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Abstract

Thispaper investigatestheuseof partial replicationin

theDatabaseStateMachineapproach introducedear-

lier for fully replicateddatabases.It builds on theor-

der andatomicitypropertiesof groupcommunication

primitivesto achieve strongconsistencyandproposes

two new abstractions: ResilientAtomicCommitand

FastAtomicBroadcast.

Even with atomic broadcast, partial replication re-

quiresa terminationprotocol such as atomiccommit

to ensure transactionatomicity. With ResilientAtomic

Commitour terminationprotocolallowsthecommitof

a transaction despitethe failure of someof the par-

ticipants. Preliminary performance studiessuggest

that theadditional costof supporting partial replica-

tion can be mitigatedthroughthe useof Fast Atomic

Broadcast.

1. Intr oduction

Databasereplication protocols based on group

communicationprimitives haverecently beenthesub-

jectof aconsiderablebodyof research[2, 18, 1,19, 11,

16, 10, 6]. Thereasonfor thisstemsfromtheadequacy

of theorder andatomicitypropertiesof groupcommu-

nicationprimitivesto implement synchronousreplica-

tion (i.e.,strongconsistent)strategies.Unlikedatabase

replicationschemesbasedon traditional transactional�
Research partially supported by FCT, ESCADA project

(POSI/33792/CHS/2000).

mechanisms,group-basedreplicationmechanismsuse

atomicbroadcast primitives to broadcasttransactions

toall replicasof thedatabase.Theapproachallowsthe

delegationof much of thesynchronizationcomplexity

to thegroup communicationlayerandcanaccommo-

datedifferentreplicationstrategies.

Most previous work related to group-based

databasereplication[2, 18, 1, 19, 11, 16, 10] consid-

ersfull replicationstrategies,i.e., thewholedatabase

isavailableateveryreplica.Thispaperinvestigatesthe

useof partialreplicationin thecontext of theDatabase

StateMachine(DBSM) [16]. Partialreplication is usu-

ally favored, or even required, by environments ex-

hibiting strongaccesslocality. Representative exam-

plesof suchsettingsaregeographicallydispersedin-

formation systemswith location-dependent database

sites(eg. banking, public administration)and large-

scaledistributedinformationretrieval systems[13].

Our approachis to extend the DatabaseStateMa-

chine protocol to handle partial replicationwhile pre-

serving its replication characteristics, namely syn-

chronous replication strategy and the deferred up-

date technique. Synchronous replication strategies

extend the atomicity concept of transactions to all

databasesites, insteadof applying it only locally at

eachdatabase.Unlikeasynchronousreplication strate-

gies,synchronousstrategiesensureserializableexecu-

tions.Deferredupdatetechniquesexecutetransactions

locallyatsomedatabasesite,andwhenthecommit op-

erationis requestedfor atransaction,thesitewherethe

transaction executedcommunicatesthe transactionto

all the othersites,reducing the communicationover-



head.

To handle partial replication efficiently in the

DatabaseStateMachine, we introduce in the paper

two abstractions: ResilientAtomic Commit andFast

Atomic Broadcast.ResilientAtomic Commitextends

traditional atomic commit protocols to be usedwith

datareplication. Roughlyspeaking, ResilientAtomic

Commitrequiresthatonly a subsetof thesitesstoring

a copy of the dataupdatedby a transaction vote for

thecommitof thetransaction.FastAtomic Broadcast

exposespreliminary messagedelivery ordersto theap-

plicationbefore providing theapplicationwith a final

definitive order — anideathatgeneralizesthebroad-

castprotocol presentedin [12].

Previous work [2, 18, 1, 19, 11, 16, 10] concen-

trateson full replication strategies. Along with the

assumptionof thedeterministic processingof transac-

tionsat every replica,the resultingprotocols, charac-

terizedasnon voting [21], take advantageof not re-

quiring a termination protocol suchasAtomic Com-

mit [7]. In a partial replication scenariowhereeach

replicaonly holdsa subsetof thedatabase,evenwhen

using atomic broadcast, transaction’s commit atom-

icity requires a termination protocol suchas Atomic

Commit(SeeSection4.1). Otherwisereplicasmaynot

agreeon transaction’s outcome.

