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Abstra
tDistributed 
omputing is reshaping the way people think about and do daily lifea
tivities. On-line ti
ket reservation, ele
troni
 
ommer
e, and telebanking are ex-amples of servi
es that would be hardly imaginable without distributed 
omputing.Nevertheless, widespread use of 
omputers has some impli
ations. As we be
omemore depend on 
omputers, 
omputer malfun
tion in
reases in importan
e. Untilre
ently, dis
ussions about fault tolerant 
omputer systems were restri
ted to veryspe
i�
 
ontexts, but this s
enario starts to 
hange, though.This thesis is about the design of fault tolerant 
omputer systems. More spe
i�
ally,this thesis fo
uses on how to develop database systems that behave 
orre
tly even inthe event of failures. In order to a
hieve this obje
tive, this work exploits the notionsof data repli
ation and group 
ommuni
ation. Data repli
ation is an intuitive wayof dealing with failures: if one 
opy of the data is not available, a

ess another one.However, guaranteeing the 
onsisten
y of repli
ated data is not an easy task. Group
ommuni
ation is a high level abstra
tion that de�nes patterns on the 
ommuni
ationof 
omputer sites. The present work advo
ates the use of group 
ommuni
ation inorder to enfor
e data 
onsisten
y.This thesis makes four major 
ontributions. In the database domain, it introdu
esthe Database State Ma
hine and the Reordering te
hnique. The Database StateMa
hine is an approa
h to exe
uting transa
tions in a 
luster of database servers that
ommuni
ate by message passing, and do not have a

ess to shared memory nor to a
ommon 
lo
k. In the Database State Ma
hine, read-only transa
tions are pro
essedlo
ally on a database site, and update transa
tions are �rst exe
uted lo
ally on adatabase site, and them broad
ast to the other database sites for 
erti�
ation andpossibly 
ommit. The 
erti�
ation test, ne
essary to 
ommit update transa
tions,may result in aborts. In order to in
rease the number of transa
tions that su

essfullypass the 
erti�
ation test, we introdu
e the Reordering te
hnique, whi
h reorderstransa
tions before they are 
ommitted.In the distributed system domain, the Generi
 Broad
ast problem and the Optimisti
Atomi
 Broad
ast algorithm are proposed. Generi
 Broad
ast is a group 
ommuni-
ation primitive that allows appli
ations to de�ne any order requirement they need.Reliable Broad
ast, whi
h does not guarantee any order on the delivery of messages,and Atomi
 Broad
ast, whi
h guarantees total order on the delivery of all messages,are spe
ial 
ases of Generi
 Broad
ast. Using Generi
 Broad
ast, we de�ne a group
ommuni
ation primitive that guarantees the exa
t order needs of the Database State



Ma
hine. We also present an algorithm that solves Generi
 Broad
ast. Optimisti
Atomi
 Broad
ast algorithms exploit system properties in order to implement totalorder delivery fast. These algorithms are based on system properties that do notalways hold. However, it they hold for a 
ertain period, ensuring total order deliveryof messages is done faster than with traditional Atomi
 Broad
ast algorithms. Thisthesis dis
usses optimism in the implementation of Atomi
 Broad
ast primitives,and presents in detail the Optimisti
 Atomi
 Broad
ast algorithm. The optimisti
broad
ast approa
h presented in this thesis is based on the spontaneous total ordermessage re
eption property, whi
h holds with high probability in lo
al area networksunder normal exe
ution 
onditions (e.g., moderate load).



RésuméLes systèmes répartis sont en train de modi�er profondément nos a
tivités quotidi-ennes: réservation de billets en-ligne, 
ommer
e éle
tronique, telebanking, sont desexemples de servi
es qui n'étaient pas imaginables avant l'arrivée des systèmes ré-partis. Néanmoins, l'utilisation à grande é
helle de systèmes informatiques n'est passans 
onséquen
e. Plus l'on devient dépendent des ordinateurs, plus leur défaillan
epose des problèmes. Jusqu'à ré
emment, les dis
ussions sur la défaillan
e des sys-tèmes informatiques ne 
on
ernaient que des 
er
les restreints. La situation est entrain d'évoluer.Cette thèse aborde le problème de la 
on
eption de systèmes tolérants aux pannes.Plus spé
i�quement, 
e travail se 
on
entre sur le développement de bases des don-nées qui se 
omportent 
orre
tement même en 
as de défaillan
es. Pour atteindre 
ebut, 
ette thèse se base sur les notions de répli
ation de données et sur les 
ommu-ni
ations de groupes. La répli
ation de données est une idée naturelle pour tolérerles pannes: si une 
opie d'une donnée n'est pas disponible, il su�t d'a

éder à uneautre 
opie. Par 
ontre, garantir la 
ohéren
e des données répliquées n'est pas unetâ
he simple. La thèse propose l'utilisation des mé
anismes de 
ommuni
ation degroupes pour garantir la 
ohéren
e des données.La thèse 
omporte quatre 
ontributions majeures. Dans le domaine des bases dedonnées, elle introduit la "Database State Ma
hine" et la te
hnique de réordon-nan
ement. La Database State Ma
hine est une manière de gérer des transa
tionss'exé
utant sur un 
luster de serveurs de bases de données 
ommuniquant par é
hangede messages, et n'ayant a

ès ni à une mémoire partagée ni à une horloge 
ommune.Dans 
e 
ontexte, les transa
tions de le
ture sont exé
utées lo
alement sur un serveur,et les transa
tions de mise à jour sont d'abord exé
utées lo
alement sur un serveuravant d'être di�usées aux autres serveurs pour le test de 
erti�
ation et la validation(
ommit) éventuelle. Le test de 
erti�
ation, né
essaire à la validation, peut 
on-duire à avorter une transa
tion. Dans le but d'augmenter le taux de transa
tions quepassent le test de 
erti�
ation, la thèse introduit la te
hnique de réordonnan
ement,qui réordonne les transa
tions avant de les 
erti�er.Dans le domaine de systèmes répartis, le problème de la Di�usion Générique (Generi
Broad
ast) et l'algorithme de Di�usion Atomique Optimisite (Optimisti
 Atomi
Broad
ast) sont introduits. La Di�usion Générique est une primitive de 
ommuni
a-tion de groupes qui permet aux appli
ations de dé�nir l'ordre dont elles ont besoin.La Di�usion Fiable (Reliable Broad
ast) qui ne garantit au
un ordre entre les mes-



sages, et la Di�usion Atomique (Atomi
 Broad
ast) qui garantit l'ordre total pourla livraison de messages, sont des 
as parti
uliers de la Di�usion Générique. La Dif-fusion Générique est une primitive de 
ommuni
ation de groupes qui permet d'o�rirl'ordre exa
t né
essaire pour la Database State Ma
hine. La thèse présente égale-ment un algorithme qui résout la Di�usion Générique. Les algorithmes de Di�usionAtomique Optimiste exploitent les propriétés du système pour délivrer e�
a
ementles messages dans un ordre total. Ces algorithmes sont basés sur des propriétés dusystème qui ne sont pas toujours satisfaites. Néanmoins, si elles sont satisfaites du-rant une 
ertaine période de temps, l'algorithme assure l'ordre total plus e�
a
ementque les algorithmes de di�usion atomique traditionnels. La thèse dis
ute l'optimismedans le 
ontexte de la mise en oeuvre de la Di�usion Atomique, et présente en détailun algorithme. L'optimisme exploité par 
et algorithme est basé sur la propriétéd'ordre spontanée, qui est satisfaite ave
 une probabilité élevée dans des réseaux àpetite é
helle dans des 
onditions d'exé
ution normale (tra�
 modéré, par exemple).
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1
Chapter 1Introdu
tion It all depends on how we look at things,and not on how they are themselves.Carl JungDistributed 
omputing has be
ome an ubiquitous te
hnology in the world. Fromglobal to lo
al area networks, distributed 
omputing seems to be everywhere. Com-puter spe
ialists point out two reasons for that. Firstly, manufa
ture improvementsand large s
ale produ
tion have redu
ed the 
ost and in
reased the performan
e of
omputers. Se
ondly, advan
es in 
ommuni
ation systems have resulted in 
heapand fast data transmission, allowing to 
onne
t virtually every two 
omputers in theworld.It is early to pre
isely assess how the 
omputer revolution will impa
t our so
iety,but some of its e�e
ts 
an already be noti
ed. On-line ti
ket reservation, ele
troni

ommer
e, and telebanking are examples of servi
es that would be hardly imag-inable without 
omputers. Nevertheless, widespread use of 
omputers has someimpli
ations. As more appli
ations, and people, depend on 
omputers, 
omputermalfun
tion be
omes 
riti
al. Until re
ently, dis
ussions about fault tolerant 
om-puter systems were restri
ted to very spe
i�
 
ontexts. This pi
ture starts to 
hange,though.1This thesis is about the design of fault tolerant 
omputer systems. More spe
i�
ally,this thesis fo
uses on how to develop database systems that behave 
orre
tly even inthe event of failures. In order to a
hieve this obje
tive, this work exploits the notionsof data repli
ation and group 
ommuni
ation. Data repli
ation is an intuitive wayof dealing with failures: if one 
opy of the data is not available, a

ess another one.However, guaranteeing the 
onsisten
y of repli
ated data is not an easy task. Group
ommuni
ation is a high level abstra
tion that de�nes patterns on the 
ommuni
ationof 
omputer sites. The present work advo
ates the use of group 
ommuni
ation in1Apart from being a histori
al landmark, the 
hange of the millennium has 
ontributed to enlargethe dis
ussions about the e�e
ts of 
omputer failures on human lives.



2 Chapter 1. Introdu
tionorder to enfor
e data 
onsisten
y.1.1 Repli
ated DatabasesDespite the fa
t that database repli
ation has been an a
tive area of resear
h sin
ethe late 70's [Gif79, Sto79, Tho79℄, the problem of designing database repli
ationproto
ols that provide good performan
e and strong data 
onsisten
y is still farfrom having a de�nitive answer. One reason for this fa
t is that methods to handlerepli
ation designed in the 80's have been shown to perform poorly as the number ofrepli
ated database sites in
reases [GHOS96℄. Proto
ols developed with 
entralisedsettings in mind (e.g., two-phase lo
king), when implemented in a distributed system,have been shown to present ex
essive syn
hronisation 
osts, and rapid growth ofdistributed deadlo
ks with the number of database sites.However, requirements of 
urrent appli
ations have in
reased the demand for high-performan
e and high-availability databases [Jaj99℄, resulting in the emergen
e ofnew me
hanisms to support database repli
ation. Commer
ial database 
ompanies,for example, have fo
used on solutions that provide weak 
onsisten
y guarantees[Sta95, Ja
95℄. Nevertheless, weak guarantees are not intuitive and di�
ult to use.Furthermore, in many 
ases, user intervention is ne
essary to bring the databaseba
k to a 
onsistent state. Weak 
onsisten
y guarantees may be
ome attra
tive inthe future, but so far, they la
k the theoreti
al ba
kground that allows for stri
tproto
ol spe
i�
ations and rigorous 
orre
tness proofs [BHG87, Jaj99, Pap79℄.Transa
tions are the unit of work of databases [GR93℄. Ensuring data 
onsisten
y inrepli
ated databases 
omes down to guaranteeing that transa
tion properties areensured, independently of the number of database repli
as and the way data isdistributed among them. Transa
tions are 
hara
terised by the ACID properties:Atomi
ity, Consisten
y, Isolation, and Durability [GR93℄. The Atomi
ity propertystates that either all transa
tion operations are exe
uted or none is. Consisten
y es-tablishes that a transa
tion is a 
orre
t transformation of the state. Isolation a�rmsthat even though transa
tions may exe
ute 
on
urrently, it appears to ea
h trans-a
tion that it exe
utes alone. Durability states that on
e a transa
tion 
ompletessu

essfully, its 
hanges to the state survive failures.1.2 Group Communi
ationIn the 
ontext of 
lient-server distributed systems, the mid-80's and 90's saw theemergen
e of repli
ation proto
ols based on group 
ommuni
ation. Roughly speak-ing, group 
ommuni
ation gathers pro
esses in sets and provides 
ommuni
ationprimitives enabling to address sets as individual entities [HT93℄. Group 
ommuni-
ation has re
eived in
reasing attention in the past years from both pra
ti
al andtheoreti
al viewpoints. The best known group 
ommuni
ation system is Isis [BSS91℄,whi
h is 
onsidered by many as the �rst system in whi
h the feasibility of the group
ommuni
ation approa
h was demonstrated. Furthermore, 
urrent trends in middle-



1.3. About this Resear
h 3ware systems seem to 
on�rm the important role played by group 
ommuni
ationprimitives [Gro98℄. From the theoreti
al point of view, a sound theory underly-ing group 
ommuni
ation has been developed, and minimal 
onditions under whi
hgroup 
ommuni
ation primitives are proved to be fault-tolerant have been formallyidenti�ed [CT96, CHT96℄.Group 
ommuni
ation primitives 
an have various semanti
s, and in parti
ular, they
an guarantee 
ausal, atomi
, and total order message delivery [BSS91℄. For exam-ple, Atomi
 Broad
ast, the group 
ommuni
ation primitive exploited in this thesis,enables to send messages to a set of pro
esses, with the guarantee that the destina-tions agree on the set of messages delivered, a property known as Agreement, and onthe order a

ording to whi
h the messages are delivered, a property known as TotalOrder [HT93℄. Atomi
 Broad
ast has been shown to guarantee 
orre
t propagationof requests in some distributed system repli
ation te
hniques [S
h90℄.Repli
ation based on group 
ommuni
ation has mostly 
on
entrated on 
lient-serverdistributed 
omputing [GS97℄. More re
ently, some authors have suggested usinggroup 
ommuni
ation to develop database repli
ation proto
ols (e.g., [SR96℄). In-deed, similarities between ACID properties and Atomi
 Broad
ast properties suggestthat there might be a relation between these two subje
ts. For example, the Agree-ment property of Atomi
 Broad
ast 
an be asso
iated with the Atomi
ity propertyof transa
tions, and the Isolation property of transa
tions 
an be asso
iated with theTotal Order property of Atomi
 Broad
ast.1.3 About this Resear
hThis thesis started with the broad obje
tive of investigating the use of group 
om-muni
ation primitives to develop database repli
ation proto
ols in the 
ontext of theDRAGON2 proje
t, a joint e�ort between the Swiss Federal Institute of Te
hnol-ogy in Lausanne (EPFL) and the Swiss Federal Institute of Te
hnology in Zuri
h(ETHZ). As this work evolved, it turned out that looking at database repli
ationproto
ols from the viewpoint of distributed systems, and looking at group 
om-muni
ation primitives from the viewpoint of distributed databases was, per se, aninteresting way of approa
hing two di�erent domains.1.3.1 Resear
h Obje
tivesThe primary goal of this work is to investigate how group 
ommuni
ation 
an be usedto implement database repli
ation proto
ols. The s
ope of this resear
h fo
used on anar
hite
ture based on a 
luster of database sites. Database sites do not have a

ess toshared memory or a global 
lo
k, and 
ommuni
ate through message passing. Usersshould have the impression that the database 
luster is a high-performan
e and high-availability 
entralised database site. Therefore, data 
onsisten
y is mandatory.2DRAGON stands for Database Repli
ation based on Group Communi
ation. DRAGON isfunded by the Swiss Federal Institute of Te
hnology (EPFL and ETHZ).



