected. We have arbitrarily con-
sidered 6 servers in our experiments and a message
transmission latency between 3 and 5 milliseconds
per message: whenever a message is sent, the ac-
tual latency is randomly taken within this range.
CT-broadcast is used to broadcast messages, and
we assume that during the executions servers do
not crash nor are suspected to have crashed.

An execution proceeds as follows. In each
server, the thread responsible for the creation of
e-tickets initially (a) generates an e-ticket taking
the conflict rate into account and forwards it to
all servers (using a “broadcast” in the case of the
SE protocol, and a “send to all” in the case of the
OPT protocol); (b) waits the time determined by
the think time; and (c) starts again with item (a)
until the simulation finishes.

Figures 5, 6, 7, and 8 depict the results found in
the experiments. In each case, we present the la-
tency to validate an e-ticket (i.e., the time elapsed
between an e-ticket is forwarded by the thread
that creates it and the e-ticket is accepted or re-
jected in the same server by the thread that val-
idates them). For the OPT protocol, we present
individual results for e-tickets validated in Phase
1, Phase 2, and their mean value.

Figure 5 shows executions where the think time
is constant (i.e., 200 milliseconds) and the conflict
rate varies. The latency for the SE protocol does
not change with the conflict rate because the pro-
tocol always uses the same mechanism to validate
e-tickets. With the OPT protocol, the higher the

conflict rate, the greater the network contention
because more messages have to be exchanged to
handle rejected e-tickets. Thus, the latency for
validating e-tickets in Phases 1 and 2 increases
with the conflict rate. From Figure 5, with a con-
flict rate below 30%, the latency of the OPT is
in the average smaller than the latency of the SE
protocol; after this point, the OPT protocol in the
average performs worse than the SE protocol.

500 T T T

OPT

T
Phase 1

450 = OPT EPhase zi e

| OPT (mean)_-<-

400 8 et
350 T E
g 00 T E
H T
~ 250 T _
s -

g 200 T 4
£ -

150 oo _

wol -

50 | = E

0 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

conflict rate

Figure 5: Conflict rate vs. latency

Figures 6, 7, and 8 depict the effect of the think
time on the latency, for three different conflict
rates. In all graphs, as the think time increases,
the network contention decreases, and both pro-
tocols tend to have similar latencies. For smaller
think times, the latency depends on the conflict
rate: the OPT protocol performs better than the
SE protocol for a conflict rate of about 5% , both
protocols have similar performance at about 30%,
and the OPT protocol performs worse than the
SE protocol for a conflict rate of about 40%.

600 T T T T

T T
OPT (Phase 1) ——
OPT (Phase 2) —-----
500 OPT (mean) ------ 1
)
o 400 -
&
& N
o 300 -2y -
g
g -
s

0
50 100 150 200 250 300 350 400
think time (msec)

Figure 6: Think time vs. latency (CR = 0.05)

600 T T T

T T
OPT (Phase 1) ——
OPT (Phase 2) -—---

500 . OPT (mean) ------ 1
S SE e

latency (msec)

50 100 150 200 250 300 350 400
think time (msec)

Figure 7: Think time vs. latency (CR = 0.30)

600 T T T T

T
OPT (Phase 1) ——

AN OPT (Phase 2) -----

500 - SN OPT (mean) ------ -

latency (msec)

50 100 150 200 250 300 350 400
think time (msec)

Figure 8: Think time vs. latency (CR = 0.40)

4.3 Garbage Collecting E-Tickets

In all protocols, servers have to keep accepted
e-tickets indefinitely to guarantee that they will
not be accepted again. As the execution evolves,
however, garbage collecting e-tickets may become
an important issue. One way to tackle this prob-
lem is allow e-tickets to “expire,” and embed some
expiration information in the e-ticket before it is
provided to the user. This approach reduces flexi-
bility but makes sense in many practical scenarios.
From the system’s perspective, it requires servers
to be able to determine when an expiration event
has happened or when a deadline has passed. Be-
sides, users should be prevented from modifying
the expiration time of e-tickets, which can be done
with use of some security technique (e.g., public-

key cryptography).

5 Related Work
5.1 Transaction-Based Systems

Solutions to problems similar to the e-ticket
validation problem (e.g., double spending prob-
lem in electronic payment systems, digital cash,
micro-payments systems) can be divided into on-
line and offline protocols [1]. Offline validation
systems trust users not to use the same e-ticket
more than once (e.g., using a ”tamper-resistant”
hardware that prevents multiple use or copy of an
e-ticket), and thus, do not comply with the re-
quirement of malicious users. Online validation
systems largely rely on transactional databases to
prevent users from using the same e-ticket several
times. The key idea is to synchronize transactions
(e.g., by means of locking) at some central valida-
tion server that only allows one transaction to be
active per e-ticket at a time. In such a scheme,
the first transaction to lock the database record
related to some e-ticket will accept it, and all the
others will reject the e-ticket. Relying on a cen-
tralized resource (such as a database) provides less
availability than the SE and the OPT protocols.

Availability can be improved by replacing
the centralized database by a highly-available
database. Database systems supporting asyn-
chronous data replication, however, such as Tan-
dem Remote Data Facility (RDF) and Microsoft
SQL Server, are immediately ruled out since such
systems provide weak consistency, and may allow
the same e-ticket to be accepted more than once.
For example, Microsoft SQL Server ships data op-
erations to remote sites for committed transac-
tions, and so, it can happen that two transac-
tions access different copies of the record related
to the same e-ticket at the same time and both
are granted access to the records, accepting the
same e-ticket. Synchronous data replication sys-
tems, such as Oracle Parallel Server (OPS), and
Informix Extended Parallel Server (XPS) use clus-
ters with or without shared disks, and can prevent
multiple acceptance of the same e-ticket. Com-
pared to traditional database systems, such solu-
tions provide faster recovery. However, failover re-
quires log-based recovery: if one process takes over
for a failed process, it must reconcile its state with
the log of the failed process, and would hardly
provide a faster response time than the OPT pro-
tocol. Moreover, these solutions require special
hardware, such as high-availability clusters.