To thebestof ourknowledge,thework in [6] is the

only one,apart from ours,to consider partialdatabase

replicationwith group communicationprotocols.The

approachusesgroup communicationprimitives to im-

mediatelybroadcastreadoperationsto all replicasof

anitem,andbroadcastall write operationsalong with

thetransaction’s commitrequest. Transactionatomic-

ity is ensured by a final atomiccommitprotocol. By

contrast,weeliminatereplicainteractionduringtrans-

actionprocessingby usingonly oneatomicbroadcast

messageper transaction when commit is requested.

Furthermore,weinvestigatewhethertheatomicbroad-

castcanbeexecutedconcurrentlywith thetermination

protocol in anattemptto lowerexecution times.

The restof the paperis structured as follows: we

startby defining in Section2 our modelof thesystem

andtheabstractionsupon whichoursolutionis based.

Section3 recallswith somedetail the DatabaseState

Machine protocol. Section4 extends the DBSM to

handlepartialreplication. Section5 describesa proto-

typeof theextendedDBSM andpresentsperformance

measures.Section6 concludesthepaper.

2. SystemModel and Definitions

In this section,we presentthe systemmodel and

introduceResilientAtomic Commit andFastAtomic

Broadcast,two abstractionsusedthroughout thepaper.

2.1. Databasesand Transactions

We consider a system
� � ������	�
�
�
�	
�����

of

databasesites. Sitescommunicatethrough message

passing(i.e.,no sharedmemory). Thesystemis asyn-

chronousin that we make no assumptions about the

time it takesfor a site to executea stepnor thetime it

takesfor messagesto betransmitted.

Sitesmayonly fail by crashing(i.e., no Byzantine

failures), andwe do not rely on site recovery for cor-

rectness.A sitethatnevercrashesis correct, andasite

that is not correctis faulty. We assumethatour asyn-

chronousmodel is augmentedwith a FailureDetector

Oracle[5] so that Atomic Broadcast— definednext

— canbesolved.

A database� ����� � 	�
�
�
�	�� � �
is a finite set of

dataitems. Databasesiteshave a partial copy of the

database. We assumethat for eachdataitem
����� �

thereis at leastonecorrectsitethatstores
� �

. For each

site
�����

, �����! �#"$��% is definedasthesetof dataitems

replicatedin
�
; thesetof all databasesitesreplicating

adataitem
� � � � is denotedby

�'& ��� �#"(� � % .
A transactionis a sequenceof readandwrite oper-

ationsfollowedby acommitor abortoperation,issued

by a client on behalf of the transaction.Every trans-

actionbelongsto theset ) of all possibletransactions.

For eachtransaction� � ) , �#���! �*" � % is definedas

the setof dataitemsreador written by � . + �," � % de-

notes the setof dataitems readby � and - �," � % the



setof dataitemswrittenby � . Furthermore,we denote+ �," � %�
 � and - �," � %.
/� the dataitemsreador written,

respectively, by � andstoredin a particulardatabase

site
�
.

For thesakeof simplicity, weconsiderareplication

model wherea transaction� canonly beexecutedat a

site
�

if �����! �*"0��%21 �#���! �*" � % , that is,
�

containsall

dataitemsreador written by � . This assumptioncan

be releasedby allowing sitesto re-direct transaction

requests to othersites. Finally,
�'& ��� �*" � % denotes the

setof sitesthatcontaindataitemsreador writtenby � .
2.2. Atomic Commit and Resilient Atomic

Commit

In order to ensureconsistenttermination of dis-

tributed transactions, databasesystemsusually recur

to anAtomic Commitprotocol [7]. Wheneachtrans-

action participant must reacha decisiondespitethe

failure of other participants, Non-Blocking Atomic

Commitprotocols(NB-AC) [3], or, aspresentednext,

Weak Non-Blocking Atomic Commit protocols [8],

areused.1

In the(WeakNon-Blocking)Atomic Commitprob-

lem, every participant startsby voting yesor no and

canreachoneof two decisions:commitor abort. A

NB-AC protocol is analgorithmfulfilling the follow-

ing properties:

Agreement. No two participants decidedifferent

outcomes.

Termination. Every correctparticipant eventually

decides.

Validity . If aparticipantdecidescommit, thenall par-

ticipantshavevotedyes.