4 Chapter 1. Introdu
tionA se
ondary goal of this resear
h is to better understand the impa
t of group 
om-muni
ation on databases, and database repli
ation proto
ols on distributed systemme
hanisms. For example, group 
ommuni
ation evolved essentially to handle pro-
ess repli
ation [BSS91℄. Naturally, one may wonder whether a di�erent 
ontext will
hange the way group 
ommuni
ation has been de�ned, and is usually implemented.1.3.2 Resear
h ContributionsThis thesis provides four major 
ontributions. In the database domain, it presents theDatabase State Ma
hine and the Reordering te
hnique. In the distributed systemsdomain, this work introdu
es the Generi
 Broad
ast problem, and the Optimisti
Atomi
 Broad
ast algorithm.Database State Ma
hine. The Database State Ma
hine is a database repli
ationapproa
h that de�nes the way transa
tions are exe
uted by database sites, and theway database sites intera
t with ea
h other to 
ommit transa
tions. In the DatabaseState Ma
hine, transa
tions are exe
uted lo
ally on a database site a

ording to thetwo-phase lo
king 
on
urren
y 
ontrol me
hanism, whi
h enfor
es lo
al data 
onsis-ten
y. In order to guarantee global data 
onsisten
y, database sites intera
t by meansof an Atomi
 Broad
ast primitive, whi
h is the only 
ommuni
ation me
hanism usedby database sites. The requirements that database sites have to meet in this 
ontextare dis
ussed in detail. Experimental results show that the Database State Ma
hineis a promising approa
h to exe
uting transa
tions in a 
luster on database sites.Reordering Te
hnique. Global data 
onsisten
y in the Database State Ma
hinerelies on some sort of optimisti
 
on
urren
y 
ontrol me
hanism, 
alled 
erti�
ationtest. A

ording to this s
hema, a transa
tion that requests a 
ommit operation doesnot have a guarantee that it will be 
ommitted, sin
e it may fail the 
erti�
ation test.The Reordering te
hnique is a way of exe
uting the 
erti�
ation test that in
reasesthe 
han
es that transa
tions are 
ommitted. Roughly speaking, the Reorderingte
hnique exploits 
hara
teristi
s of serial exe
utions and rearranges transa
tionsbefore they are 
ommitted. The Reordering te
hnique has been positively evaluatedusing a simulation model.Generi
 Broad
ast. Generi
 Broad
ast is a group 
ommuni
ation primitive thatallows appli
ations to de�ne order requirements based on a 
on�i
t relation. Re-liable Broad
ast, whi
h does not guarantee any order on the delivery of messages,and Atomi
 Broad
ast, whi
h guarantees order on the delivery of all messages, arespe
ial 
ases of Generi
 Broad
ast. It turns out that for several appli
ations, likethe Database State Ma
hine, Reliable Broad
ast o�ers a semanti
 that is too weakto guarantee 
orre
tness. Conversely, Atomi
 Broad
ast o�ers a semanti
 that is toostrong. Using Generi
 Broad
ast, we 
an de�ne a group 
ommuni
ation primitivethat is stronger than Reliable Broad
ast, and weaker than Atomi
 Broad
ast. Analgorithm that implements Generi
 Broad
ast is presented. In order to 
ompare the



1.3. About this Resear
h 5implementations of various group 
ommuni
ation primitives, the delivery laten
yparameter is introdu
ed.Optimisti
 Atomi
 Broad
ast. The Optimisti
 Atomi
 Broad
ast algorithm ex-ploits system properties in order to deliver messages fast. The algorithm is optimisti
in the sense that it assumes properties that do not always hold. However, it theyhold for a 
ertain period, guaranteeing total order of messages is done faster thanwith traditional Atomi
 Broad
ast algorithms. This thesis dis
usses optimism inthe implementation of Atomi
 Broad
ast primitives, and presents in detail the Op-timisti
 Atomi
 Broad
ast algorithm. The system property exploited by Optimisti
Atomi
 Broad
ast is the spontaneous total order property whi
h states that, in somenetworks, it is highly probable that messages are re
eived at their destinations in thesame total order. The spontaneous total order property holds with high probabilityin lo
al area networks under normal exe
ution 
onditions (e.g., moderate load).1.3.3 Thesis OrganisationThe thesis is organised as follows. Chapter 2 dis
usses system models, de�nes fault-tolerant broad
ast and related problems, and formalises some database notationsused throughout this thesis. Chapter 3 introdu
es the Database State Ma
hine andthe Reordering te
hnique. The Database State Ma
hine is �rst analysed by meansof a simple probabilisti
 model, and then by means of a simulation model. Chap-ter 4 presents the Generi
 Broad
ast problem, shows how it 
an be used to de�ne abroad
ast primitive weaker than Atomi
 Broad
ast, but that still ensures the orderneeds of the Database State Ma
hine, and presents an algorithm that solves Generi
Broad
ast. Chapter 5 dis
usses how Atomi
 Broad
ast algorithms 
an take advan-tage of optimisti
 system assumptions, and presents in detail the Optimisti
 Atomi
Broad
ast algorithm. In Chapter 6, we summarise the major results of this workand outline future resear
h dire
tions.



6 Chapter 1. Introdu
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Chapter 2System Models and De�nitionsA theory has only the alternative of being right or wrong.A model has a third possibility: it may be right, but irrelevant.Manfred EigenA system model des
ribes pre
isely and 
on
isely all the hypothesis and importantaspe
ts about the system. A model should be as general as possible, to extend theappli
ability of the results stated (this is typi
ally the 
ase when the results are in theform of impossibility proofs), and 
ompa
t, to leave out irrelevant details and simplifythe approa
h to the problem. In this 
hapter, we re
all system models 
onsidered inthe literature and used in this thesis, de�ne the properties of fault-tolerant problemsof interest for this work, and present some important database de�nitions.2.1 Model De�nitionsDistributed system models usually 
entre their de�nitions around two basi
 abstra
-tions: pro
esses and 
ommuni
ation 
hannels. In the following, we present some
ommon ways of modelling these abstra
tions.2.1.1 Pro
ess ModelWe 
hara
terise pro
esses a

ording to four 
riteria: syn
hronisation aspe
ts, modeof failure, information storage, and pro
ess membership.Syn
hronisation aspe
ts. A

ording to syn
hronisation aspe
ts, pro
esses 
an besyn
hronous or asyn
hronous. If pro
esses are asyn
hronous, then there is no boundon the time ne
essary to exe
ute a step. By 
ontrast, if pro
esses are syn
hronous,there exists a known bound on their relative speed, that is, for some known boundednumber of steps taken by any pro
ess, every other pro
ess takes at least one step.



8 Chapter 2. System Models and DefinitionsThroughout this work, we 
onsider that pro
esses are asyn
hronous, and to simplifythe presentation, we assume the existen
e of a dis
rete global 
lo
k, even thoughpro
esses do not have a

ess to it. The range of the 
lo
k's ti
ks is the set of naturalnumbers.Mode of failure. Several modes of failure have been introdu
ed in the literature(see [Cri91, S
h93℄ for brief surveys). We 
on
entrate on two modes of failure: the
rash-stop model and the 
rash-re
over model. In the 
rash-stop model, on
e apro
ess has 
rashed, it never re
overs. If a pro
ess p is able to exe
ute requests ata 
ertain time τ (i.e., p did not fail until time τ) we say that p is up at time τ .Otherwise, we say that p is down at time τ . A pro
ess that never 
rashes (i.e., it isalways up) is 
orre
t, and a pro
ess that is not 
orre
t is faulty.In the 
rash-re
over model, a pro
ess p is 
lassi�ed a

ording to its behaviour 
on-
erning failures as always-up if p never 
rashes, eventually-up if p 
rashes at leaston
e, but there is a time after whi
h p is permanently up, eventually-down if thereis a time after whi
h p is permanently down, and unstable if p 
rashes and re
oversin�nitely many times [OGS97, ACT98℄. Pro
ess p is good if it is either always-up oreventually-up, and bad if it is eventually-down or unstable. Both models of failurerule out faulty pro
esses that exe
ute arbitrary a
tions (i.e., no Byzantine faults).We further assume that pro
esses fail independently.Pro
ess state. There are two ways of modelling pro
esses that 
rash and re
overa

ording to what happens to their lo
al state after re
overing from a 
rash: pro
esses
an either (1) forget the state they had before the 
rash (i.e., pro
esses only havevolatile memory), or (2) remember the state they had, or a part of it, before the 
rash(i.e., pro
esses have stable storage). Even if a pro
ess has stable storage, it is wiseto use it sparingly sin
e a

essing stable storage is more expensive than a

essingvolatile memory.Pro
ess set. We distinguish between a stati
 set of pro
esses, and a dynami
 setof pro
esses. A stati
 set is 
omposed of n pro
esses Π = {p1, p2, . . . , pn}, and this
on�guration never 
hanges throughout the exe
ution. Conversely, if a system hasa dynami
 set of pro
esses, then at two di�erent times during the exe
ution, thesystem may be 
omposed of distin
t sets of pro
esses. Several events may trigger a
hange in the 
urrent set of pro
esses if this set is dynami
 (e.g., a new pro
ess joinsthe pro
esses that are part of the 
urrent set).Pro
ess models in perspe
tive. Pro
ess models proposed in the literature 
anbe de�ned by 
ombining the parameters presented above (see Table 2.1).Model M1 has been 
onsidered by several authors [FLP85, CT96, S
h97℄. Thestrongest argument in favour of model M1 is that it provides a relatively simpleframework to rigorously study distributed algorithms. However, in pra
ti
al s
enar-ios it la
ks �exibility sin
e on
e a pro
ess has 
rashed, it is not allowed to re
over



2.1. Model Definitions 9Model 
riteriaModel Mode of failure Pro
ess state Pro
ess set
M1 
rash-stop � stati

M2 
rash-stop � dynami

M3 
rash-re
over volatile stati

M4 
rash-re
over stable stati
Table 2.1: Pro
ess modelsor be repla
ed by another pro
ess. This drawba
k is one way or another over
omeby the other models. Model M2 was introdu
ed by Isis [BJ87℄.1 It does not permitpro
esses to re
over but it allows a pro
ess that has been ex
luded from a view tojoin the other pro
esses with a new identi�
ation, whi
h is a way round the problemen
ountered in model M1. In Isis, when a new pro
ess joins a view, it re
eives thestate from pro
esses in this view (e.g., the messages that pro
esses have re
eivedin the view). Only re
ent proposals have 
onsidered the 
rash-re
over model withasyn
hronous pro
esses. Model M3 has been 
onsidered in [ACT98℄, and model M4in [OGS97, HMR97, ACT98℄.2.1.2 Communi
ation Channel ModelCommuni
ation 
hannels 
an be 
hara
terised a

ording to timing, reliability, andordering properties. Before going into detail on ea
h one of these properties, we de�ne

send(m) and receive(m) as the primitives pro
esses use to 
ommuni
ate. Message
m is taken from a set M to whi
h all messages belong. When a pro
ess p invokes�send� with a message m as a parameter, we say that p sends m, and when a pro
ess
q returns from the exe
ution of �re
eive� with a message m as a parameter, we saythat q re
eives m.Timing properties. Timing properties are related to guarantees on transmissiondelays of messages, whi
h 
an be bounded or unbounded. This work assumes that
ommuni
ation delays are unbounded.Reliability properties. Two 
hara
terisations of 
ommuni
ation 
hannels a

ord-ing to reliability properties are Reliable Channels [BCBT96℄ and Quasi-Reliable 
han-nels [ACT97℄. Reliable Channels satisfy the following properties:(No 
reation) If pro
ess q re
eives message m from p, then p sends m to q.(No dupli
ation) Pro
ess q re
eives m from p at most on
e.(No loss) If p sends m to q, and q is 
orre
t, then q eventually re
eives m.1In Isis, pro
ess sets are 
alled views.



10 Chapter 2. System Models and DefinitionsQuasi-Reliable Channels are spe
i�ed by repla
ing the No Loss property of ReliableChannels by the following property:(Quasi-No loss) If p sends m to q, and p and q are 
orre
t, then q eventuallyre
eives m.Quasi-Reliable Channels de�ne weaker 
onstraints than Reliable Channels, that is,any exe
ution that satis�es Reliable Channels properties, also satis�es Quasi-Reliableproperties, however, the 
ontrary is not true. Figure 2.1 shows an exe
ution involvingpro
esses p and q that satis�es the quasi-no loss property, but does not satisfy theno loss property. In Figure 2.1, message m is never re
eived by pro
ess q.
p

q

send(m)

m is lost

p crashes

Figure 2.1: Quasi-Reliable Channels
Ordering properties. Reliable and Quasi-Reliable Channels guarantees 
an beaugmented with ordering properties. Two parti
ular ordering properties are FIFOorder, and 
ausal order. FIFO order is de�ned as shown next.(FIFO order) If p sends m to q before sending m′ to q, then q does notre
eive m′ before m.Causal order is de�ned based on Lamport's happened before relation → [Lam78℄.Let a, b, and c be events in a distributed system. The relation a→ b (i.e., a happensbefore b) holds if and only if (1) a and b are events in the same pro
ess and a o

urredbefore b, or (2) a is the event of sending a message m in a pro
ess and b is the eventof re
eipt of message m in another pro
ess, or (3) there exists an event c su
h that
a→ c, and c→ b. Causal order is de�ned as follows.(Causal order) If m and m′ are two messages re
eived by some pro
ess p,and send(m)→ send(m′), then receive(m)→ receive(m′) in p.Figures 2.2 and 2.3 depi
t FIFO and Causal Channels. Causal Channels are strongerthan FIFO Channels, that is, Causal Channels preserve FIFO order. The exe
utionsin Figures 2.2 and 2.3 satisfy both Reliable Channels and Quasi-Reliable spe
i�
a-tions.
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send(m) send(m’)

p

q
receive(m’)receive(m)Figure 2.2: FIFO Channels

send(m’’)

send(m) send(m’)

receive(m’)

p

q

r
receive(m) receive(m’’)Figure 2.3: Causal Channels2.1.3 Asyn
hronous SystemsAsyn
hronous systems are modelled by asyn
hronous pro
esses that 
ommuni
atethrough 
hannels with unbounded transmission delays. Asyn
hronous systems de-�ne a very general model, and several impossibility results have been based on them.In [FLP85℄, it has been shown that Consensus (see Se
tion 2.2) is not solvable inasyn
hronous systems subje
t to 
rash-stop failures (Model M1). Impossibility re-sults have also been presented for asyn
hronous systems with a dynami
 set of pro-
esses [CHTCB96℄ (model M2), and asyn
hronous systems with pro
esses that 
an
rash and re
over [ACT98℄ (models M3 and M4). The latter result de�nes minimalbounds for solving Consensus when pro
esses' state is volatile and stable.2.1.4 Failure Dete
torsTo 
ir
umvent the Fis
her-Lyn
h-Paterson impossibility result [FLP85℄ (FLP forshort), asyn
hronous systems with a stati
 set of 
rash-stop pro
esses have beenaugmented with failure dete
tors [CT96℄. Ea
h pro
ess p in Π has a

ess to a lo
alfailure dete
tor module Dp that provides (possibly in
orre
t) information about thepro
esses that are suspe
ted to have 
rashed. A failure dete
tor may make mistakes,that is, (1) it may suspe
t a pro
ess that has not failed or (2) never suspe
t apro
ess that has failed. Failure dete
tors have been 
lassi�ed a

ording to a

ura
yand 
ompleteness properties whi
h 
hara
terise the mistakes they 
an make [CT96℄.



12 Chapter 2. System Models and DefinitionsCompleteness. There are two 
ompleteness properties.
⊲ Strong Completeness: eventually every pro
ess that 
rashes is permanentlysuspe
ted by every 
orre
t pro
ess.
⊲ Weak Completeness: eventually every pro
ess that 
rashes is permanentlysuspe
ted by some 
orre
t pro
ess.A

ura
y. There are four a

ura
y properties.
⊲ Strong A

ura
y: no pro
ess is suspe
ted before it 
rashes.
⊲ Weak A

ura
y: some 
orre
t pro
ess is never suspe
ted.
⊲ Eventual Strong A

ura
y: there is a time after whi
h 
orre
t pro
esses arenot suspe
ted by any 
orre
t pro
ess.
⊲ Eventual Weak A

ura
y: there is a time after whi
h some 
orre
t pro
ess isnever suspe
ted by any 
orre
t pro
ess.Table 2.2 summarises all 
lasses of failure dete
tors. Throughout this work, we do not
onsider any failure dete
tor in parti
ular, nevertheless, we assume that the systemis augmented with failure dete
tors so that Consensus 
an be solved. Moreover,Chapters 4 and 5 need a failure dete
tor that guarantees Strong Completeness (i.e.,A

ura
y is not relevant). A

ura
yCompleteness Strong Weak Eventually Strong Eventually WeakStrong Perfe
t Strong Eventually Perfe
t Eventually Strong

P S 3P 3SWeak Weak Eventually Weak
Q W 3Q 3WTable 2.2: Failure dete
tors 
lassesIt has been shown in [CHT96℄ that 3W is the weakest failure dete
tor to solveConsensus in asyn
hronous systems subje
t to 
rash-stop failures, and [CT96℄ showsthat any given failure dete
tor D that satis�es weak 
ompleteness 
an be redu
edinto a failure dete
tor D′ that satis�es strong 
ompleteness, that is, 3S and 3W areequivalent.The works presented in [ACT98, OGS97℄ rede�ne failure dete
tors in asyn
hronoussystems where pro
esses 
an 
rash and re
over. In this thesis, we 
on
entrate onfailure dete
tors in the 
rash-stop model.2.1.5 Algorithms, Runs and ProblemsWhen dis
ussing distributed proto
ols, it is important to 
hara
terise the notionsof algorithm, run, and problem. In the following, we provide de�nitions for theseterms in the 
ontext of asyn
hronous pro
esses in the 
rash-stop model, whi
h is the



2.2. Fault-Tolerant Broad
asts and Related Problems 13model 
onsidered in Chapters 3 and 4. Chapter 2 is based on a formalism spe
i�
to databases, introdu
ed in Se
tion 2.3.An algorithm A is a 
olle
tion of n deterministi
 automata, one per pro
ess, and
omputation pro
eeds in steps of A. In the 
rash-stop model, in ea
h step, a pro
essatomi
ally (1) re
eives a (possibly empty) message that was sent to it, (2) queriesits failure dete
tor module, (3) modi�es its state, and (4) may send a message to asingle pro
ess [CT96℄.Informally, a run R of A de�nes a (possibly in�nite) sequen
e of steps of A. There isa 
lose relation between system models, algorithms, and problems, in that a systemmodel M determines the set of runs that an algorithm A 
an produ
e in M , and aproblem spe
i�
ation P (or simply a problem) is de�ned as requirements on sets ofruns.2.2 Fault-Tolerant Broad
asts and Related ProblemsIn this se
tion, we de�ne Reliable Broad
ast, Atomi
 Broad
ast, Consensus, andNon-Blo
king Atomi
 Commitment in asyn
hronous systems with pro
esses that
rash and stop. The Non-Blo
king Atomi
 Commitment de�nition further assumesthat the system is augmented with failure dete
tors. The abstra
tions presented inthis se
tion lay the basis for the work developed in Chapters 3, 4, and 5.2.2.1 Reliable Broad
astReliable Broad
ast is de�ned by the primitives R-broad
ast(m) and R-deliver(m),whi
h satisfy the following properties [HT93℄.(Validity) If a 
orre
t pro
ess R-broad
asts a message m, then it eventuallyR-delivers m.(Agreement) If a 
orre
t pro
ess R-delivers a message m, then all 
orre
tpro
esses eventually R-deliver m.(Uniform integrity) For every message m, every pro
ess R-delivers m atmost on
e, and only if m was previously R-broad
ast by sender(m).R-broad
ast and R-deliver may be build over Quasi-Reliable Channels, whi
h o�erweaker guarantees than Reliable Broad
ast (see Figure 2.4). In the 
rash-stop model,Reliable Broad
ast 
an be solved by the following algorithm, resilient to n−1 pro
ess
rashes [CT96℄. Whenever a pro
ess p wants to R-broad
ast a message m, p sends mto all pro
esses. On
e a pro
ess q re
eives m, if q 6= p then q sends m to all pro
esses,and, in any 
ase, q R-delivers m (see the Appendix for a detailed presentation of thisalgorithm).
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Application