5.2 E-tickets and Mutexes

The e-ticket problem is somewhat similar to
the mutual exclusion and to the k-exclusion prob-
lems. Most previous works on mutual exclusion
assumed that processes have access to a shared
memory [8, 13] and that processes do not crash in
the critical section [15]. In the mutual exclusion
problem, a group of processes compete for access
to a critical section. Access to the critical section
is granted in such a way that (a) in each configu-
ration of every execution of a mutual execution al-
gorithm, at most one process is in the critical sec-
tion, and (b) in every execution, if some process
requests to enter a critical section, then eventu-
ally this same process is in the critical section [2].
Clearly, if processes may crash, the problem can-
not be solved—for example, a process that crashes
in the critical section never leaves it, preventing
other processes from entering the critical section.

Failures in the critical section have been stud-
ied in the context of the k-exclusion problem [2, 3].
In the k-exclusion problem, (a) no more than k
processes are concurrently in the critical section
(k-Exclusion), and (b) if at most f < k processes
are faulty, then a correct process that requests
to enter a critical section eventually does so (k-
Lockout Avoidance). Similarly to the at-least-once
e-ticket problem, which allows multiple processes
to accept an e-ticket, the k-exclusion problem al-
lows multiple processes to be simultaneously in
the critical section. However, the at-least-once e-
ticket problem only allows multiple processes to
accept the same e-ticket in runs where processes
crash; in runs where processes do not crash, only
one process can accept a given e-ticket.

5.3 The Resource Allocation Problem

Finally, one could think of using a resource
allocation system to solve the e-ticket validation
problem. Apparently, few works on resource allo-
cation address high-availability issues. Rhee [14]
has proposed a modular algorithm for resource al-
location in distributed systems that tolerates the
failure of some components of the system. This
work assumes one process for each resource, and
the failure of such process renders the resource
unavailable (although other resources can still be
accessed). Considering e-tickets as resources, the
crash of a process renders all e-tickets associated
with it unavailable.

6 Conclusion

This paper studied the e-ticket problem in con-
texts in which users are not trusted and servers
may fail. E-ticket-like services are becoming very
popular with the increasing dissemination of the
Internet. Even though the paper concentrates on
the validation of e-tickets, the results presented
can be extended to other electronic commerce-
like services such as digital checks and digital
coupons [18].

The effects of failures on electronic-commerce
services were first pointed out in [17]. Neverthe-
less, it seems that little has been done since then
to understand their implications. This paper dis-
cussed some insights on the subject, presented for-
mal specifications for the e-ticket problem, and
showed that some intuitive guarantees cannot be
implemented when servers are subject to failures.
The paper also proposed two protocols to solve
the at-most-once e-ticket problem and compared
them analytically and by simulation.

Acknowledgments

I wish to thank Svend Frglund for the interest-
ing discussions we had about e-ticket validation
and Rui Oliveira for providing me with some feed-
back on a previous version of this paper.

References

[1] N. Asokan, P. A. Janson, M. Steiner, and
M. Waidner. The state of the art in electronic
payment systems. IEEE Computer, 30(9):28-35,
September 1997.

[2] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Top-
ics. McGraw-Hill International, 1998.

[3] A. Bar-Noy, D. Dolev, D. Koller, and D. Pe-
leg. Fault-tolerant critical section management
in asynchronous environments. Information and
Computation, 95(1):1-20, November 1991.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[5] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Jour-
nal of the ACM, 43(2):225-267, March 1996.

[6] CSIM 18 simulation engine (C++ wersion).
Mesquite Software, Inc. 3925 W. Braker Lane,
Austin, TX 78755-0306.

[7] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha.
The dangers of replication and a solution. In
Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Mon-
treal (Canada), June 1996.

[8] Y.-J. Joung. Asynchronous group mutual ex-
clusion. Distributed Computing, 13(4):189-206,
2000.

[9] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

[10] F. Pedone. A two-phase highly-available proto-
col for online validation of e-tickets. Technical
Report HPL-2000-116, Hewlett-Packard Labora-
tories, 2000.

[11] F. Pedone. Online fault-tolerant validation of
electronic tickets. Technical report, Hewlett-
Packard Laboratories, 2001.

[12] F. Pedone and A. Schiper. Generic broadcast.
In Proceedings of the 13th International Sympo-
stum on Distributed Computing (DISC’99, for-
merly WDAG), September 1999.

[13] M. Raynal. Algorithms for Mutual Ezclusion.
The MIT Press, 1986.

[14] 1. Rhee. Optimal fault-tolerant resource allo-
cation in distributed systems. In IEEE Sym-
posium on Parallel and Distributed Processing
(SPDP’95), pages 460-469, October 1995.

[15] M. Singhal. A taxonomy of distributed mutual
exclusion. Jowrnal of Parallel and Distributed
Computing, 18(1):94-101, 1993.

[16] W. Stallings. Cryptography and network security:
principles and practice. Prentice-Hall, Inc., sec-
ond edition, 1999.

[17] J. D. Tygar. Atomicity in electronic commerce.
In Proceedings of the 15th ACM Symposium on
Principles of Distributed Computing (PODC’96),
pages 826, New York, May 1996. ACM.

[18] P. Wayner. Digital Cash: Commerce on the Net.
Academic Press, 1996.