Non-Tri viality . If all participants vote yes, andno

participant is ever suspectedto have failed, then

everycorrectparticipant eventually decidescom-

mit.
1Throughoutthepaperwe refer to WeakNon-Blocking Atomic

Commitassimply “Atomic Commit”.

In theabovespecification, thesuspicion2 of asingle

participant may leadthe remaining onesto decideto

abort a transactionregardlessof theparticipantsvotes.

If dataitemsarereplicated,this meansthat if at least

onesitestoringadataitemreadorwrittenbyatransac-

tion is suspected, thetransactioncanbeaborted. This

clearlygoesagainstthemotivationfor replicating data

items— themorereplicasa dataitem has,thehigher

thechancesof a suspicion, andthe lower thechances

that transactions that reador write this dataitem will

becommitted.

ResilientAtomic Commit solves this problemby

allowingparticipantsto decidecommitevenif someof

thereplicasof a dataitemreador writtenby thetrans-

actionaresuspectedto have failed. ResilientAtomic

Commit satisfiesthe sameagreement and termina-

tion propertiesof WeakNon-Blocking Atomic Com-

mit andthefollowing validity andnon-triviality prop-

erties:

Validity : If a sitedecidescommitfor � , thenfor each�3� �#���� �*" � % , thereis at leasta sitein
�'& ��� �*"4��%

thatvotedyesfor � .
Non-tri viality : If for each

�5� �����! �#" � % thereis at

leasta site
�6�7�8& ��� �*"4�9% thatvotesyesfor � and

isnotsuspected,theneverycorrectsiteeventually

decidescommitfor � .
2.3. Atomic Broadcastand Fast Atomic Broad-

cast

Atomic BroadcastandFastAtomic Broadcast are

thecommunicationabstractionsusedby databasesites

to communicate. Atomic Broadcastis defined by the

primitivesbroadcast
"  % anddeliver

"  % , andsatisfies

thefollowing properties[9]:

Validity . If a correct site broadcastsa message ,

thenit eventually delivers  .

Agreement. If a correct site delivers a message ,

theneverycorrect siteeventually delivers  .
2This information is provided locally to each participant by the

FailureDetector Oracle[5].



Integrity . For every message , every sitedelivers at most once,and only if  was previously

broadcast.

Total Order . If two correctsitesdeliver two mes-

sages and  ;: , thenthey do so in thesameor-

der.

Whenusinganatomicbroadcastprimitive,all sites

must wait until they agreeon messageorder before

atomicallydelivering it. In the following, we present

Fast AtomicBroadcast, which allows sitesto deliver

messagestentatively, thatis, beforetheorderhasbeen

agreed.

FastAtomic Broadcastis definedby theprimitives

broadcast(m), FST-deliver(m), and FNL-deliver(m),

whichsatisfythefollowing properties:

Validity . If a correctsite broadcastsa message ,

thenit eventually FNL-delivers  .

FST-Agreement. For any <>=@? , if a correct site

FST-delivers a message A< times, then every

correct sitealsoFST-delivers  B< times.

FNL-Agr eement. If a correct site FNL-delivers a

message , then every correct site eventually

FNL-delivers  .

Integrity . For every message , every site FST-

delivers  only if  waspreviously broadcast;

and every site FNL-delivers  only once, and

only if  waspreviouslybroadcast.

Local Order . No siteFST-delivers a message af-

terhaving FNL-delivered  .

Final Order . If two sitesFNL-deliver two messages and  ;: , thenthey dosoin thesameorder.

Fast Atomic Broadcast allows sites to guessthe

definitive order of messagesandexposethis order to

the application. The application can thenstart treat-

ing the messageconcurrently with the underlying or-

deringmechanism usedby FastAtomic Broadcast to

finally order the message.Notice that if a site FST-

deliversa messageandthenchangesits initial guess,

it mayFST-deliver themessageagain. Obviously, ap-

plications must be able to copewith messagesFST-

deliveredin thewrongorder.

Figure 1 comparesthe execution, as seenby the

application, of Atomic Broadcastand Fast Atomic

Broadcast.In Figure1(a)messagesarebroadcastand

delivered to the sites only when their order is de-

termined, while in Figure 1(b), messagesare FST-

deliveredtwicebeforebeingFNL-delivered.