Reliable
Broadcast

Channels
Quasi-Reliable

send(m)

R-broadcast(m) R-deliver(m)

receive(m)

Figure 2.4: Communi
ation abstra
tion2.2.2 Atomi
 Broad
astAtomi
 Broad
ast is de�ned by the primitives A-broad
ast(m) and A-deliver(m). Inaddition to the properties of Reliable Broad
ast, Atomi
 Broad
ast satis�es the totalorder property [HT93℄.(Total Order) If two 
orre
t pro
esses p and q A-deliver two messages mand m′, then p A-delivers m before m′ if and only if q A-delivers m before m′.The total order indu
ed on the A-deliver is represented by the relation ≺. Thus, ifmessage m is A-delivered before message m′, then A-deliver(m) ≺ A-deliver(m′).Stronger de�nitions of Reliable and Atomi
 Broad
ast 
an be obtained by augment-ing the properties previously presented with FIFO and Causal Order 
onstraints.The resulting de�nitions are FIFO Broad
ast (FIFO Order + Reliable Broad
ast),Causal Broad
ast (Causal Order + Reliable Broad
ast), FIFO Atomi
 Broad
ast(FIFO Order + Atomi
 Broad
ast), and Causal Atomi
 Broad
ast (Causal Order+ Atomi
 Broad
ast). Figure 2.5 depi
ts the relationship among broad
ast primi-tives [HT93℄.2.2.3 ConsensusConsensus is de�ned by the primitives propose(v), and de
ide(v), whi
h satisfy thefollowing properties.(Termination) Every 
orre
t pro
ess eventually de
ides some value.(Uniform integrity) Every pro
ess de
ides at most on
e.(Agreement) No two 
orre
t pro
esses de
ide di�erently.(Uniform validity) If a pro
ess de
ides v, then v was proposed by somepro
ess.
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FIFO
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Total Order

Total Order
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Causal Atomic
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Causal Order

FIFO Order

Causal Order

Figure 2.5: Relationship among broad
ast primitivesConsensus 
an be solved in 
rash-stop asyn
hronous systems augmented with failuredete
tors. In [CT96℄ the authors present two algorithms that solve Consensus. Oneuses a failure dete
tor of 
lass S and tolerates f < n failures, and the other usesa failure dete
tor of 
lass 3S and tolerates f < n/2 failures. Another algorithmthat solves Consensus in the 
rash-stop model using a failure dete
tor of 
lass 3Sis the Early Consensus algorithm [S
h97℄. The Early Consensus algorithm tolerates
f < n/2 failures and to a 
ertain extend, is more e�
ient than the algorithm basedon 3S proposed in [CT96℄. The Consensus algorithm presented in [CT96℄ using afailure dete
tor of 
lass 3S, and the Early Consensus algorithm are presented in theAppendix.Consensus and Atomi
 Broad
ast have been shown in the literature to be equivalentin the 
rash-stop model [CT96℄. The equivalen
e result basi
ally states that Atomi
Broad
ast 
an be redu
ed to Consensus (see the Appendix), and Consensus 
anbe redu
ed to Atomi
 Broad
ast. The Consensus to Atomi
 Broad
ast redu
tion
onsists in having propose(v) exe
ute A-broad
ast(v), and de
ide(v) o

urring afterthe �rst A-deliver(v).2.2.4 Non-Blo
king Atomi
 CommitmentNon-Blo
king Atomi
 Commitment is de�ned by the primitives AC-vote(v) and AC-de
ide(v), v ∈ {commit, abort}, whi
h ensure the following properties.(Uniform Agreement) No two parti
ipants AC-de
ide di�erently.(Uniform Validity) If a pro
ess AC-de
ides commit, then all pro
esses havevoted commit.(Termination) Every 
orre
t pro
ess eventually AC-de
ides.(Non-Triviality) If all pro
esses vote commit, and there is no failure, thenevery 
orre
t pro
ess eventually AC-de
ides commit.
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king Atomi
 Commitment has been shown to be unsolvable in asyn
hronoussystems subje
t to 
rash failures, even if augmented with failure dete
tors of the 
lass
3P or S [Gue95℄. However, a weaker version of Atomi
 Commit (Non-Blo
kingWeak Atomi
 Commit) 
an be redu
ible to Consensus. Non-Blo
king Weak Atomi
Commit repla
es the previously de�ned Non-Triviality property by the following.(Weak Non-Triviality) If all pro
esses vote commit, and no pro
ess is eversuspe
ted, then every 
orre
t pro
ess eventually AC-de
ides commit.2.3 Database De�nitionsIn this se
tion, we formally de�ne transa
tions and histories, present the ACID trans-a
tion properties, and dis
uss model assumptions usually asso
iated with databases.Formal de�nitions of transa
tions and histories will be useful to prove repli
ateddatabases proto
ols 
orre
t.2.3.1 Transa
tions and HistoriesInformally, a transa
tion is a set of database operations that �nishes with a Commitor an Abort operation. Let Γ = {x1, x2, . . . , xm} be a database, and r[xk] and w[xk]be a read and a write operation on data item xk, xk ∈ Γ, respe
tively, and c and abe the 
ommit and abort operations. Formally, transa
tion ti is de�ned as a partialorder on read and write operations with ordering relation <i, where1. ti ⊆ {ri[xk], wi[xk] : x ∈ Γ} ∪ {ai, ci};2. ai ∈ ti i� ci 6∈ ti;3. let o be ci or ai (whi
hever is in ti), for any other o′ ∈ ti, o′ <i o; and4. for any two operations ri[xk] and wi[xk] su
h that ri[xk], wi[xk] ∈ ti, then either

ri[xk] <i wi[xk] or wi[xk] <i ri[xk].Transa
tions exe
uting in a database are formalised by histories [BHG87℄. Let T =
{t1, t2, . . . , tj} be a set of transa
tions. A 
omplete history H over T is a partialorder on read and write operations with ordering relation <H where1. H = ∪j

i=1ti;2. ∪j
i=1 <i ⊆<H ; and3. for any two operations w[xk] and o[xk], o ∈ {r, w}, issued by di�erent transa
-tions in H, either w[xk] <H o[xk] or o[xk] <H w[xk].A history is a pre�x of a 
omplete history. Given some history H, the 
ommittedproje
tion of H, denoted C(H), is the history obtained from H, by eliminating alloperations that do not belong to transa
tions 
ommitted in H.
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ussion 172.3.2 Transa
tion PropertiesTransa
tions satisfy the ACID properties. The ACID a
ronym stands for Atom-i
ity, Consisten
y, Isolation, and Durability. The ACID properties are de�ned asfollows [GR93℄.(Atomi
ity) A transa
tion's 
hanges to the state are atomi
: either all happenor none happen.(Consisten
y) A transa
tion is a 
orre
t transformation of the state. The a
-tions taken as a group do not violate any of the integrity 
onstraints asso
iatedwith the state.(Isolation) Even though transa
tions exe
ute 
on
urrently, it appears to ea
htransa
tion t, that other transa
tions exe
uted either before t or after t, butnot both.(Durability) On
e a transa
tion 
ompletes su

essfully (
ommits), its 
hangesto the state survive failures.From the viewpoint of the history de�nition presented in the previous se
tion, theatomi
ity property states that the study of the 
orre
tness of database proto
ols(i.e., serialisability), should 
on
entrate on the 
ommitted proje
tions of the historiesprodu
ed by these proto
ols.Consisten
y is not relevant in the history formalism previously de�ned, sin
e it dealswith semanti
 meaning about the transformations performed by transa
tions on thedatabase, and the history formalism is not strong enough to 
apture this abstra
tionlevel.Isolation has re
eived a lot of attention by database resear
hers, mainly in the early70's. A

ording to the transa
tion and history formalism presented in the previ-ous se
tion, a database proto
ol ensures isolation if the 
ommitted proje
tion ofany history it produ
es does not have 
y
les [BHG87℄. Isolation is also known asserialisability, or, in the 
ontext of repli
ated databases, one-
opy serialisability.The durability property is highly dependent on the assumptions made about pro-
esses. For example, most database systems 
onsider that database sites (or pro-
esses) always re
over after a 
rash, and have a

ess to stable storage. In this s
e-nario, durability 
an be enfor
ed by 
arefully storing 
riti
al information in stablestorage [Had88℄.2.4 Dis
ussionA model is a simpli�
ation of a real system, allowing to study it in depth, withouthaving to worry about details. Usually, the more 
omplex the model, the 
loser tothe reality it is, however, 
omplex models make the approa
h to the problem di�
ult.



18 Chapter 2. System Models and DefinitionsIn this 
hapter, we have 
hara
terised distributed systems and database systems bythe models usually presented in the literature.The thesis fo
uses on two distin
t system models. In Chapter 3, we 
onsider thatpro
esses 
rash and re
over, have a

ess to stable storage, and belong to a stati
 setof pro
esses. In Chapters 4 and 5 we 
onsider that pro
esses 
rash and stop, do nothave stable storage, and belong to a stati
 set of pro
esses. In Chapters 4 and 5,pro
esses are fully 
onne
ted by Quasi-Reliable Channels, and Chapter 4 furtherassumes that 
ommuni
ation 
hannels are FIFO.Thus, the two models 
onsidered in this thesis di�er on the mode of failure of pro-
esses. This distin
tion has simpli�ed the work in Chapters 4 and 5. However, theintuitions behind the ideas proposed in Chapters 4 and 5 do not depend on detailsabout the 
rash-stop model, and 
an be extended to the 
rash-re
over model.
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Chapter 3The Database State Ma
hineFirst things �rst, but not ne
essarily in that order.Do
tor WhoThis 
hapter introdu
es the �rst 
ontribution of the thesis, the Database StateMa
hine. The Database State Ma
hine is, from the user's point of view, a high-performan
e and high-availability database that o�ers strong 
onsisten
y (i.e., seri-alisability). From the system's viewpoint, the Database State Ma
hine is a me
h-anism to handle repli
ation in a 
luster of workstations 
onne
ted by a standard
ommuni
ation network.From the model perspe
tive presented in the previous 
hapter, the Database StateMa
hine 
onsiders a stati
 set of pro
esses that have a

ess to stable storage. Pro-
esses 
ommuni
ate through an Atomi
 Broad
ast primitive.Compared to other database approa
hes that also provide high-availability, theDatabase State Ma
hine does not sa
ri�
e performan
e (it minimises inter site syn-
hronisation and eliminates distributed deadlo
ks), nor data 
onsisten
y. Further-more, by relying on a 
luster of workstations 
onne
ted by a standard 
ommuni
ationnetwork, the Database State Ma
hine does not depend on spe
ialised hardware.In this 
hapter, we re
all the deferred update repli
ation te
hnique and the prin
ipleof the state ma
hine approa
h [S
h90℄, whi
h de�ne the general framework for theDatabase State Ma
hine, and present the ar
hite
ture of the Database State Ma
hineand the Reordering te
hnique. The performan
e of the Database State Ma
hine isanalysed with simulation and probabilisti
 models.3.1 Deferred Update Repli
ation FrameworkBefore presenting the Database State Ma
hine approa
h, we des
ribe the deferred up-date repli
ation prin
iple in detail and introdu
e some additional notation. We also
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hineprovide a general algorithm that will lay the basis for the Database State Ma
hinealgorithm.3.1.1 Deferred Update Repli
ation Prin
ipleIn the deferred update repli
ation te
hnique, transa
tions are lo
ally exe
uted atone database site, and during their exe
ution, no intera
tion between other databasesites o

urs (see Figure 3.1). Transa
tions are lo
ally syn
hronised at database sitesa

ording to some 
on
urren
y 
ontrol me
hanism [BHG87℄. Hereafter, we assumethat the 
on
urren
y 
ontrol me
hanism used by every database site to lo
al syn-
hronise transa
tions is the stri
t two phase lo
king rule. When a 
lient requests thetransa
tion 
ommit, the transa
tion's updates (e.g., the redo log re
ords) and some
ontrol stru
tures are propagated to all database sites, where the transa
tion willbe 
erti�ed and, if possible, 
ommitted. This pro
edure, starting with the 
ommitrequest, is 
alled termination proto
ol. The obje
tive of the termination proto
ol istwofold: (i) propagating transa
tions to database sites, and (ii) 
ertifying them.
Client 2

Client 3

Client 4

Client 1

requests

commit

request

Database

Database

Site 3

Database

Site 2

Termination

Protocol

read/write

Site 1

Figure 3.1: Deferred update te
hniqueThe 
erti�
ation test aims at ensuring one-
opy serialisability. It de
ides to abort atransa
tion if the transa
tion's 
ommit would lead the database to an in
onsistentstate (i.e., non-serialisable). For example, 
onsider two 
on
urrent transa
tions, taand tb, that are exe
uted at di�erent database sites, and that update a 
ommondata item. When ta and tb request the 
ommit, the 
erti�
ation test has to realisewhether 
onsisten
y may be violated and, if this is the 
ase, sort out the problem byde
iding to abort one or both transa
tions (e.g., if there is no guarantee that ta and
tb arrive at all sites in the same order, both transa
tions have to be aborted [AAS97℄,however, if the 
erti�er knows that ta is re
eived before tb at all sites, or the other
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ation Framework 21way round, then just ta, respe
tively tb, has to be aborted [PGS98℄).3.1.2 Transa
tion StatesDuring its pro
essing, a transa
tion passes through some well-de�ned states (seeFigure 3.2). The transa
tion starts in the exe
uting state, when its read and writeoperations are lo
ally exe
uted at the database site where it was initiated. When the
lient that initiates the transa
tion requests the 
ommit, the transa
tion passes tothe 
ommitting state and is sent to the other database sites. A transa
tion re
eivedby a database site in the 
ontext of the termination proto
ol is also in the 
ommittingstate, and it remains in the 
ommitting state until its fate is known by the databasesite (i.e., 
ommit or abort). The di�erent states of a transa
tion ta at a databasesite si are denoted Executing(ta, si), Committing(ta, si), Committed(ta, si), and
Aborted(ta, si). The exe
uting and 
ommitting states are transitory states, whereasthe 
ommitted and aborted states are �nal states.