FastAtomic Broadcastis similar to Atomic Broad-

castwith OptimisticDelivery, introducedin [12]. Ac-

tually, Atomic Broadcastwith OptimisticDeliveryis a

specialcaseof FastAtomic Broadcast,where < �DC
(seetheFST-Agreement property).

3. DatabaseStateMachines

The DatabaseStateMachine[16], or DBSM, as-

sumesthefull replicationof thedatabaseandis based

on the deferred update replication technique [3]. In

this sectionwe recall theprincipleof thedeferredup-

datereplication andtheDBSM approach.

3.1. DeferredUpdateReplication Principle

Thedeferred update replicationtechniqueis a way

to reducetheneedfor distributedcoordinationamong

concurrent transactionsduring their execution. Us-

ing this technique, a transactionis locally synchro-

nizedduringits executionat thedatabasewhereit ini-

tiated according to someconcurrency control mech-

anism[3] (e.g.,two-phaselocking). Interactionwith

other databasesiteson behalfof the transactiononly

occurs whenthe client requeststhe transactioncom-

mit. At this time, the transaction updatesandsome

control structuresarepropagatedto all databasesites.

Eachsuchdatabasesitewill thencertify and,if possi-

ble,commit thetransaction.Theterminationprotocol,

startedwith the commit request,hasthreegoals: (i)

propagatethetransactionto all databasesites, (ii ) cer-
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Figure 1. Atomic Broadcast vs. Fast Atomic Broadcast.

tify, and (iii ) commitit.

3.2. Transaction Execution

Fromthetimeit startsuntil it finishes,a transaction

passesthrough somewell-defined states(Figure 2).

Thestartingstateis theexecutingstate, a statewhere

all operationsareexecutedlocally at thedatabasesite

wherethetransactionstarts.Whentheclient thatiniti-

atesthetransaction requestsits commitment, thetrans-

actionpassesto the committingstate. At this point,

transaction� , is sentto all databasesites.A transaction

received by adatabasesite
�

is in thecommitting state

until its fateis known. Thetransactionthenevolves to

oneof its final statescommittedor aborted.

Thealgorithm executedby a databasesite
� �

when

executing atransactionreceived fromclient ` is briefly

describedasfollows:

1. Initially, during the executingstate,the transac-

tion is locally executed at databasesite
�#�

. All

operations requestedby client ` areexecutedat� �
usingstrict two-phaselocking.

2. When client ` requeststransaction � ’s commit-

ment, � is immediately committedif it is a read-

only transaction.Otherwise,� entersthecommit-

ting stateanddatabasesite
� �

startsthe termina-

tion protocol for � : theupdatesperformedby � , as

well asits readsetandwriteset,arebroadcastto

all databasesites.

3. Eventually every databasesite
�ba

delivers the

messagesentby
� �

concerning transaction� . Af-

ter delivering this message,
� a

starts� ’s certifica-

tion to ensurethat � it doesnot conflict with pre-

viously committed transactions.

4. If � passesthecertificationtest,all � ’supdatesare

applied to thedatabaseand � passesto the com-

mitted state. Transactions in the execution state

at
�.a

holding locksondataitemsupdatedby � are

aborted.

5. Thedatabasesite
� �

sends� ’s resultto client ` as

soonas
� �

establishesthefinal stateof � .
3.3. Conflicting Transactions

In orderfor a databasesite to certify a committing

transaction � , it mustbeableto determinewhichtrans-

actions conflict with � . A transaction�.: conflicts with� if: (i) � and � : have conflictingoperationsand(ii ) � :
does notprecede� .

Two operationsconflict when they are issuedby

differenttransactions,accessthe samedataitem and

at leastoneof themis a write operation. The prece-

dencerelationbetweentransactions � and ��: is denoted��:�cd� (i.e., �e: precedes � ) anddefinedas: (1) if � and��: execute at thesamedatabasesite, �.: precedes� if �e:
enters thecommitting statebefore � ; or (2) if � and ��:
executeat different sites, for example

� �
and

��a
, re-

spectively, �e: precedes� if �e: commitsat
� �

before �
enters thecommitting stateat

� �
.

Furthermore, we say that two transactions are

write-conflicting if they both perform a write opera-

tion on the samedataitem andonetransactiondoes
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abort

accept
transaction

reject
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Figure 2. Transaction states

notprecede theother.

3.4. DBSM Ar chitecture

Transactionprocessingin the DBSM [16] is han-

dledby theTransactionManager, theLock Manager,

andtheDataManager modulespresentedin Figure3.

The termination protocol is handled by the Atomic

Broadcast, andtheCertificationmodules.

After receiving a transactiondelivered by the

Atomic Broadcast module, the certification module

executes the certificationtest. On certifying a trans-

action, the datamanager may be inquired about al-

ready committed transactions. If the transactionis

successfullycertified,its writeoperationsaretransmit-

tedto thelock manager, and,oncethewrite locksare

granted, theupdatescanbeperformed.

To ensure thateachdatabasesite reachesthesame

stateafter processingcommitting transactions, each

certificationmodulehas to (i) reachthe samedeci-

sion when certifying transactions,and (ii ) guarantee

that write-conflicting transactions are applied to the

databasein thesameorder. Thefirst constraintcanbe

fulfilled by providing eachcertificationmodule with

the sameset of transactions in the sameorder. To

satisfythesecondconstraint,thecertificationmodule

ensuresthat write-conflicting transactions grant their

locksin thesameorder asthey aredelivered.

4. Handling Partial Replication

In thissectionweconsiderpartialreplication in the

context of the DBSM. We point out that the DBSM

asit is doesnot support partialreplicationanddiscuss

waysof extending the terminationprotocol to handle

partial replication. We start with a simple approach

basedon Atomic BroadcastandAtomic Commit,and

then refine it to reachmore sophisticatedsolutions

basedonFastAtomic BroadcastandResilientAtomic

Commit.

4.1. DBSM and Partial Replication

The DBSM assumesthat databasescontain full

copies of all data items. This assumption is neces-

sary to make surethat upon certifying a transaction,

all databasesitesreachthesamedecision, whetherto

commit orabort thetransaction. As weshow next, par-

tially replicateddataitemsmayleadto inconsistencies,

with somedatabasesdeciding to commit a transaction

andsomedecidingto abortit.

For example, considera systemcomposedof three

database sites,
� � 	
�!fb	

and
��g

— databasesite
� �

replicates dataitems h and i , databasesite
��f

repli-

catesdata items i and ` and databasesite
�#g

repli-

catesdata items h and ` — and two clients ` � and` f which submit, respectively, transactions � �j�k Kml h�npo�q l h#npo�q l irnpo `�s and � f � k Kml h�npo�q l h#npo�q l ` npo `�s .
If transactions � � and � f areexecutedconcurrently

in differentdatabases(i.e., neither � � precedes � f nor� f precedes � � ) and � f is deliveredandcertifiedbefore� � , � f commits at all siteswhile � � commitsat
� f

(i.e.,- �," � f %.
/� fut + �v" � ��%�
 � f �xw
at
� f

) andabortsat
�#�

(i.e., - �v" � f %.
/�y� t + �," � ��%.
/���z�{� h � at
�y�

) andat
� g

(i.e., - �v" � f!%.
/�!g t + �v" � � %�
 �!gu�|� h � at
�!g

).

At first glance,oneway of solvingthis problemis
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Figure 3. DBSM architecture

to have every databaseto storeall the readandwrite

setsof previously committed transactions so that the

certificationtestperformedby eachdatabaseresultsin

thesameoutcome,asit is donewith theDBSM; how-

ever, suchanapproachwouldhavetheoverheadof full

replication(i.e.,everydatabasehasto keeptrackof all

dataitemsreadandwrittenby transactions)withoutits

benefits.Sincedatabasesdo not storeall dataitems,

transactions cannotexecutein any database!

4.2. DBSM with Atomic Commit

As discussed,databasesitesthatholdapartialcopy

of the dataitemscannotdecideto commit a transac-

tion basedonly on thecertificationtest— they should

alsoconsider dataitemsstoredin otherdatabasesites

anddecideon a common basis.This is typically done

by anatomiccommit protocol, and,in this case,each

databaseshouldusethe resultof the certificationtest

asits votefor theatomiccommit protocol.