Executing

request
commit

Committing

request
abort

accept
transaction Committed

reject
transaction

AbortedFigure 3.2: Transa
tion states3.1.3 Deferred Update Repli
ation AlgorithmWe des
ribe next a general algorithm for the deferred update repli
ation te
hnique.To simplify the presentation, we 
onsider a parti
ular 
lient ck that sends requeststo a database site si in behalf of a transa
tion ta.1. Read and write operations requested by the 
lient ck are exe
uted at si a

ord-ing to the stri
t two phase lo
king (stri
t 2PL) rule. From the start until the
ommit request, transa
tion ta is in the exe
uting state.2. When ck requests ta's 
ommit, ta is immediately 
ommitted if it is a read-onlytransa
tion (nevertheless, read-only transa
tions may be aborted during theirexe
ution, as dis
ussed later). If not, ta passes to the 
ommitting state, and thedatabase site si triggers the termination proto
ol for ta: the updates performedby ta, as well as its readset and writeset, are sent to all database sites.
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hine3. Eventually, every database site sj 
erti�es ta. The 
erti�
ation test takesinto a

ount every transa
tion tb known by sj that 
on�i
ts with ta (see Se
-tion 3.1.4). It is important that all database sites rea
h the same de
ision onthe �nal state of ta, whi
h may require some 
oordination among databasesites. Su
h 
oordination 
an be a
hieved, for example, by means of an Atomi
Commitment proto
ol, or, as it will be shown in Se
tion 3.2, by using an Atomi
Broad
ast primitive.4. If ta is serialisable with the previous 
ommitted transa
tions in the system(e.g., ta passes the 
erti�
ation test), all its updates will be applied to thedatabase. Transa
tions in the exe
ution state at ea
h site sj holding lo
ks onthe data items updated by ta are aborted.5. The 
lient ck re
eives the out
ome for ta from site si as soon as si 
an determinewhether ta will be 
ommitted or aborted. The exa
t moment this happensdepends on how the termination proto
ol is implemented, and will be dis
ussedin Se
tion 3.2.Queries do not exe
ute the 
erti�
ation test, nevertheless, they may be aborted dur-ing their exe
ution due to lo
al deadlo
ks and by non-lo
al 
ommitting transa
tionswhen granting their write lo
ks (see Se
tion 3.5). The algorithm presented above 
anbe modi�ed in order to redu
e or 
ompletely avoid aborting read-only transa
tions.For example, if queries are pre-de
lared as so, on
e an update transa
tion passes the
erti�
ation test, instead of aborting a query that holds a read lo
k on a data itemit wants to update, the update transa
tion waits for the query to �nish and releasethe lo
k. In this 
ase, update transa
tions have the highest priority in granting writelo
ks, but they wait for queries to �nish. Read-only transa
tions 
an still be aborteddue to deadlo
ks, though. However, multiversion data item me
hanisms 
an preventqueries from being aborted altogether. In [SA93℄, read-only transa
tions are exe-
uted using a �xed view (or version) of the database, without interfering with theexe
ution of update transa
tions.3.1.4 Transa
tion Dependen
iesIn order for a database site si to 
ertify a 
ommitting transa
tion ta, si must beable to tell whi
h transa
tions 
on�i
t with ta up to the 
urrent time. A transa
tion
tb 
on�i
ts with ta if ta and tb have 
on�i
ting operations and tb does not pre
ede
ta. Two operations 
on�i
t if they are issued by di�erent transa
tions, a

ess thesame data item and at least one of them is a write. The pre
ede relation betweentwo transa
tions ta and tb is de�ned as follows. (a) If ta and tb exe
ute at the samedatabase site, tb pre
edes ta if tb enters the 
ommitting state before ta. (b) If ta and
tb exe
ute at di�erent database sites, say si and sj, respe
tively, tb pre
edes ta if tb
ommits at si before ta enters the 
ommitting state at si. Let site(t) identify thedatabase site where transa
tion t was exe
uted, and committing(t) and commit(t)sjbe the events that represent, respe
tively, the request for 
ommit and the 
ommit of
t at sj. The event committing(t) only happens at the database site si where t was
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hine 23exe
uted, and the event commit(t)sj
happens at every database site sj . We formallyde�ne that transa
tion tb pre
edes transa
tion ta, denoted tb → ta, as

tb → ta ≡







committing(tb)
e
→ committing(ta) if site(ta) = site(tb),

commit(tb)site(ta)
e
→ committing(ta) otherwise,where e

→ is Lamport's order relation between system events [Lam78℄. The relation
tb 6→ ta establishes that tb does not pre
ede ta. If site(ta) = site(tb), tb 6→ ta is equiv-alent to committing(tb) 6

e
→ committing(ta). Sin
e lo
al events in a site are totallyordered, committing(tb) 6

e
→ committing(ta) ≡ committing(ta)

e
→ committing(tb),and so, tb 6→ ta ≡ ta → tb. If site(ta) 6= site(tb), tb 6→ ta is equivalent to

commit(tb)site(ta) 6
e
→ committing(ta), or committing(ta)

e
→ commit(tb)site(ta).The deferred update repli
ation does not require any distributed lo
king proto
olto syn
hronise transa
tions during their exe
ution. Therefore, network bandwidthis not 
onsumed by syn
hronising messages, and there are no distributed deadlo
ks.However, transa
tions may be aborted due to 
on�i
ting a

esses. In the next se
-tions, we show that the deferred update repli
ation te
hnique 
an be implementedusing the state ma
hine approa
h, and that this approa
h allows optimisations that
an redu
e transa
tion abortion due to 
on�i
ting a

esses.3.2 A Database as a State Ma
hineThe deferred update repli
ation te
hnique 
an be implemented as a state ma
hine.In this se
tion, we re
all the prin
iple of the state ma
hine approa
h, and dis
uss thedetails of the Database State Ma
hine and its impli
ations to the way transa
tionsare pro
essed.3.2.1 The State Ma
hine Approa
hThe state ma
hine approa
h [S
h90℄, also 
alled a
tive repli
ation, is a non-
entralisedrepli
ation 
oordination te
hnique. Its key 
on
ept is that all repli
as (or databasesites) re
eive and pro
ess the same sequen
e of requests. Repli
a 
onsisten
y is guar-anteed by assuming that when provided with the same input (e.g., a 
lient request)ea
h repli
a will produ
e the same output (e.g., state 
hange). This assumptionimpli
itly implies that repli
as have a deterministi
 behaviour.The way requests are disseminated among repli
as 
an be de
omposed into tworequirements [S
h90℄:(Agreement.) Every non-faulty repli
a re
eives every request.(Order.) If a repli
a �rst pro
esses request req1 before req2, then no repli
apro
esses request req2 before request req1.
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hineThe order requirement 
an be weakened if some semanti
 information about therequests is known. For example, if two requests 
ommute, that is, independentlyof the order they are pro
essed they produ
e the same �nal states and sequen
e ofoutputs, then it is not ne
essary that order be enfor
ed among the repli
as for thesetwo requests.3.2.2 The Termination Proto
olThe termination proto
ol presented in Se
tion 3.1 
an be turned into a state ma-
hine (i.e., made deterministi
) as follows. Whenever a 
lient requests a transa
tion's
ommit, the transa
tion's updates, its readset and writeset (or, for short, the trans-a
tion) are atomi
ally broad
ast to all database sites. Ea
h database site will behaveas a state ma
hine, and the agreement and order properties required by the statema
hine approa
h are ensured by the Atomi
 Broad
ast primitive.The database sites, upon delivering and pro
essing the transa
tion, should eventuallyrea
h the same state. In order to a

omplish this requirement, delivered transa
tionsshould be pro
essed with 
ertain 
are. Before delving deeper into details, we des
ribethe database modules involved in the transa
tion pro
essing. Figure 3.3 abstra
tlypresents su
h modules and the way they are related to ea
h other.1 Transa
tionexe
ution, as des
ribed in Se
tion 3.1, is handled by the Transa
tion Manager, theLo
k Manager, and the Data Manager. The Certi�er exe
utes the 
erti�
ation testfor an in
oming transa
tion. It re
eives the transa
tions delivered by the Atomi
Broad
ast module. On 
ertifying a transa
tion, the Certi�er may ask information tothe data manager about already 
ommitted transa
tions (e.g., logged data). If thetransa
tion is su

essfully 
erti�ed, its write operations are transmitted to the Lo
kManager, and on
e the write lo
ks are granted, the updates 
an be performed.To make sure that ea
h database site will 
onverge to the same state after pro
essing
ommitting transa
tions, ea
h 
erti�er has to (1) rea
h the same de
ision when 
erti-fying transa
tions, and (2) guarantee that write-
on�i
ting transa
tions are appliedto the database in the same order (sin
e transa
tions whose writes do not 
on�i
tare 
ommutable). The �rst 
onstraint is ensured by providing ea
h 
erti�er withthe same set of transa
tions and using a deterministi
 
erti�
ation test. The se
ond
onstraint 
an be attained if the 
erti�er ensures that write-
on�i
ting transa
tionsgrant their lo
ks in the same order that they are delivered. This requirement isstraightforward to implement, nevertheless, it redu
es 
on
urren
y in the 
erti�er.3.2.3 The Termination AlgorithmThe pro
edure exe
uted on delivering the request of a 
ommitting update transa
tion
ta is detailed next. For the dis
ussion that follows, the readset RS(ta) and the writeset
WS(ta) are sets 
ontaining the identi�ers of the data items read and written by ta,1In a database implementation, these distin
tions may be mu
h less apparent, and the modulesmore tightly integrated [GR93℄. However, for presentation 
larity, we have 
hosen to separate themodules.
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Figure 3.3: Termination proto
ol based on Atomi
 Broad
astrespe
tively, during ta's exe
ution. Assuming that ta was exe
uted at database site
si, every database site sj , after delivering ta, performs the following steps:1. Certi�
ation test. Database site sj 
ommits ta (i.e., ta passes from the 
ommit-ting state to the 
ommitted state at sj) if there is no 
ommitted transa
tion

tb at sj that 
on�i
ts with ta. The notion of 
on�i
ting operations de�ned inSe
tion 3.1.4 is weakened, and just write operations performed by 
ommittedtransa
tions and read operations performed by ta are 
onsidered (i.e., write-read 
on�i
ts). Read-write 
on�i
ts are not relevant sin
e only 
ommittedtransa
tions take part in ta's 
erti�
ation test, and write-write 
on�i
ts aresolved by guaranteeing that all ta's updates are applied to the database afterall the updates performed by 
ommitted transa
tions (up to the 
urrent time).The 
erti�
ation test is formalised next as a 
ondition for a state transitionfrom the 
ommitting state to the 
ommitted state (see Figure 3.2):
Committing(ta, sj) ; Committed(ta, sj) ≡











∀tb, Committed(tb, sj) :

tb → ta ∨ (WS(tb) ∩RS(ta) = ∅)









The 
ondition for a transition from the 
ommitting state to the aborted stateis the 
omplement of the right side of this expression.On
e ta has been 
erti�ed by database site si, where it was exe
uted, si 
aninform ta's out
ome to the 
lient that requested ta's exe
ution.
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hine2. Commitment. If ta is not aborted, it passes to the 
ommit state, the lo
ksfor the data items it has written are requested, and on
e granted, ta's updatesare performed. There are three 
ases to 
onsider on granting the write lo
ksrequested by ta.(a) There is a transa
tion tb in exe
ution at sj whose read or write lo
ks
on�i
t with ta's writes. In this 
ase tb is aborted by sj, and therefore,all tb's read and write lo
ks are released.(b) There is a transa
tion tb, that was exe
uted lo
ally at sj and requested the
ommit, but has not been A-delivered yet at sj. Sin
e tb exe
uted lo
allyat sj, tb has its write lo
ks on the data items it updated. If tb 
ommits,its writes will overwrite ta's (i.e., the ones that overlap) and, in this 
ase,
ta need neither request these write lo
ks nor pro
ess the updates over thedatabase. This is similar to Thomas' Write Rule [Tho79℄. However, if tbis later aborted (i.e., it does not pass the 
erti�
ation test), the databaseshould be restored to a state without tb, for example, by applying ta'sredo log entries to the database.(
) There is a transa
tion tb that has passed the 
erti�
ation test and hasgranted its write lo
ks at sj, but it has not released them yet. In this 
ase,
ta waits for tb to �nish its updates and release its write lo
ks.An important aspe
t of the termination algorithm presented above is that the Atomi
Broad
ast is the only form of intera
tion between database sites. The Atomi
 Broad-
ast properties guarantee that every database site will 
ertify a transa
tion ta usingthe same set of 
ommitted transa
tions. It remains to be shown how ea
h databasesite builds su
h a set. If transa
tions ta and tb exe
ute at the same database site, this
an be evaluated by identifying transa
tions that exe
ute at the same site (e.g., ea
htransa
tion 
arries the identity of the site where it was initiated) and asso
iatinglo
al timestamps to the 
ommitting events of transa
tions.If ta and tb exe
uted at di�erent sites, this is done as follows. Every transa
tion
ommit event is timestamped with the order the transa
tion was A-delivered. TheAtomi
 Broad
ast properties ensure that ea
h database site asso
iates the sametimestamps to the same transa
tions, and there are no two transa
tions with thesame timestamp. Ea
h transa
tion t has a committing(t) �eld that stores the 
ommittimestamp of the last lo
ally 
ommitted transa
tion when t passes to the 
ommittingstate (see Figure 3.4). The committing(t) �eld is broad
ast to all database sitestogether with t. When a database site sj 
erti�es ta, all 
ommitted transa
tions thathave been delivered by sj with 
ommit timestamp greater than committing(ta) takepart in the set of 
ommitted transa
tions used to 
ertify ta (t(2) to t(m) in Figure 3.4).Su
h a set of 
ommitted transa
tions only 
ontains transa
tions that do not pre
ede

ta.3.2.4 Algorithm Corre
tnessThe Database State Ma
hine algorithm is proved 
orre
t using the multiversion for-malism of [BHG87℄. Although we do not expli
itly use multiversion databases, our
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committing timestamp

Figure 3.4: Transa
tion pre
eden
esapproa
h 
an be seen as so, sin
e repli
as of a data item lo
ated at di�erent databasesites 
an be 
onsidered as di�erent versions of this data item [BHG87℄.We �rst de�ne C(H)si
as a multiversion history derived from the system history

H, just 
ontaining operations of 
ommitted transa
tions involving data items storedat si. We denote wa[xa] a write by ta (as writes generate new data versions, thesubs
ript in x for data writes is always the same as the one in t) and ra[xb] a readby ta of data item xb.The multiversion formalism uses a multiversion serialisation graph (MV SG(C(H)si
)or MV SGsi

for short) and 
onsists in showing that all the histories produ
ed by thealgorithm have a multiversion serialisation graph that is a
y
li
 [BHG87℄. We denote
MV SGk

si
a parti
ular state of the multiversion serialisation graph for database site

si. The multiversion serialisation graph passes from one state MV SGk
si
into another

MV SGk+1
si

when a transa
tion is 
ommitted at si.We exploit the state ma
hine 
hara
teristi
s to stru
ture our proof in two parts.In the �rst part, Lemma 3.1 shows that, by the properties of the Atomi
 Broad
astprimitive and the determinism of the 
erti�er, every database site si ∈ ΣD eventually
onstru
ts the same MV SGk
si
, k ≥ 0. In the se
ond part, Lemmas 3.2 and 3.3 showthat every MV SGk

si
is a
y
li
.Lemma 3.1 If a database site si 
onstru
ts a multiversion serialisation graph

MV SGk
si

, k ≥ 0, then every database site sj eventually 
onstru
ts the same mul-tiversion serialisation graph MV SGk
sj
.Proof: The proof is by indu
tion. (Base step.) When the database is ini-tialised, every database site sj has the same empty multiversion serialisation graph
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MV SG0

sj
. (Indu
tive step - assumption.) Assume that every database site sjthat has 
onstru
ted a multiversion serialisation graph MV SGk

sj
has 
onstru
tedthe same MV SGk

sj
. (Indu
tive step - 
on
lusion.) Consider ta the transa
-tion whose 
ommitting generates, from MV SGk

sj
, a new multiversion serialisationgraph MV SGk+1

sj
. In order to do so, database site sj must deliver, 
ertify and
ommit transa
tion ta. By the order property of the Atomi
 Broad
ast primitive,every database site sj that delivers a transa
tion after installing MV SGk

sj
, delivers

ta, and, by the atomi
ity property, if one database site delivers transa
tion ta, thenevery database site delivers ta. To 
ertify ta, sj takes into a

ount the transa
tionsthat it has already lo
ally 
ommitted (i.e., the transa
tions in MV SGk
sj
). Thus,based on the same lo
al state (MV SGk

sj
), the same input (ta), and the same (deter-ministi
) 
erti�
ation algorithm, every database site eventually 
onstru
ts the same

MV SGk+1
sj

. 2We show next that every history C(H)si
produ
ed by a database site si has an a
y
li


MV SGsi
and, therefore, is 1SR [BHG87℄. Given a multiversion history C(H)si

anda version order≪, the multiversion serialisation graph for C(H)si
and≪, MV SGsi

,is a serialisation graph with read-from and version order edges. A read-from relation
ta →֒ tb is de�ned by an operation rb[xa]. There are two 
ases where a version-orderrelation ta →֒ tb is in MV SGsi

: (a) for ea
h rc[xb], wb[xb] and wa[xa] in C(H)si(a, b, and c are distin
t) and xa ≪ xb, and (b) for ea
h ra[xc], wc[xc] and wb[xb]in C(H)si
and xc ≪ xb. The version order is de�ned by the delivery order of thetransa
tions. Formally, a version order 
an be expressed as follows: xa ≪ xb i�

deliver(ta) ≺ deliver(tb) and ta, tb ∈MV SGsi
.To prove that C(H)si

has an a
y
li
 multiversion serialisation graph (MV SGsi
) weshow that the read-from and version-order relations in MV SGsi

follow the order ofdelivery of the 
ommitted transa
tions in C(H)si
. That is, if ta →֒ tb ∈ MV SGsithen deliver(ta) ≺ deliver(tb).Lemma 3.2 If there is a read-from relation ta →֒ tb ∈MV SGsi

then deliver(ta) ≺
deliver(tb).Proof: A read-from relation ta →֒ tb is in MV SGsi

if rb[xa] ∈ C(H)si
, a 6= b. Fora 
ontradi
tion, assume that deliver(tb) ≺ deliver(ta). If ta and tb were exe
uted atdi�erent database sites, by the time tb was exe
uted, ta had not been 
ommitted at

site(tb), and thus, tb 
ould not have read a value updated by ta. If ta and tb wereexe
uted at the same database site, tb must have read un
ommitted data from ta,sin
e ta had not been 
ommitted yet. However, this 
ontradi
ts the stri
t two phaselo
king rule. 2Lemma 3.3 If there is a version-order relation ta →֒ tb ∈ MV SGsi
then

deliver(ta) ≺ deliver(tb).Proof: A

ording to the de�nition of version-order edges, there are two 
ases to
onsider. (1) Let rc[xb], wb[xb] and wa[xa] be in C(H)si
(a, b and 
 distin
t), and
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xa ≪ xb, whi
h implies ta →֒ tb is in MV SGsi

. It follows from the de�nition ofversion-order that deliver(ta) ≺ deliver(tb). (2) Let ra[xc], wc[xc] and wb[xb] be in
C(H)si

, and xc ≪ xb, whi
h implies ta →֒ tb is in MV SGsi
, and we have to show that

deliver(ta) ≺ deliver(tb). For a 
ontradi
tion, assume that deliver(tb) ≺ deliver(ta).From the 
erti�
ation test, when ta is 
erti�ed, either tb → ta or WS(tb)∩RS(ta) = ∅.But sin
e x ∈ RS(ta), and x ∈WS(tb), it must be that tb → ta.Assume that ta and tb were exe
uted at the same database site. By the de�-nition of pre
eden
e (Se
tion 3.1.4), tb requested the 
ommit before ta (that is,
committing(tb)

e
→ committing(ta)). However, ta reads xc from tc, and this 
anonly happen if tb updates x before tc, that is, xb ≪ xc, 
ontradi
ting that xc ≪ xb.A similar argument follows for the 
ase where ta and tb were exe
uted at distin
tdatabase sites, and we 
on
lude that if there is a version-order relation ta →֒ tb in