The certificationof a transactioninvolvesnow (i)

a certification test and (ii) an atomiccommitamong

the databasesitesthat storecopiesof the dataitems

usedby thetransaction(seeFigure4). Theprocedure

of certifying a transaction� at databasesite
�}�

is de-

scribedas:

1. Certification test. The certification test at

databasesite
�!�

involvesevery dataitemaccessed

by � for which
� �

holds a replica. Database
� �

votesyesif all committedtransactions at
� �

pre-

cede� , or if thereis no committed transaction �!:
at
� �

that conflicts with � ; � � votesno otherwise.

The vote of site
� �

on transaction� is formally

describedasfollows.~}� ��� �e" � %����
�6� � : 	8� �  � & �����!� " � : 	r�!�$%����:�c��9� " - �v" ��: %.
/�!� t + �v" � %.
/�!����w#%

���
�

2. Atomiccommit. The atomiccommit protocol is

executedby all databasesitesholding areplicaof

adataitemaccessedby thetransaction. After ap-

plying thecertificationtestto transaction� , every

databasesite
���

involved in � ’s commit startsan

atomiccommit usingas its vote the outcome of

the certificationtest. If the resultof the atomic

commit protocol is commit, then � passesto the

commit stateat
� �

, all updatesissuedby � for data

items storedin
� �

areperformed, and the locks

associatedwith � released.

Atomic Broadcast-basedtermination. Theneedto

execute an atomic commit as part of the certifica-

tion procedure leadsto questionthe necessityfor the
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Atomic Broadcastusedin thebeginning of thetermi-

nationprotocol. Insteadof ordering distributedtrans-

actionsbefore certifying them,onemight simply for-

wardthetransactionsto all siteswithout any ordering

guarantees.It turnsout, however, thatordering trans-

actionsbefore certifying themallows a moreefficient

certificationtest[15].

For example, consideragainthe casepresented in

Section4.1,andassumethatboth transactions � � and� f starttheirterminationprotocolsconcurrently— that

is, � � (respectively, � f ) is forwarded to the othersites

before � f (respectively, � � ) is certified. Since � � and� f conflict,they cannotbebothcommitted,andoneof

themshouldbeaborted.But becausedatabasesdonot

necessarilyreceive andcertify � � and � f in the same

order, somedatabasesmaycertify � � first andvote to

commit � � andabort � f , while othersmaycertify � f be-

fore � � , andvoteto commit � f andabort � � , asituation

wherebothtransactions endupaborted.

4.3. DBSM with ResilientAtomic Commit

The combination of atomic broadcastand atomic

commitenablesto support partial replication without

compromising consistency. However, with such an

approach, the suspicionof a single database site is

enough to abort a transaction(seethe non-triviality

propertyof atomiccommit),whichdefeatsthepurpose

of introducing replication. In fact, sucha replicated

systemis lessresilientthananon-replicatedone. This

approachalsointroducesextraoverhead— theexecu-

tion of theatomiccommitprotocol.

In orderto overcometheformerproblem,i.e.,com-

mitting transactionseven whensomedatabasesite is

suspectedto have crashed, we replaceatomiccommit

by ResilientAtomic Commit in the termination pro-

tocol. With ResilientAtomic Commit,a transaction�
passesto thecommittedstateatevery site

�
in
�8& ��� �*" � %

if: every databasesiteholding a replicaof a dataitem

accessedby � eithervotesyesfor � or is suspected;and

for eachdataitem reador written by � , thereis a site

thatvotesyesfor � andis never suspected.

Figure 5 depicts the execution of transaction � ,
which is committed using DBSM with Resilient

Atomic Commit but aborted if using DBSM with

Atomic Commit. In step1, transaction� executesat

databasesite
�y�

, andclient ` sendsa commit request

to the databasesite
� �

. In step2, � is broadcastand

at the end of this step, it is delivered, certified and�!f
crashes.Sites

� �
and

��g
starttheResilientAtomic

Commitprotocolvotingyesandusing
� �

ascoordina-

tor, which decidescommitat theendof step3 (using

Atomic Commit,thetransactionwill beaborted since� f
is eventually suspectedto have failed). In step4,�y�
sendsits decisionto all databasesites. In step5,

databasesites
�b�

and
� g

receivethedecisionof theRe-

silient Atomic Commit and
�#�

sendsthe transaction
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Figure 5. DBSM with Resilient Atomic Commit

resultto ` .
4.4. DBSM with FastAtomic Broadcast

Theadditionof anatomiccommitmentstepin the

termination protocol introducesan unavoidableover-

head.To alleviatethis problemwe replace theAtomic

Broadcastprotocol with a FastAtomic Broadcast pro-

tocol. The ideais simpleandconsistsin startingthe

certificationprocessearlier, assoonasthetransaction

is deliveredwith a tentative order. Whenever this ten-

tativeordermatchesthefinal delivery, thisallowsusto

overlapthefinal delivery (FNL-deliver)of thetransac-

tion with thecertificationtestandtheatomiccommit

protocol.