MV SGsi
then deliver(ta) ≺ deliver(tb). 2Theorem 3.1 Every history H produ
ed by the Database State Ma
hine algorithmis 1SR.Proof: By Lemmas 3.2 and 3.3, every database site si produ
es a serialisationgraph MV SGk

si
su
h that every edge ta →֒ tb ∈ MV SGk

si
satis�es the relation

deliver(ta) ≺ deliver(tb). Hen
e, every database site si produ
es an a
y
li
 multiver-sion serialisation graph MV SGk
si
. By Lemma 3.1, every database site si 
onstru
tsthe same MV SGk

si
. By the Multiversion Serialisation Graph theorem of [BHG87℄,every history produ
ed by the Database State Ma
hine algorithm is 1SR. 23.2.5 Coping with Unilateral AbortsOn
e a transa
tion t is delivered and su

essfully 
erti�ed at some database site si, thas to be 
ommitted at si. Nevertheless, it 
an happen that for some �lo
al reason�(e.g., disk full), si 
annot 
arry out t's 
ommit, and has to abort t.2 This situation
hara
terises a unilateral abort. The problem with unilateral aborts is that they arenon-deterministi
 events, and thus, violate the assumption about the (deterministi
)way requests are pro
essed by database sites in the Database State Ma
hine.One way of 
oping with unilateral aborts is introdu
ing a 
oordination phase (e.g.,Atomi
 Commitment) before 
ommitting transa
tions. This solution introdu
es anadditional 
ost in the transa
tion pro
essing (additional 
ommuni
ation betweensites) whi
h will only be justi�ed in (hopefully rare) abnormal situations. Per-forman
e problems aside, introdu
ing an Atomi
 Commitment phase in the statema
hine approa
h might have major impli
ations. For example, the deterministi
requirement on the manner requests are pro
essed 
ould be re
onsidered.Another way of dealing with unilateral aborts is treating them as site failures. Inthis 
ase, as soon as the site re
overs (e.g., in 
ase of disk full, the re
over pro
edure
onsists in allo
ating more disk spa
e), the transa
tion is 
ommitted on that site.2Note that in the Database State Ma
hine, �lo
al reasons� are not related to 
on
urren
y 
ontrol.
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hineThis means that database site si will not be able to 
ertify and 
ommit any trans-a
tion t′, deliver(t) ≺ deliver(t′), until si is able to 
ommit t (i.e., after the problemthat prevents t from 
ommitting has been removed). It does not make mu
h senseeither to exe
ute transa
tions lo
ally at si before 
ommitting t, and, from the 
lient'spoint of view, this behaviour is similar to a database site failure.3.3 The Reordering Certi�
ation TestTransa
tions running without any syn
hronisation between database sites may leadto high abort rates. In this se
tion, we show how the 
erti�
ation test 
an be modi�edsu
h that more transa
tions pass the 
erti�
ation test, and thus, do not abort.3.3.1 Reordering Prin
ipleThe reordering 
erti�
ation test is based on the observation that the serial order inwhi
h transa
tions are 
ommitted does not need to be the same total order in whi
htransa
tions are delivered to the 
erti�er [PGS97℄. The idea is to dynami
ally builda serial order (that does not ne
essarily follow the delivery order) in su
h a way thatless aborts are produ
ed. By being able to reorder a transa
tion ta to a positionother than the one ta is delivered, the reordering proto
ol in
reases the probabilityof 
ommitting ta.The Database State Ma
hine augmented with the Reordering te
hnique di�ers fromthe Database State Ma
hine presented in Se
tion 3.2 in the way the 
erti�
ation testis performed for 
ommitting transa
tions (see Figure 3.5). The 
erti�er distinguishesbetween 
ommitted transa
tions already applied to the database and 
ommittedtransa
tions in the Reorder List. The Reorder List 
ontains 
ommitted transa
tionswhose write lo
ks have been granted but whose updates have not been applied tothe database yet, and thus, have not been seen by transa
tions in exe
ution. Thebottom line is that transa
tions in the Reorder List may 
hange their relative order.The number of transa
tions in the Reorder List is limited by a predetermined thresh-old, the Reorder Fa
tor. Whenever the Reorder Fa
tor is rea
hed, the leftmost trans-a
tion ta in the Reorder List is removed, its updates are applied to the database,and its write lo
ks are released. If no transa
tion in the Reorder List is waiting toa
quire a write lo
k just released by ta, the 
orresponding data item is available toexe
uting transa
tions. The reordering te
hnique redu
es the number of aborts, how-ever, introdu
es some data 
ontention sin
e data items remain blo
ked longer. Thisexpe
ted tradeo� was indeed observed by our simulation model (see Se
tion 3.5.3).3.3.2 The Termination Proto
ol based on ReorderingLet databasesi
= t(0) ◦t(1) ◦· · · ◦t(lastsi

(τ)) be the sequen
e 
ontaining all transa
tionson database site si at time τ that have passed the 
erti�
ation test augmentedwith the reordering te
hnique (order of delivery plus some possible reordering). The
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Certifier

Reorder List

database

. . . ?t(0) t(1) ta tb tetdct

transaction
deliverFigure 3.5: Reorder te
hnique (reorder fa
tor = 4)sequen
e databasesi

in
ludes transa
tions that have been applied to the databaseand transa
tions in the Reorder List. We de�ne pos(t) the position transa
tion thas in databasesi
, and extend the termination proto
ol des
ribed in Se
tion 3.2.3 toin
lude the reordering te
hnique.1. Certi�
ation test. Database site sj 
ommits ta if there is a position in the Re-order List where ta 
an be inserted. Transa
tion ta 
an be inserted in position

p in the Reorder List if both following 
onditions are true.(a) For every transa
tion tb in the Reorder List su
h that pos(tb) < p, either
tb pre
edes ta, or tb has not updated any data item that ta has read (thisis essentially the 
erti�
ation test des
ribed in Se
tion 3.1.3).(b) For every transa
tion tb in the Reorder List su
h that pos(tb) ≥ p, (b.1)
tb does not pre
ede ta, or ta has not read any data item written by tb, and(b.2) ta did not update any data item read by tb.The 
erti�
ation test with reordering is formalised next as a state transitionfrom the 
ommitting state to the 
ommitted state:

Committing(ta, sj) ; Committed(ta, sj) ≡



































∃position p in the Reorder List s.t. ∀tb, Committed(tb, sj) :

pos(tb) < p⇒ tb → ta ∨WS(tb) ∩RS(ta) = ∅ ∧

pos(tb) ≥ p⇒











(tb 6→ ta ∨WS(tb) ∩RS(ta) = ∅)

∧

WS(ta) ∩RS(tb) = ∅











































The 
ondition for a transition from the 
ommitting state to the aborted stateis the 
omplement of the right side of this expression.2. Commitment. If ta passes the 
erti�
ation test, ta is in
luded in the ReorderList at position p, that is, all transa
tions in the Reorder List that are on the
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hineright of p, in
luding the one at p, are shifted one position to the right, and tais in
luded. If, with the in
lusion of ta, the Reorder List rea
hes the ReorderFa
tor threshold, the leftmost transa
tion in Reorder List is removed and itsupdates are applied to the database.3.3.3 Algorithm Corre
tnessFrom Lemma 3.1, every database site builds the same multiversion serialisationgraph. It remains to show that all the histories produ
ed by every database siteusing reordering have a multiversion serialisation graph that is a
y
li
, and, there-fore, 1SR.We rede�ne the version-order relation ≪ for the termination proto
ol based on re-ordering as follows: xa ≪ xb i� pos(ta) < pos(tb) and ta, tb ∈MV SGsi
.Lemma 3.4 If there is a read-from relation ta →֒ tb ∈ MV SGsi

then pos(ta) <
pos(tb).Proof: For a 
ontradi
tion, assume that ta →֒ tb ∈MV SGsi

and pos(tb) < pos(ta).A read-from relation ta →֒ tb is in MV SGsi
if rb[xa] ∈ C(H)si

, a 6= b, resulting intwo 
ases of interest: (a) tb was delivered and 
ommitted before ta, and (b) tb wasdelivered and 
ommitted after ta but reordered to a position before ta. The 
ase inwhi
h ta is delivered and 
ommitted after tb is the same as 
ase (a), and the 
ase inwhi
h ta is delivered before tb and reordered to a position before tb is not possiblesin
e when ta is 
erti�ed, tb is not in the Reorder List.In 
ase (a), it follows that tb reads un
ommitted data (xa) from ta, whi
h is notpossible: if ta and tb exe
uted at the same database site, reading un
ommitted datais avoided by the stri
t 2PL rule, and if ta and tb exe
uted at di�erent database sites,
ta's updates are only seen by tb after ta's 
ommit. In 
ase (b), from the 
erti�
ationtest augmented with reordering, when tb is 
erti�ed, we have that (ta 6→ tb∨WS(ta)∩
RS(tb) = ∅) ∧ WS(tb) ∩ RS(ta) = ∅ evaluates true. (Note that sin
e tb is the
ommitting transa
tion, the indexes a and b in the expression given in the previousse
tion have been inverted.) Sin
e tb reads-from ta, WS(ta) ∩ RS(tb) 6= ∅, and so,it must be that ta 6→ tb. If ta and tb exe
uted at the same database site, ta 6→ tbimplies committing(tb)

e
→ committing(ta). However, this is only possible if tb reads

x from ta before ta 
ommits, 
ontradi
ting the stri
t 2PL rule. If ta and tb exe
utedat di�erent database sites, ta 6→ tb implies commit(ta)site(tb) 6
e
→ committing(tb),and so, tb passed to the 
ommitting state before ta 
ommitted at site(tb), whi
h
ontradi
ts the fa
t that tb reads from ta, and 
on
ludes the proof of the Lemma.2Lemma 3.5 If there is a version-order relation ta →֒ tb ∈ MV SGs then pos(ta) <

pos(tb).Proof: A

ording to the de�nition of version-order edges, there are two 
ases ofinterest. (1) Let rc[xb], wb[xb], and wa[xa] be in C(H)si
(a, b and c distin
t), and
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xa ≪ xb, whi
h implies ta →֒ tb is in MV SGsi

. It follows from the de�nition ofversion-order that pos(ta) < pos(tb). (2) Let ra[xc], wc[xc], and wb[xb] be in C(H)si(a, b and c distin
t), and xc ≪ xb, whi
h implies ta →֒ tb is in MV SGsi
. We showthat pos(ta) < pos(tb). Sin
e ta reads-from tc, tc 
ommits before ta is 
erti�ed, andthere are two situations to 
onsider.(a) tc and tb have been 
ommitted when ta is 
erti�ed. Assume for a 
ontradi
tionthat pos(tb) < pos(ta). From the 
erti�
ation test, we have that either tb → taor WS(tb)∩RS(ta) = ∅. Sin
e x ∈WS(tb) and x ∈ RS(ta), WS(tb)∩RS(ta) 6=

∅, and so, it must be that tb → ta. However, ta reads x from tc and not from
tb, whi
h 
an only happen if xb ≪ xc, 
ontradi
ting that xc ≪ xb.(b) tc and ta have been 
ommitted when tb is 
erti�ed. Assume for a 
ontradi
tionthat pos(tb) < pos(ta). From the 
erti�
ation test, it must be that (ta 6→
tb ∨ WS(ta) ∩ RS(tb) = ∅) ∧ WS(tb) ∩ RS(ta) = ∅ evaluates true, whi
hleads to a 
ontradi
tion sin
e x ∈ WS(tb) and x ∈ RS(ta), and therefore,
WS(tb) ∩RS(ta) 6= ∅. 2Theorem 3.2 Every history H produ
ed by the Database State Ma
hine algorithmaugmented with the reordering te
hnique is 1SR.Proof: By Lemmas 3.4 and 3.5, every database site si produ
es a serialisation graph

MV SGk
si
su
h that every edge ta →֒ tb ∈ MV SGk

si
satis�es the relation pos(ta) <

pos(tb). Hen
e, every database site produ
es an a
y
li
 multiversion serialisationgraph MV SGx
s . By Lemma 3.1, every database site si 
onstru
ts the same MV SGk

si
.By the Multiversion Serialisation Graph theorem of [BHG87℄, every history produ
edby the Database State Ma
hine algorithm augmented with Reordering is 1SR. 23.4 Simple Probabilisti
 AnalysisIn this se
tion, we evaluate the Database State Ma
hine approa
h using a simpleanalyti
al model, based on the deadlo
k analysis presented in [GR93℄. Our analyt-i
al model 
hara
terises the abort rate of the Database State Ma
hine without theReordering te
hnique.We simplify the analysis by making some assumptions about the system. Thedatabase is 
omposed of DB data items, all with the same probability of beinga

essed (i.e., no hotspots). All transa
tions follow the same pattern, that is, ea
htransa
tion exe
utes a �xed number nr of read a

esses and a �xed number nw ofwrite a

esses. Only update transa
tions are 
onsidered.First, we 
al
ulate the probability that a transa
tion passes the 
erti�
ation test. Ifthere are only two 
on
urrent transa
tions in the system, ta and tb, and ta 
ommitsbefore tb, the probability that a read operation performed by tb does not 
on�i
twith any write performed by ta is (1 − nw/DB), and the probability that no readperformed by tb 
on�i
ts with no write performed by ta (i.e., the likelihood that tb
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hinepasses the 
erti�
ation test) is ∏nr−1
i=0 (1−nw/(DB−i)). Considering that DB ≫ nr(mu
h bigger than), this is approximately (1− nw/DB)nr.For a set G of N 
on
urrent transa
tions, and assuming a worst 
ase analysis whereall transa
tions in G have non-interse
ting write sets, the probability that the i-thtransa
tion passes the 
erti�
ation test after the 
ommit of (i − 1) transa
tions,denoted Pi,N , is

Pi,N =

(

1−
(i− 1) nw

DB

)nr

. (3.1)If we 
onsider that (i − 1) nw ≪ DB (mu
h smaller than), expression (3.1) 
an besimpli�ed as follows
Pi,N = 1−

(

nr

1

)(

(i− 1) nw

DB

)

+ . . . +

(

nr

nr

)(

(i− 1) nw

DB

)nr

≈ 1−
(i− 1) nr nw

DB
,

(3.2)sin
e the high-order terms in (3.2) 
an be dropped [GR93℄.In the average, the probability PC that a transa
tion t in G passes the 
erti�
ationtest is
PC ≈

1

N

N
∑

i=1

Pi,N = 1−
(N − 1) nr nw

2 DB
. (3.3)Furthermore, 
onsidering TPSup the number of update transa
tions submitted perse
ond in the system, and τ the time in se
onds it takes for a transa
tion to bedelivered and 
erti�ed, N = TPSup τ . However, not all transa
tions in G may 
ause

t's abort sin
e transa
tions that exe
uted at the same site as t are properly orderedwith t by lo
al lo
king me
hanisms (we assume that the probability of lo
al deadlo
kis very small). Ex
luding su
h transa
tions leads to N∗ = TPSup τ (nS − 1)/nS(re
all that nS is the number of database sites). From (3.3), in the average, thelikelihood that a transa
tion t does not pass the 
erti�
ation test, PC , is
PC ≈

(N∗ − 1) nr nw

2 DB
. (3.4)Using PC we 
an estimate the abort rate of the Database State Ma
hine. In Se
-tion 3.5, we 
ompare this probabilisti
 abort rated with results obtained with oursimulation model.3.5 Simulation ModelThe simulation model we have developed abstra
ts the main 
omponents of a repli-
ated database system (our approa
h is similar to [ACL87℄). In this se
tion, we
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ribe the simulation model, analyse the behaviour of the Database State Ma
hineapproa
h using the output provided by the simulation model, and 
ompare some ofthe results obtained with the simulation model with the results obtained with theprobabilisti
 analysis developed in the previous se
tion.3.5.1 Database Model and SettingsEvery database site is modelled as a pro
essor with some data disks and a log diskas lo
al resour
es. The network is modelled as a 
ommon resour
e shared by alldatabase sites. Ea
h pro
essor is shared by a set of exe
ution threads, a terminatingthread, and a workload generator thread (see Figure 3.6). All threads have the samepriority, and resour
es are allo
ated to threads in a �rst-in-�rst-out basis. Ea
hexe
ution thread exe
utes one transa
tion at a time, and the terminating threadis responsible for doing the 
erti�
ation. The workload generator thread 
reatestransa
tions at the database site. Exe
ution and terminating threads at a databasesite share the database data stru
tures (e.g., lo
k table).
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NetworkFigure 3.6: Simulation modelCommitting transa
tions are delivered by the terminating thread and then 
erti�ed.If a transa
tion passes the 
erti�
ation test, its write lo
ks are requested and itsupdates are performed. However, on
e the terminating thread a
quires the trans-a
tion's write lo
ks, it makes a log entry for this transa
tion (with its writes) andassigns an exe
ution thread to exe
ute the transa
tion's updates over the database.This releases the terminating thread to treat the next 
ommitting transa
tion.The parameters 
onsidered by our simulation model with the settings used in theexperiments are shown in Table 3.1. The workload generator thread 
reates trans-a
tions and assigns them to exe
uting threads a

ording to the pro�le des
ribed(per
entage of update transa
tions, per
entage of writes in update transa
tions, andnumber of operations). We have 
hosen a relative small database size in order torea
h data 
ontention qui
kly and avoid extremely long simulation runs that would
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hinebe ne
essary to obtain statisti
ally signi�
ant results.We use a 
losed model, that is, ea
h terminated transa
tion (
ommitted or aborted) isrepla
ed by a new one. Aborted transa
tions are sent ba
k to the workload generatorthread, and some time later resubmitted at the same database pro
ess where theyoriginated. The multiprogramming level determines the number of exe
uting threadsat ea
h database pro
ess. Lo
al deadlo
ks are dete
ted with a timeout me
hanism:transa
tions are given a 
ertain amount of time to exe
ute (transa
tion timeout), andtransa
tions that do not rea
h the 
ommitting state within the timeout are aborted.Database parameters Pro
essor parametersDatabase size (data items) 2000 Pro
essor speed 100 MIPSDatabase sites (n) 1..8 Exe
ute an operation 2800 instr.Multiprogramming level (MPL) 8 Certify a transa
tion 5000 instr.Data item size 2 KB Reorder a transa
tion 15000 instr.Transa
tion parameters Disk parameters (Seagate ST-32155W)Update transa
tions 10% Number of data disks 4Writes in update transa
tions 30% Number of log disks 1Number of operations 5..15 Miss ratio 20%Transa
tion timeout 0.5 se
 Laten
y 5.54 mse
Reorder fa
tor 0, n, 2n, 3n, 4n Transfer rate (Ultra-SCSI) 40 MB/se
General parameters Communi
ation parametersControl data size 1 KB Atomi
 Broad
asts per se
ond ∞, 180, 800/nCommuni
ation overhead 12000 instr.Table 3.1: Simulation model parameters
Pro
essor a
tivities are spe
i�ed as a number of instru
tions to be performed. Thesettings are an approximation from the number of instru
tions used by the simula-tor to exe
ute the operations. The 
erti�
ation test is e�
iently implemented byasso
iating to ea
h database item a version number [ACL87℄. Ea
h time a data itemis updated by a 
ommitting transa
tion, its version number is in
remented. Whena transa
tion �rst reads a data item, it stores the data item's version number (thisis the transa
tion read set). The 
erti�
ation test for a transa
tion 
onsists thus in
omparing ea
h entry in the transa
tion's read set with the 
urrent version of the
orresponding data item. If all data items read by the transa
tion are still 
urrent,the transa
tion passes the 
erti�
ation test. We 
onsider that version numbers arestored in main memory. The reordering test is more 
omplex, sin
e it requires han-dling read sets and write sets of transa
tions in the reorder list. The 
ontrol data size
ontains the data stru
tures ne
essary to perform the 
erti�
ation test (e.g., readsetand writeset). Atomi
 Broad
ast settings are des
ribed in the next se
tion.
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 Broad
ast ImplementationWe do not 
onsider any spe
i�
 Atomi
 Broad
ast algorithm in our simulation. In-stead, we take a more general approa
h, based on broad
ast algorithms 
lasses, a
-
ording to s
alability issues. Our simulation is based on these 
lasses of algorithms.Atomi
 Broad
ast algorithms 
an be divided into two 
lasses. We say that an Atomi
Broad
ast algorithm s
ales well, and belongs to the �rst 
lass, if the number ofmessages delivered per time unit in the system is independent of the number ofsites that deliver the messages. This 
lass is denoted 
lass k, where k determinesthe number of messages that 
an be delivered per time unit. An Atomi
 Broad
astalgorithm of 
lass k is presented in [Jal98℄. In order to keep a 
onstant delivery time,the algorithm in [Jal98℄ relies on spe
ial hardware.If the number of messages delivered per time unit in the system de
reases with thenumber of database sites that deliver the messages, the Atomi
 Broad
ast algorithmdoes not s
ale well, and belongs to the se
ond 
lass. This 
lass is denoted 
lass k/n,where n is the number of sites that deliver the messages, and k/n is the numberof messages that 
an be delivered per time unit. In this 
ase, the more sites areadded, the longer it takes to deliver a message, and so, the number of messagesdelivered in the system per time unit de
reases exponentially with the number ofsites. Most Atomi
 Broad
ast algorithms fall in this 
ategory (e.g., [BSS91, CM84,CT96, GMS91, LG90, WS95℄).As a referen
e, we also de�ne an Atomi
 Broad
ast that delivers messages instan-taneously. Su
h an algorithm is denoted 
lass ∞ (i.e., it would allow in theory anin�nite number of messages to be delivered per time unit).The value 
hosen for 
lass k/n in Table 3.1 is an approximation based on experimentswith SPARC 20 workstations running Solaris 2.3 and an FDDI network (100Mb/s)using the UDP transport proto
ol with a message bu�er of 20 Kbytes. The Atomi
Broad
ast algorithm used in the experiments is of 
lass k/n, and the results foundallowed to estimate k = 800 in k/n. The value for 
lass k was arbitrarily takenas 180. Moreover, for all 
lasses, the exe
ution of an Atomi
 Broad
ast has some
ommuni
ation overhead that does not depend on the number of sites (see Table 3.1).3.5.3 Experiments and ResultsIn the following, we dis
uss the experiments we 
ondu
ted and the results obtainedwith the simulation model. Ea
h point plotted in the graphi
s has a 
on�den
einterval of 95%, and was determined from a sequen
e of simulations, ea
h one 
on-taining 100000 submitted transa
tions. In order to remove initial transients [Jai91℄,only after the �rst 1000 transa
tions had been submitted, the statisti
s started tobe gathered.In some of the graphi
s presented next, we analyse update and read-only transa
tionsseparately, although the values presented were observed in the same simulations (i.e.,all simulations 
ontain update and read-only transa
tions).
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hineUpdate Transa
tions Throughput. The experiments shown in Figures 3.7 and3.8 evaluate the e�e
ts of the Atomi
 Broad
ast algorithm 
lasses on the transa
tionthroughput. In these experiments, ea
h 
luster of database sites pro
essed as manytransa
tions as possible, that is, transa
tion throughput was only limited by the re-sour
es available. Figure 3.7 shows the number of update transa
tions submitted,and Figure 3.8 the number of update transa
tions 
ommitted. From Figure 3.7, the
hoi
e of a parti
ular Atomi
 Broad
ast algorithm 
lass is not relevant for 
lusterswith less than �ve database sites: whatever the 
lass, transa
tion throughput in-
reases linearly with the number of database sites. This happens be
ause until fourdatabase sites, all three 
on�gurations are limited by the same resour
e, namely, lo-
al data disks (see paragraph about Resour
e Utilisation). Sin
e the number of datadisks in
reases linearly with the number of database sites, transa
tion throughputalso in
reases linearly. For 
lusters with more than four database sites, 
ontentionis determined di�erently for ea
h algorithm 
lass. For 
lass ∞, data 
ontention pre-vents linear throughput growth, that is, for more than �ve sites, the terminationthread rea
hes its limit and it takes mu
h longer for update transa
tions to 
ommit.The result is that data items remain lo
ked for longer periods of time, impeding theprogress of exe
uting transa
tions. For 
lasses k and k/n, 
ontention is 
aused by thenetwork (the limit being 180 and 800/n messages delivered per se
ond, respe
tively).It was expe
ted that after a 
ertain system load, the terminating thread wouldbe
ome a bottlene
k, and transa
tion 
erti�
ation 
riti
al. However, from Figure 3.8,this only happens for algorithms of 
lass ∞ (about 170 update transa
tions perse
ond), sin
e for algorithms in the other 
lasses, the network be
omes a bottlene
kbefore the terminating thread rea
hes its pro
essing limit. Also from Figure 3.8,although the number of transa
tions submitted per se
ond for 
lusters with morethan four sites is 
onstant for 
lass k, the number of transa
tion aborts in
reaseas the number of database sites augments. This is due to the fa
t that the moredatabase sites, the more transa
tions are exe
uted under an optimisti
 
on
urren
y
ontrol and thus, the higher the probability that a transa
tion aborts. The samephenomenon explains the di�eren
e between submitted and 
ommitted transa
tionsfor 
lass k/n. For 
lass ∞, the number of transa
tions 
ommitted is a 
onstant,determined by the 
apa
ity of the terminating thread.Queries Throughput. Figures 3.9 and 3.10 show submitted and 
ommitted queriesper se
ond in the system. The 
urves in Figure 3.9 have the same shape as the onesin Figure 3.7 be
ause the simulator enfor
es a 
onstant relation between submit-ted queries and submitted update transa
tions (see Figure 3.1, update transa
tionsparameter). Update transa
tions throughput is determined by data and resour
e
ontention, and thus, queries are bound to exhibit the same behaviour. If updatetransa
tions and queries were assigned a �xed number of exe
uting threads at the be-ginning of the simulation, this behaviour would not have been observed, however, therelation between submitted queries and update transa
tions would be determined byinternal 
hara
teristi
s of the system and not by an input parameter, whi
h would
ompli
ate the analysis of the data produ
ed in the simulation. Queries are onlyaborted during their exe
ution to solve lo
al deadlo
ks they are involved in, or onbehalf of 
ommitting update transa
tions that have passed the 
erti�
ation test and



3.5. Simulation Model 39
k/n
k
∞

Number of SitesSubmittedT
PS(update)

87654321

250200150100500Figure 3.7: Submitted TPS (update)
k/n
k
∞

Number of SitesCommittedT
PS(update)

87654321

250200150100500Figure 3.8: Committed TPS (update)



40 Chapter 3. The Database State Ma
hineare requesting their write lo
ks (Se
tion 3.2.3). As shown in Figure 3.9 and 3.10,the values for submitted and 
ommitted queries, for all Atomi
 Broad
ast algorithm
lasses, are very 
lose to ea
h other, whi
h amounts to a small abort rate.Reordering. Figures 3.11 and 3.12 show the abort rate for algorithms in the 
lasses
k and k/n respe
tively, with di�erent reorder fa
tors. We do not 
onsider algorithmsin the 
lass ∞ be
ause reordering does not bring any improvement to the abort ratein this 
ase (even if more transa
tions passed the 
erti�
ation test, the terminatingthread would not be able to pro
ess them). In both 
ases, reorder fa
tors smallerthan 4n, have proved to redu
e the number of aborted update transa
tions. Forreordering fa
tors equal to or greater than 4n, the data 
ontention introdu
ed bythe reordering te
hnique leads to an in
rease on the abort rate that is greater thanthe redu
tion obtained with its use (i.e., the reordering te
hnique in
reases the abortrate of update transa
tions). When the system rea
hes this point, most exe
utingupdate and read-only transa
tions time out and are aborted by the system.Abort Rate. Figures 3.13 and 3.14 present the detailed abort rate for the DatabaseState Ma
hine based on algorithms of 
lass k/n without and with the Reorderingte
hnique (reorder fa
tor equal to 3n). Figures 3.13 and 3.14 are not in the same s
alebe
ause the results shown di�er from more than one order of magnitude. Figure 3.13also shows the values obtained with the probabilisti
 model developed in Se
tion 3.4.The graphi
s only in
lude the aborts during transa
tion exe
ution, and, in the 
aseof update transa
tions, due to failing the 
erti�
ation test. Aborts due to time outare not shown be
ause in the 
ases presented they amount to a small fra
tion of theabort rate. Without reordering (Figure 3.13), most transa
tions fail the 
erti�
ationtest and are aborted.The results observed are very 
lose to those 
al
ulated using the probabilisti
 model.In order to draw the probabilisti
 
urve, we have to 
al
ulate N , the number of
on
urrent transa
tions. N is expressed as the produ
t of TPSup, the number ofupdate transa
tions submitted per se
ond, and τ , the time it takes to exe
ute atransa
tion. We take the values of TPSup and τ from the simulation experiments.When the Reordering te
hnique is used, the number of transa
tions that fail the
erti�
ation test is smaller than the number of transa
tions aborted during theirexe
ution (see Figure 3.14).Response Time. Figure 3.15 presents the response time for the exe
utions shownin Figures 3.7 and 3.8. The pri
e paid for the higher throughput presented byalgorithms of 
lass ∞, when 
ompared to algorithms of 
lass k, is a higher responsetime. For algorithms in the 
lass k/n, this only holds for less than 7 sites. When thenumber of transa
tions submitted per se
ond is the same for all 
lasses of Atomi
Broad
ast algorithms (see Figure 3.16), algorithms in 
lass ∞ are faster. Querieshave the same response time, independently of the Atomi
 Broad
ast 
lass. Notethat 
on�gurations with less than three sites are not able to pro
ess 1000 transa
tionsper se
ond. This explains why update transa
tions exe
uted in a single database site
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hinehave a better response time than update transa
tions exe
uted in a Database StateMa
hine with two sites (a single site rea
hes no more than 403 TPS, and a DatabaseState Ma
hine with two sites rea
hes around 806 TPS).Figures 3.17 and 3.18 depi
t the degradation of the response time due to the Re-ordering te
hnique. The in
rease in response time be
omes a

entuated when data
ontention be
omes a problem (i.e., RF = 4n).Resour
e Utilisation. Finally, Figures 3.19 and 3.20 present the way resour
eutilisation varies when the number of sites in
reases, with and without the Reorderingte
hnique. The values in Figure 3.19 were observed in the same experiments shownin Figures 3.7 � 3.10, and Figure 3.13, and the values in Figure 3.20 were observed inthe same experiments depi
ted in Figures 3.14 and 3.18. In both 
ases, in a DatabaseState Ma
hine with less than �ve sites, the limiting resour
es are data disks. For �vesites or more, the network be
omes the bottlene
k. The log disk utilisation 
urve hasa shape similar to the 
urve that represents 
ommitted transa
tions, sin
e the logis only used for 
ommitting transa
tions. This explains the superior log utilisationwhen the Reordering te
hnique is used.Overall Dis
ussion. Besides showing the feasibility of the Database State Ma-
hine, the simulation model allows to draw some 
on
lusions about its s
alability.Update transa
tions s
alability is determined by the s
alability of the Atomi
 Broad-
ast algorithm 
lass, whi
h has showed to be a potential bottlene
k of the system.This happens be
ause the network is the only resour
e shared by all database sites(and network bandwidth does not in
rease as more database sites are added to thesystem). As for queries, only a slight grow in the abort rate was observed as thenumber of sites in
rease. This is due to the fa
t that queries are exe
uted only lo
ally,without any syn
hronisation among database sites.The above result about update transa
tions s
alability deserves a 
areful interpreta-tion sin
e, in regard to network resour
e utilisation, te
hniques that fully syn
hronisetransa
tions between database sites (e.g., distributed 2PL proto
ol [BHG87℄) prob-ably will not outperform the Database State Ma
hine. A typi
al Atomi
 Broad
astalgorithm in the 
lass k/n needs about 4n [PGS98℄ messages to deliver a transa
tion,and a proto
ol that fully syn
hronises transa
tion operations needs around m × nmessages, where m is the number of transa
tion operations (assuming that readsand writes are syn
hronised) [BHG87℄. Thus, unless transa
tions are very small(m ≤ 4), the Database State Ma
hine needs less messages than a te
hnique thatfully syn
hronises transa
tions.Furthermore, the simulation model also shows that any e�ort to improve the s
alabil-ity of update transa
tions should be 
on
entrated on the Atomi
 Broad
ast primitive.Finally, if on the one hand the deferred update te
hnique has no distributed dead-lo
ks, on the other hand its la
k of syn
hronisation may lead to high abort rates.The simulation model has showed that, if well tuned, the reordering 
erti�
ation test
an over
ome this drawba
k.
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hine3.6 Related WorkThe Database State Ma
hine is an example of the deferred update te
hnique. Inthis se
tion, we situate the deferred update te
hnique in the 
ontext of repli
ateddatabases and present repli
ated database algorithms that are related to the DatabaseState Ma
hine.3.6.1 Database Repli
ationDatabase repli
ation te
hniques 
an be 
lassi�ed a

ording to the way updates arepropagated to database sites, and the way updates are regulated. These two 
riteriade�ne two orthogonal attributes that 
hara
terise database repli
ation te
hniques.Updates 
an be propagated in an eager or lazy way [GHOS96℄. In eager repli
ation,
lient update requests are applied to all 
orre
t database sites as part of the originaltransa
tion (i.e., the transa
tion 
ommits in all 
orre
t database sites or in none).In lazy repli
ation, a transa
tion �rst 
ommits at one database site, and then theother database sites are updated as di�erent transa
tions. Lazy repli
ation may notpreserve one-
opy serialisability.Eager repli
ation admits two variations [BHG87℄. Immediate update repli
ation prop-agates every single 
lient request to all database sites during the exe
ution of thetransa
tion, whereas in the deferred update repli
ation, a single database site re
eivesand pro
esses all 
lient requests, and only when the 
lient requests the 
ommit op-eration, the updates are propagated to the other database sites.Master and group based repli
ation regulates the way database sites a