In moredetail,theprotocol runsasfollows. When

a transaction� is broadcast,it is FST-delivered to all

replicasin
�'& ��� �#" � % with a tentative order. This order

is expectedto bethenetwork’s spontaneousorder, i.e.

notyieldedby theordering algorithm, andthusallow-

ing a fastdelivery. As soonas � is FST-deliveredat a

site
�
,
�

starts� ’scertificationandafterwardsaresilient

atomiccommit for � . Upon the FNL-delivery of � , if

thefinal andtentative ordersmatchthentheoutcome

of theantecipatedatomiccommitis usedto decidethe

final stateof � . Should theordersof thetwo deliveries

mismatch,both the certificationandthe atomiccom-

mit startedfor � arediscardedandtheprocessrepeated

for thefinal order.

In our current prototypeof thesystem(Section5),

any transaction�r: thatmightbeFST-deliveredbetween

theFST-deliver andtheFNL-deliver of sometransac-

tion � is discarded. While this might seema clearloss

of opportunities by the protocol, doing it differently

involvesfurtherresearchasdiscussedin Section6.

5. Prototype and Results

In this section we describea prototype of the

DBSM extended to support partial replication. Per-

formanceresultsshow how the useof a FastAtomic

Broadcastprimitivemitigatestheoverheadintroduced

by theadditionalatomiccommitprotocol.

5.1. Implementation

The prototype strictly follows the architecture de-

pictedFigure4: a transactionprocessingmodule con-

sisting of a transactionmanager, a lock manager,

a data manager, and a certification module. The

atomic broadcastand atomic commit modules have

beenbuilt asseparatemodulesto independentlyallow

several implementations, i.e., different combinations

of atomicbroadcastandatomiccommitprotocolscan

beusedby theprototype.

Theprototypehasbeenimplementedin JAVA, using

theGROUPZ group communicationtoolkit [17].

Concurrency control andconflict detectionis per-

formedby alock manageraccessedby transactionsei-

ther running locally or beingcertified. Databaseac-

cessis done using a data managerwhich has been

implemented using JDBC [20] to accessa Post-

greSQL[14] database.Theconcurrency control mech-

anismsof PostgreSQLarenot usedas,in our model,

remote transactions have priority over local transac-

tions and PostgreSQLconcurrency control doesnot



distinguishesbetweenthem.

The Atomic Broadcastand Fast Atomic Broad-

cast protocols have similar implementations: They

useGROUPZ’s reliablebroadcastprimitive3 anda se-

quencerdatabasesitedeterminedby GROUPZ’sGroup

Membershipservice.Whena transaction’s commit is

requested, the transaction is broadcast. In the Fast

Atomic Broadcastthis messageis FST-delivered at

every (correct) site. The distinguishedsite actingas

sequencer assignsthe message’s order and reliably

broadcastsit. When delivered(or FNL-deliveredin

theFastAtomic Broadcastprotocol) themessagepro-

videstheorderedtransaction.

The Resilient Atomic Commit is a simple ¿ to¿ , singlestep,decentralizedprotocol. Whenstarting

theprotocol every participant broadcastsits vote,and

startsgathering votesfrom theotherparticipants until

it canreacha decision.

5.2. Experiments

For our experimentswe useda databaseof 2000

dataitemsconsideredashot-spots of a larger database

— we chosea relatively smalldatabaseto introducea

reasonable amount of datacontention in thedatabase.

Thetransactionssubmittedby clientscontain between

5 and10operations.Updatetransactions,with 50%of

write operations,represent95%of all submittedtrans-

actions.We useda 100Mb/s local-areanetwork con-

sistingof ten333MHz Intel-basedprocessormachines

with 128MB of RAM running theLinux operatingsys-

tem.