ept updaterequests [GHOS96℄. In the master based repli
ation, only one database site 
anpro
ess update requests, while in the group based repli
ation, any database site 
anre
eive update requests from the 
lients and modify the database. These me
hanism
an be 
onsidered as a kind of database ownership, where only the database ownerhas the right to pro
ess updates. In the master based repli
ation there is only onedatabase owner and in the group based repli
ation there are n database owners. WithMaster based te
hniques, the failure of the Master prevents any update operationfrom being pro
esses until the Master re
overs. If availability is an important issue,then some me
hanism is ne
essary to assign a new Master.Table 3.2 summarises the attributes that 
hara
terise database repli
ation proto
ols.The Database State Ma
hine is an eager group repli
ation me
hanism.Commer
ial databases have mostly fo
used on lazy repli
ation te
hniques. This is inpart due to the fa
t that 
ommer
ial repli
ation has sometimes other goals than highavailability (e.g., repli
ation may aim only at performan
e, or providing support foro�-line analyti
al pro
essing).Sybase Repli
ation Server [Syb99℄ and IBM Data Propagator [Gol95℄, are examplesof master based lazy repli
ation. Although these me
hanisms are implemented indi�erent ways,3 they both share the parti
ularity that repli
ation is implemented3Sybase Repli
ation Server is based on the �push model,� where sites subs
ribe to 
opies of data,
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ation Repli
ationGroup N transa
tions 1 transa
tionOwnership N Database owners N Database ownersMaster N transa
tions 1 transa
tionOwnership 1 Database owner 1 Database ownerTable 3.2: Database repli
ation 
lassi�
ation�outside the database engine,� and in both 
ases, the repli
ation me
hanism interferesas little as possible in the �normal� (i.e., without repli
ation) exe
ution. Ora
leversion 7.1 o�ers me
hanisms to implement any repli
ation strategy [Del95℄. To keepdatabase 
onsisten
y with lazy group and lazy master repli
ation, Ora
le provides
on
iliation rules that 
an be used to solve 
on�i
ts [Ora95, Ja
95℄.In the next se
tions, we present other database repli
ation proposals. This is a di�-
ult task to a

omplish due to the multitude of repli
ated database algorithms andthe variety of assumptions that they make about the system. Thus, before pro
eed-ing with our dis
ussion, we point out that the Database State Ma
hine is at theinterse
tion of two axes of resear
h. First, relying on a 
erti�
ation test to 
ommittransa
tions is an appli
ation of optimisti
 
on
urren
y 
ontrol. However, terminat-ing transa
tions with an Atomi
 Broad
ast primitive is an alternative to solutionsbased on Atomi
 Commitment proto
ols. Furthermore, we mainly 
on
entrate ourdis
ussion on eager group based repli
ation.3.6.2 Optimisti
 Con
urren
y ControlAlthough most 
ommer
ial database systems are based on (pessimisti
) 2PL syn-
hronisation [GR93℄, optimisti
 
on
urren
y 
ontrol have re
eived in
reasing atten-tion sin
e it introdu
tion in [KR81℄ (see [Tho98, Bha99, OV99℄ for surveys). It hasbeen shown in [ACL87℄ that if su�
ient hardware resour
es are available, optimisti

on
urren
y 
ontrol 
an o�er better transa
tion throughput than 2PL. This resultis explained by the fa
t that an in
rease in the multiprogramming level, in orderto rea
h high transa
tion throughput, also in
reases lo
king 
ontention, and thus,the probability of transa
tion waits due to 
on�i
ts, and transa
tion restarts to solvedeadlo
ks. The study in [ACL87℄ is for a 
entralised single-
opy database. One 
ouldexpe
t that in a repli
ated database, the 
ost of syn
hronising distributed a

esses bymessage passing would be non negligible as well. In fa
t, the study in [GHOS96℄ hasshown that fully syn
hronising a

esses in repli
ated database 
ontexts (as requiredby 2PL) is dangerous, sin
e the probability of deadlo
ks is dire
tly proportional tothe third power of the number of database sites in the system.and 
hanges are propagated from the primary to the ba
kups as soon as they o

ur, and IBM DataPropagator is based on the �pull model,� where repli
ated data is demanded by the ba
kups to theprimary at regular time intervals.



50 Chapter 3. The Database State Ma
hine3.6.3 Transa
tion TerminationThe limitations of traditional Atomi
 Commitment proto
ols in repli
ated 
ontextshave been re
ognised by many authors, and several algorithms have been proposed toterminate transa
tions in repli
ated databases without Atomi
 Commitment. How-ever, most approa
hes are not eager group based, or require expli
it use of appli
ationsemanti
s.The fa
t that Atomi
 Commitment leads to abort transa
tions in situations where asingle repli
a manager 
rashes has been pointed out in [GOS96℄. The authors proposea variation of the three phase 
ommit proto
ol [Ske81℄ that 
ommits transa
tions aslong as a majority of repli
a managers are up.In [DGH+87℄, lazy based epidemi
 repli
ation proto
ols are proposed as an alterna-tive to traditional repli
ation proto
ols. Another example of epidemi
 repli
ationis proposed in [JMR97℄, whi
h relies on semanti
 knowledge about the appli
ation.Bayou [TTP+95℄ implements a lazy master repli
ation me
hanism, o�ering weak 
on-sisten
y, while the work in [BK97℄ presents a lazy master approa
h that guaranteesone-
opy serialisability.A deferred update repli
ation proto
ol that guarantees one-
opy serialisability ispresented in [AAS97℄. In this proto
ol, transa
tions that exe
ute at the same pro
essshare the same data items, using lo
ks to solve lo
al 
on�i
ts. This proto
ol isbased on a variation of the three phase 
ommit proto
ol to 
erti�
ate and terminatetransa
tions.It is only re
ently that Atomi
 Broad
ast has been 
onsidered as a possible 
andi-date for terminating transa
tions in repli
ated databases. S
hiper and Raynal [SR96℄pointed out some similarities between the properties of Atomi
 Broad
ast and stati
transa
tions (e.g., transa
tions whose operations are known in advan
e). Atomi-
ally broad
asting transa
tions was also addressed in [Kei94℄, whi
h assumes thattransa
tion operations are known at the beginning of the transa
tion exe
ution. Thework in [BK98℄ investigates relaxed isolation guarantees in order to develop databaserepli
ation proto
ols.In [AAAS97℄, a family of proto
ols for the management of repli
ated database basedon the immediate and the deferred te
hniques is proposed. The immediate updaterepli
ation 
onsists in atomi
ally broad
asting every write operation to all databasesites. This me
hanism requires that every database site exe
ute ea
h transa
tionoperation in the same way. For the deferred update repli
ation, two Atomi
 Broad-
asts are ne
essary to 
ommit a transa
tion. An alternative solution is also proposed,using a sort of multiversion me
hanism to deal with the writes during transa
tionexe
ution (if a transa
tion writes a data item, a later read should re�e
t this write).Amir et al. [ADMSM94℄ also use Atomi
 Broad
ast to implement repli
ated databases.However, the s
heme proposed 
onsiders that 
lients submit individual obje
t oper-ations rather than transa
tions.
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ussion 513.7 Dis
ussionThe Database State Ma
hine is an aggressive approa
h to building high performan
erepli
ated databases. Its prin
iple is to redu
e syn
hronisation between databasesites to the utmost, requiring a deterministi
 transa
tion pro
essing. Deterministi
transa
tion pro
essing is a deli
ate issue in the 
ontext of a repli
ated database. Wehave 
hosen to base the Database State Ma
hine on the deferred update repli
ationte
hnique be
ause this allowed us to 
on
entrate the deterministi
 requirements ona very pre
ise part of the system, the 
erti�
ation test. Furthermore, the deferredupdate repli
ation te
hnique also permits a fair distribution of load among databasesites, that is, transa
tions are only exe
uted at one database site, although updatetransa
tions are 
ommitted in all database sites.The optimisti
 way in whi
h transa
tions are pro
essed in the deferred update repli-
ation may lead to high abort rates. The Database State Ma
hine redu
es the numberof aborts using the Reordering te
hnique, whi
h exploits the serialisability propertyto 
ommit transa
tions that otherwise would be aborted. Reordering transa
tionsin
reases the response time, but, as it was observed in our simulations, for 
ertainreorder fa
tors, this 
ost is a

eptable.Some issues about the Database State Ma
hine remain open for further studies. Forexample, we have not been 
on
erned by the way 
lients 
hoose the database site thatwill exe
ute their requests. This is an important issue for load balan
ing. Anotherinteresting issue for future studies is how to pass from full repli
ation to partialrepli
ation. At �rst glan
e, this seems not to be possible be
ause of the 
erti�
ationtest. However, if the 
erti�
ation test is augmented with Atomi
 Commitment (seeSe
tion 3.2.5), partial repli
ation be
omes possible. Note that even if the 
erti�
ationtest relies on an Atomi
 Commitment, propagating 
ommitting transa
tions withan Atomi
 Broad
ast is still attra
tive sin
e it in
reases the 
han
e of 
ommittingtransa
tions [PGS98℄.
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Chapter 4Generi
 Broad
ast All generalizations are dangerous,even this one.Alexandre DumasThe Database State Ma
hine relies on an Atomi
 Broad
ast primitive to propagateupdate transa
tions. As shown in the previous 
hapter, Atomi
 Broad
ast is su�
ientto ensure the Database State Ma
hine 
orre
tness, however, it turns out that itis not ne
essary. In this 
hapter, we introdu
e the Generi
 Broad
ast problem, abroad
ast primitive that allows appli
ations to tailor-make their order requirements.The intuition behind Generi
 Broad
ast is that message ordering has a 
ost, andfor several appli
ations, like the Database State Ma
hine, total ordering of messagesis stronger than ne
essary to guarantee 
orre
tness. Generi
 Broad
ast allows theappli
ation to de�ne a 
on�i
t relation that re�e
ts the semanti
 meaning of themessages.In addition to introdu
ing the Generi
 Broad
ast problem, this 
hapter presents analgorithm that solves it, and 
ompares this algorithm to known Atomi
 Broad
astimplementations using the delivery laten
y parameter. This 
hapter is based on anasyn
hronous system model. Pro
esses 
ommuni
ate by message passing throughQuasi-Reliable 
hannels, and have the 
rash-stop mode of failure. The system isaugmented with failure dete
tors (see Chapter 2).4.1 Problem De�nitionGeneri
 Broad
ast is de�ned by the primitives g-Broad
ast and g-Deliver.1 Whena pro
ess p invokes g-Broad
ast with a message m, we say that p g-Broad
asts m,and when p returns from the exe
ution of g-Deliver with message m, we say that
p g-Delivers m. Message m is taken from a set M to whi
h all messages belong.1g-Broad
ast has no relation with the GBCAST primitive de�ned in the Isis system [BJ87℄.
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 Broad
astCentral to Generi
 Broad
ast is the de�nition of a (symmetri
) 
on�i
t relation on
M×M denoted by C (i.e., C ⊆ M×M). If (m,m′) ∈ C then we say that m and
m′ 
on�i
t. Generi
 Broad
ast is spe
i�ed by (1) a 
on�i
t relation C and (2) thefollowing 
onditions:(Validity) If a 
orre
t pro
ess g-Broad
asts a message m, then it eventuallyg-Delivers m.(Agreement) If a 
orre
t pro
ess g-Delivers a message m, then all 
orre
tpro
esses eventually g-Deliver m.(Integrity) For any message m, every 
orre
t pro
ess g-Delivers m at moston
e, and only if m was previously g-Broad
ast by some pro
ess.(Partial Order) If 
orre
t pro
esses p and q both g-Deliver messages mand m′, and m and m′ 
on�i
t, then p g-Delivers m before m′ if and only if qg-Delivers m before m′.The 
on�i
t relation C determines the pair of messages that are sensitive to order,that is, the pair of messages for whi
h the g-Deliver order should be the same atall pro
esses that g-Deliver the messages. The 
on�i
t relation C renders the abovespe
i�
ation generi
, as shown in the next se
tion.4.1.1 Instan
es of Generi
 Broad
astWe 
onsider in the following some instan
es of Generi
 Broad
ast. In parti
ular,we show (a) that Reliable Broad
ast and Atomi
 Broad
ast are spe
ial 
ases ofGeneri
 Broad
ast, (b) how Generi
 Broad
ast 
an be de�ned in a s
enario whereoperations 
ommute, and (
) how Generi
 Broad
ast 
an be de�ned in the 
ontextof the Database State Ma
hine (see Chapter 3).Reliable and Atomi
 Broad
ast. Two spe
ial 
ases of 
on�i
t relations are the(1) empty 
on�i
t relation, denoted by C∅, where C∅ = ∅, and the (2) M ×M
on�i
t relation, denoted by CM×M, where CM×M =M×M. In 
ase (1) no pairof messages 
on�i
t, that is, the partial order property imposes no 
onstraint. Thisis equivalent to having only the validity, agreement, and integrity properties, whi
his 
alled Reliable Broad
ast. In 
ase (2) any pair (m,m′) of messages 
on�i
t, thatis, the partial order property imposes that all pairs of messages be ordered, whi
h is
alled Atomi
 Broad
ast. In other words, Reliable Broad
ast and Atomi
 Broad
astlie at the two ends of the spe
trum de�ned by Generi
 Broad
ast. In between, anyother 
on�i
t relation de�nes an instan
e of Generi
 Broad
ast.Commuting Operations. Con�i
t relations lying in between the two extremesof the 
on�i
t spe
trum 
an be better illustrated by an example. Consider a repli-
ated A

ount obje
t, de�ned by the operations deposit(x) and withdraw(x). Clearly,
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deposit operations 
ommute with ea
h other, while withdraw operations do not,neither with ea
h other nor with deposit operations.2 Let Mdeposit denote the setof messages that 
arry a deposit operation, andMwithdraw the set of messages that
arry a withdraw operation. This leads to the following 
on�i
t relation CAccount:

CAccount = { (m, m′) : m ∈Mwithdraw or m′ ∈Mwithdraw}.Generi
 Broad
ast with the CAccount 
on�i
t relation for broad
asting the invo
ationof deposit and withdraw operations to the repli
ated A

ount obje
t de�nes a weakerordering primitive than Atomi
 Broad
ast (e.g., messages inMdeposit are not requiredto be ordered with ea
h other), and a stronger ordering primitive than ReliableBroad
ast (whi
h imposes no order at all).The Database State Ma
hine Semanti
s. The termination proto
ol of theDatabase State Ma
hine is based on an Atomi
 Broad
ast primitive (Se
tion 3.2.2).On
e a transa
tion passes to the 
ommitting phase, its updates, read and write setsare atomi
ally broad
ast to all databases sites to be 
erti�ed. Atomi
 Broad
ast issu�
ient to guarantee repli
a 
orre
tness, as it was shown in Se
tion 3.2.4, however,it turns out that it is not ne
essary.The following example shows that Atomi
 Broad
ast is stronger than ne
essary toguarantee repli
a 
orre
tness. Assume two messages m and m′ that transport two
on
urrent transa
tions ta and tb, denoted by m : ta and m′ : tb respe
tively, su
hthat RSa = {x, y} and WSa = {z}, and RSb = {x} and WSb = {w}. In this 
ase,neither ta (if 
ommitted) has any in�uen
e on the out
ome of the 
erti�
ation test of
tb, nor tb (if 
ommitted) has any in�uen
e on the out
ome of the 
erti�
ation test of
ta. To see why, noti
e that RSa ∩WSb = ∅ and RSb ∩WSa = ∅. Furthermore, sin
eboth transa
tions have disjoint write sets, even if both are 
ommitted, the ordertheir updates are performed in the database does not matter. Therefore, total orderdelivery of messages m and m′ is not ne
essary for the Database State Ma
hine tobe 
orre
t.A 
on�i
t relation CDSM , weaker than Atomi
 Broad
ast, 
an be derived for theDatabase State Ma
hine from the 
erti�
ation test, whi
h 
he
ks whether transa
-tions 
an be 
ommitted or not. The 
on�i
t relation CDSM is de�ned as follows.
CDSM = { (m : ta, m′ : tb) : (RSa ∩WSb 6= ∅) ∨ (WSa ∩RSb 6= ∅) ∨ (WSa ∩WSb 6= ∅)}.4.1.2 Stri
t Generi
 Broad
ast AlgorithmFrom the spe
i�
ation it is obvious that any algorithm solving Atomi
 Broad
astalso solves any instan
e of the Generi
 Broad
ast problem de�ned by C ⊆ M×M.However, su
h a solution also orders messages that do not 
on�i
t. We are interested2This is the 
ase for instan
e if we 
onsider that a withdraw(x) operation 
an only be performedif the 
urrent balan
e is larger than or equal to x.
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 Broad
astin a stri
t algorithm, that is, an algorithm that does not order two messages if notrequired, a

ording to the 
on�i
t relation C. The idea is that ordering messageshas a 
ost (e.g., in terms of number of 
ommuni
ation steps) and this 
ost should bekept as low as possible. More formally, we de�ne an algorithm that solves Generi
Broad
ast for a 
on�i
t relation C ⊂ M×M, denoted by AC , stri
t if it satis�es the
ondition below.(Stri
tness) Consider an algorithm AC , and let RNC
C be the set of runs of