The tests aim to compare the performance of

the systemusing either Atomic Broadcast and Fast

Atomic Broadcastfollowed by a Resilient Atomic

Commit protocol. The graphs in Figure 6 present

the histograms of transactionexecution times using

Atomic BroadcastandResilientAtomic Commit(Fig-

ure 6(a)) and Fast Atomic Broadcastand Resilient

Atomic Commit (Figure 6(b)). Figure 6(a) presents

3Thisprimitive is actually a View SynchronousMulticastprimi-

tive [4] ensuringview atomicity of themessages.

curvesfor theatomicdelivery of transactions,theend

of the certificationexecution, the end of the atomic

commit protocol and the endof the transaction exe-

cution. Figure6(b) alsoincludesthe fastdelivery of

transactions.

Both testswere run under a systemworkload of

5 tps, allowing a stableflow of transactions without

queuing. Certificationconsistedin themanagementof

a lock tableresidenton disk andaccounts for an av-

erage of 20 ms of eachtransactionprocessingtime.

Messagesdid notsufferedfrom reordering.

A comparisonof thegraphsof Figure6 revealsthat

theprotocol with FastAtomic Broadcastconsistently

outperforms theAtomic Broadcastconfiguration. In-

deed, it canbeobserved that theFastAtomic Broad-

castconfigurationis onaverage10msfaster. Roughly,

thiscorrespondsto a10%gainsinceit canbeseenthat

in 90%of thetransactionsthetermination protocolfin-

ishesin lessthan100ms(Figure 6(b)).

Theseresultsare encouraging and justify the use

of a FastAtomic Broadcastprimitive. However, it is

worthnotingthattheprotocol is actuallyverysensitive

to messageprocessingoverheadsandto thenatureof

thecertificationstep.It canbeseenin Figure6(b) that

theFNL-delivery of thetransactionhappensat a later

time thanthe delivery in Figure 6(a). This is the de-

lay introducedby the processingoverheadof the fast

delivery at the sequencer site. As long asthe certifi-

cationstepandmessagedelivery canbeexecutedcon-

currentlythedelayed FNL-deliverydoesnotconstitute

aproblem.

6. Conclusions

Thispaperinvestigatestheuseof partialreplication

in the context of the DatabaseStateMachine,intro-

duced in [16] for fully replicateddatabases.In order

to handle partialreplicationefficiently, we have intro-

ducedin thepaper two abstractions: ResilientAtomic

Commit, an atomiccommit protocol tailor-madefor

replicated databases,and Fast Atomic Broadcast,a

communicationprimitivethatallowsapplicationstobe
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Figure 6. Execution times for the two configu rations of the termination protocol

exposedto tentativedelivery ordersbeforethefinal or-

deris known.

Preliminary performancestudiesof ourprotocolus-

ing PostgreSQL[14] have shown that the introduced

techniques are very promising. We intend to con-

tinuewith experimentalwork to betterunderstandthe

strengths andweaknessesof our theapproach.In par-

ticular, we currently pursuetwo directions: oneis to

make the protocol more agressive regarding the fast

deliveriesof transactions,theotheris thestudyof the

protocol’s behavior in heterogeneous large-scalenet-

works.

As describedin Section4.4,theprotocol only con-

sidersonefastdelivery at a time. Whentreatingthe

FST-delivery of a transaction,say � , insteadof dis-

carding a subsequent FST-delivery of a transaction�y:
(which may happen before a FNL-delivery), the pro-

tocol canpossiblybe improved in two ways. Either,

considerthat � and �
: arebothequally good candidates

for the FNL-delivery andso start the certificationof

bothtransactionsconcurrently, or consider that �y: will

beFNL-deliveredaftertheFNL-delivery of � in which

casetheprotocol shouldbeableto “pipeline” thecer-

tification of �e: assumingthe the tentative certification

of � . Which methodto chooseis the subjectof on-

goingresearch. However, the important issueto note

is that whatever is the most appropriatedepends on

a number of factors suchas the accuracy of the net-

work’s spontaneousordering of messages,the delay

betweenFST andFNL-deliveries,certificationcosts,

processingpower, etc. Considering a heterogeneous

large-scalenetwork, insteadof the homogenoeus lo-

calnetwork of theexperimentsof Section5, definitely

introducessubstantialvariations on thesefactors.
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