AC . There exists a run R in RNC
C , in whi
h at least two 
orre
t pro
essesg-Deliver two non-
on�i
ting messages m and m′ in a di�erent order.Informally, the stri
tness 
ondition requires that algorithm AC allow runs in whi
hthe g-Deliver of non 
on�i
ting messages is not totally ordered. However, even if ACdoes not order messages, it 
an happen that total order is spontaneously ensured.So we 
annot require violation of total order to be observed in every run: we requireit in at least one run of AC .4.2 Solving Generi
 Broad
astIn this se
tion, we present an algorithm that solves Generi
 Broad
ast. Our solu-tion relies on an algorithm that solves the Consensus problem. We �rst provide anoverview of the solution, and then present a detailed algorithm.4.2.1 Overview of the AlgorithmPro
esses exe
uting our Generi
 Broad
ast algorithm progress in a sequen
e of stagesnumbered 1, 2, . . . , k, . . . . Stage k terminates only if two 
on�i
ting messages are g-Broad
ast, but not g-Delivered in some stage k′ < k.g-Delivery of non-
on�i
ting messages. Let m be a g-Broad
ast message.When some pro
ess p re
eives m in stage k, and m does not 
on�i
t with someother message m′ already re
eived by p in stage k, p inserts m in its pendingk

p set,and sends an ACK(m) message to all pro
esses. As soon as p re
eives ACK(m)messages from nack pro
esses, where
nack ≥ (n + 1)/2, (4.1)

p g-Delivers m.g-Delivery of 
on�i
ting messages. Consensus is laun
hed to terminate stage
k if a 
on�i
t is dete
ted. The Consensus de
ides on two sets of messages, denotedby NCmsgSetk (NC stands for Non-Con�i
ting) and CmsgSetk (C stands for Con-�i
ting). The set NCmsgSetk ∪ CmsgSetk is the set of all messages g-Deliveredin stage k. Messages in NCmsgSetk are g-Delivered before messages in CmsgSetk,
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ast 57and messages in NCmsgSetk may be g-Delivered by some pro
ess p in stage k before
p exe
utes the k-th Consensus. The set NCmsgSetk does not 
ontain 
on�i
tingmessages, while messages in CmsgSetk may 
on�i
t. Messages in CmsgSetk areg-Delivered in some deterministi
 order. Pro
ess p starts stage k + 1 on
e it hasg-Delivered all messages in CmsgSetk.Properties. To be 
orre
t, our algorithm must satisfy the following properties:(a) If two messages m and m′ 
on�i
t, then at most one of them is g-Delivered instage k before Consensus.(b) If message m is g-Delivered in stage k by some pro
ess p before Consensus,then m is in the set NCmsgSetk.(
) The set NCmsgSetk does not 
ontain any 
on�i
ting messages.3We dis
uss ea
h of these properties informally. The formal proof of the algorithm isin Se
tion 4.2.3. Property (a) is ensured by 
ondition (4.1). Property (b) is ensuredas follows. Before starting Consensus, every pro
ess p sends its pendingk

p set to allpro
esses (in a message of type 
he
king, denoted by CHK), and waits for messagesof type CHK from exa
tly nchk pro
esses. Only if some message m is at least in
⌈(nchk + 1)/2⌉ messages of type CHK, then m is inserted in majMSetkp , the initialvalue of Consensus that de
ides on NCmsgSetk. So, if m is in less than ⌈(nchk+1)/2⌉messages of type CHK, m is not inserted in majMSetkp. Indeed, if 
ondition

2nack + nchk ≥ 2n + 1 (4.2)holds and m is in less than ⌈(nchk + 1)/2⌉ messages of type CHK, then m 
ould nothave been g-Delivered in stage k before Consensus. To understand why, noti
e thatfrom (4.2) and the fa
t that nack, nchk, and n ∈ N, we have (see Proposition 4.1)
(n− nchk) + ⌈(nchk + 1)/2⌉ ≤ nack, (4.3)where (n−nchk) is the number of pro
esses from whi
h p knows nothing. From (4.3),if m is in less than ⌈(nchk + 1)/2⌉ messages of type CHK, then even if all pro
essesfrom whi
h p knows nothing had sent ACK(m), there would not be enough ACK(m)messages to have m g-Delivered by some pro
ess in stage k before Consensus.Proposition 4.1 If 2nack + nchk ≥ 2n + 1 and nack, nchk, and n ∈ N then (n −

nchk) + ⌈(nchk + 1)/2⌉ ≤ nack.Proof: Solving 2nack +nchk ≥ 2n+1 for nack, we have n+(1−nchk)/2 ≤ nack. But
n+(1−nchk)/2 = (n−nchk)+(nchk+1)/2, and so, (n−nchk)+(nchk+1)/2 ≤ nack. We3Property (
) does not follow from (a) and (b). Take for example two messages m and m′ that
on�i
t, but are g-Delivered in stage k as the result of the Consensus terminating stage k: neitherproperty (a), nor property (b) applies.
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laim that (n−nchk)+(1+nchk)/2 ≤ nack implies (n−nchk)+⌈(nchk +1)/2⌉ ≤ nack.If nchk is odd, the 
laim follows dire
tly. Thus, assume that nchk is even, that is, thereis an l ∈ N, su
h that nchk = 2 l. We have to show that (n − 2 l) + (l + 1/2) ≤ nackimplies (n− 2 l)+ ⌈(l+1/2)⌉ ≤ nack. Sin
e l ∈ N, (n− 2 l)+ (l+1/2) ≤ nack implies
(n− 2 l)+ (l + 1) ≤ nack, and it is not di�
ult to see that if (n− 2 l)+ (l + 1) ≤ nackthen (n− 2 l) + ⌈(l + 1/2)⌉ ≤ nack. 2Property (
) is ensured by the fa
t that m is inserted in majMSetkp only if m is inat least ⌈(nchk + 1)/2⌉ messages of type CHK re
eived by p (majority 
ondition).Let m and m′ be two messages in majMSetkp . By the majority 
ondition, the twomessages are in the pendingk

q set of at least one pro
ess q. This is however onlypossible if m and m′ do not 
on�i
t.Minimal number of 
orre
t pro
esses. Our Generi
 Broad
ast algorithm waitsfor nack messages before g-Delivering non-
on�i
ting messages, and nchk messages ifa 
on�i
t is dete
ted before starting Consensus. Therefore, our algorithm requiresmax(nack, nchk) 
orre
t pro
esses. The minimum of 
orre
t pro
esses to solve Generi
Broad
ast with our algorithm is (2n + 1)/3, whi
h happens when nack = nchk.4.2.2 Detailed AlgorithmProvided that the number of 
orre
t pro
esses is at least max(nack, nchk), nack ≥
(n + 1)/2, and 2nack + nchk ≥ 2n + 1, Algorithm 1 solves Generi
 Broad
ast for any
on�i
t relation C. All tasks in Algorithm 1 exe
ute 
on
urrently, and Task 3 hastwo entry points (lines 12 and 31).Algorithm 1 uses an �underline� notation (e.g., k) to pre
ise the message a pro
ess iswaiting for. For example, a pro
ess that waits for message (k, pendingk

q , ACK) (line31) will re
eive a message (i,−, type) su
h that i = k and type = ACK.Pro
ess p in stage k manages the following sets.
• R_deliveredp: 
ontains all messages R-delivered by p up to the 
urrent time,
• G_deliveredp: 
ontains all messages g-Delivered by p in all stages k′ < k,
• pendingk

p : 
ontains every message m su
h that p has sent an ACK messagefor m in stage k up to 
urrent time, and
• localNCg_Deliverk

p : is the set of non 
on�i
ting messages that are g-Deliveredby p in stage k, up to the 
urrent time (and before p exe
utes the k-th Con-sensus).When p wants to g-Broad
ast message m, p exe
utes R-broad
ast(m) (line 8). AfterR-delivering a message m, the a
tions taken by p depend on whether m 
on�i
ts ornot with some other message m′ in R_deliveredp \G_deliveredp.
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 Broad
ast 59No 
on�i
t. If no 
on�i
t exists, then p in
ludes m in pendingk
p (line 14), andsends an ACK message to all pro
esses, a
knowledging the R-delivery of m (line 15).On
e p re
eives nack ACK messages for a message m (line 31), p in
ludes m in

localNCg_Deliverk
p (line 35) and g-Delivers m (line 36).Con�i
t. In 
ase of 
on�i
t, p starts the terminating pro
edure for stage k. Pro
ess

p �rst sends a message of the type (k, pendingk
p , CHK) to all pro
esses (line 17), andwaits the same information from exa
tly nchk pro
esses (line 18). Then p builds theset majMSetkp (line 20).4 It 
an be proved that majMSetkp 
ontains every message

m su
h that for any pro
ess q, m ∈ localNCg_Deliverk
q . Then p starts Consensus(line 21) to de
ide on a pair (NCmsgSetk, CmsgSetk) (line 22). On
e the de
isionis made, pro
ess p �rst g-Delivers (in any order) the messages in NCmsgSetk that ishas not g-Delivered yet (lines 23 and 25), and then p g-Delivers (in some deterministi
order) the messages in CmsgSetk that it has not g-Delivered yet (lines 24 and 26).After g-Delivering all messages de
ided in Consensus exe
ution k, p starts stage k+1(lines 28-30).4.2.3 Proof of Corre
tnessWe �rst establish some Lemmata that will be used to prove the main result (i.e.,Properties 4.2 � 4.5). Lemma 4.1 states that the set pendingk does not 
ontain
on�i
ting messages. It is used to prove Lemmata 4.2 and 4.5.Lemma 4.1 For any pro
ess p, and all k ≥ 1, if messages m and m′ are in

pendingk
p , then m and m′ do not 
on�i
t.Proof: Suppose, by way of 
ontradi
tion, that there is a pro
ess p, and some k ≥ 1su
h that m and m′ 
on�i
t and are in pendingk

p . Sin
e m and m′ are in pendingk
p ,

p must have R-delivered m and m′. Assume that p �rst R-delivers m and then m′.Thus, there is a time t after p R-delivers m′ su
h that p evaluates the if statementat line 13, and m′ ∈ R_deliveredp, m′ 6∈ G_deliveredp, and m′ 6∈ pendingk
p . Attime t, m ∈ R_deliveredp (by the hypothesis m is R-delivered before m′), and

m 6∈ G_deliveredp (if m ∈ G_delivered, from lines 27-29 m and m′ 
annot be bothin pendingk
p ). Therefore, when the if statement at line 13 is evaluated, m and m′ arein R_delivered \G_delivered, and sin
e m and m′ 
on�i
t, the 
ondition evaluatesfalse, and m′ is not in
luded in pendingk

p , a 
ontradi
tion that 
on
ludes the proof.
2Lemma 4.2 proves property (a) of page 57.Lemma 4.2 If two messages m and m′ 
on�i
t, then at most one of them is g-Delivered in stage k before Consensus.4majMSetk

p = {m : |Chkk
p (m)| ≥ (nchk + 1)/2}
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 Broad
astAlgorithm 1 Generi
 Broad
ast algorithm1: Initialisation:2: R_delivered← ∅3: G_delivered← ∅4: k ← 15: pending1 ← ∅6: localNCg_Deliver1 ← ∅7: To exe
ute g-Broad
ast(m): {Task 1}8: R-broad
ast(m)9: g-Deliver(−) o

urs as follows:10: when R-deliver(m) {Task 2}11: R_delivered← R_delivered ∪ {m}12: when (R_delivered \G_delivered) \ pendingk 6= ∅ {Task 3}13: if [ for all m, m′ ∈ R_delivered \ G_delivered, m 6= m′ : (m, m′) 6∈ Conflict ℄then14: pendingk ← R_delivered \G_delivered15: send(k, pendingk, ACK) to all16: else17: send(k, pendingk, CHK) to all18: wait until [ for nchk processes q : p received (k, pendingk
q , CHK) from q ]19: #De�ne chkPSetk(m) = {q : p received (k, pendingk

q , CHK) from q and

m ∈ pendingk
q }20: majMSetk ← {m : | chkPSetk(m) | ≥ ⌈(nchk + 1)/2⌉}21: propose(k, (majMSetk, (R_delivered \G_delivered) \majMSetk))22: wait until decide(k, (NCmsgSetk, CmsgSetk))23: NCg_Deliverk ← (NCmsgSetk \ localNCg_Deliverk) \G_delivered24: Cg_Deliverk ← CmsgSetk \G_delivered25: g-Deliver messages in NCg_Deliverk in any order26: g-Deliver messages in Cg_Deliverk using some deterministi
 order27: G_delivered← (localNCg_Deliverk ∪NCg_Deliverk ∪ Cg_Deliverk)∪

G_delivered28: k ← k + 129: pendingk ← ∅30: localNCg_Deliverk ← ∅31: when re
eive(k, pendingk
q , ACK) from q32: #De�ne ackPSetk(m) = {q : p received (k, pendingk

q , ACK) from q and

m ∈ pendingk
q }33: ackMSetk ← {m : |ackPSetk(m)| ≥ nack}34: localNCmsgSetk ← ackMSetk \ (G_delivered ∪NCmsgSetk)35: localNCg_Deliverk ← localNCg_Deliverk ∪ localNCmsgSetk36: g-Deliver all messages in localNCmsgSetk in any order
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ast 61Proof: The proof is by 
ontradi
tion. Assume that there are two messages mand m′ that 
on�i
t and are g-Delivered in stage k before Consensus. Without la
kof generality, 
onsider that m is g-Delivered by pro
ess p, and m′ is g-Deliveredby pro
ess q. From the Generi
 Broad
ast algorithm (lines 31-36), p (and q) hasre
eived nack messages of the type (k, pendingk, ACK) su
h that m ∈ pendingk(m′ ∈ pendingk). Sin
e nack > (n + 1)/2, there must be a pro
ess r that sendsthe message (k, pendingk
r , ACK) to pro
esses p and q, su
h that m and m′ are in

pendingk
r , 
ontradi
ting Lemma 4.1. 2Lemma 4.3 relates (1) the set Ackk(m) of pro
esses that send an a
knowledgementfor some message m in stage k and (2) the set Chkk

p of pro
esses from whi
h somepro
ess p re
eives CHK messages in stage k, with (3) the set Chkk
p(m) of pro
essesfrom whi
h p re
eives a CHK message 
ontaining m in stage k.Lemma 4.3 Let Ackk(m) be a set of pro
esses that exe
ute the statement send(k,

pendingk, ACK) in stage k with m ∈ pendingk, and let Chkk
p be the set of pro
essesfrom whi
h some pro
ess p re
eives messages of the type (k, pendingk, CHK) in stage

k. If |Ackk(m)| ≥ nack, |Chkk
p | = nchk, and 2nack + nchk ≥ 2n + 1, then there are atleast ⌈(nchk + 1)/2⌉ pro
esses in Chkk

p(m)
def
= Chkk

p ∩Ackk(m).Proof: We �rst determine a relation between sets Ackk(m), Chkk
p , and Chkk

p(m).Set Chkk
p(m) 
ontains all pro
esses from set Chkk

p that sent an a
knowledgementmessage for m. Thus, pro
ess p knows that every pro
ess q ∈ Chkk
p(m) exe
utedthe statement send(k, pendingk, ACK) in stage k with m ∈ pendingk, but p doesnot know anything about the remaining pro
esses in Π \Chkk

p . Therefore, there are
|Π\Chkk

p | = (n−nchk) additional pro
esses that might have sent an a
knowledgementfor m. We 
on
lude that |Ackk(m)| ≤ (n − nchk) + |Chkk
p(m)|. By the hypothesis,

|Ackk(m)| ≥ nack, and thus, nack ≤ (n − nchk) + |Chkk
p(m)| (1). Subtra
ting nfrom both sides in (1) leads to nack − n ≤ |Chkk

p(m)| − nchk (2). By rearranging
2nack + nchk ≥ 2n + 1, we have that nack − n ≥ (1− nchk)/2 (3). From (2) and (3),
|Chkk

p(m)| −nchk ≥ (1−nchk)/2, and so, |Chkk
p(m)| ≥ (nchk + 1)/2. Sin
e nchk and

|Chkk
p(m)| ∈ N, we 
on
lude that |Chkk

p(m)| ≥ ⌈(nchk + 1)/2⌉. 2Lemma 4.4 proves property (b) of page 57. It states that any message g-Deliveredby some pro
ess q during stage k, before q exe
utes Consensus in stage k will bein
luded in the set NCmsgSetk de
ided by Consensus k.Lemma 4.4 For any two pro
esses p and q, and all k ≥ 1, if pro
ess p exe
utes thestatement de
ide(k, (NCmsgSetk ,−)), then localNCg_Deliverk
q ⊆ NCmsgSetk.Proof: Let m be a message in localNCg_Deliverk

q . We �rst show that if p exe-
utes the statement propose(k,majMSetkp ,−)), then m ∈ majMSetkp. Sin
e m ∈

localNCg_Deliverk
q , q must have re
eived nack messages of the type (k, pendingk,

ACK) (line 31) su
h that m ∈ pendingk. Thus, there are nack pro
esses that sent
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m to all pro
esses in the send statement at line 15. From Lemma 4.3, Chkk(m) ≥
(nchk + 1)/2, and so, from the algorithm line 20, m ∈ majMSetkp. Therefore, forevery pro
ess q that exe
utes propose(k, (majMSetkq ,−)), m ∈ majMSetkq . Let
(NCmsgSetk,−) be the value de
ided on Consensus exe
ution k. By the uniformvalidity of Consensus, there is a pro
ess r that exe
uted propose(k, (majMSetkr ,−))su
h that NCmsgSetk = majMSetkr , and so, m ∈ NCmsgSetk. 2Lemma 4.5 proves property (
) of page 57.Lemma 4.5 If two messages m and m′ 
on�i
t, then at most one of them is in
NCmsgSetk.Proof: The proof is by 
ontradi
tion. Assume that there are two messages mand m′ that 
on�i
t, and are both in NCmsgSetk. From the validity property ofConsensus, there must be a pro
ess p that exe
utes propose(k, (majMSetkp ,−)), su
hthat NCmsgSetk = majMSetkp . Therefore, m and m′ are in majMSetkp, and fromthe algorithm, p re
eives ⌈(nchk + 1)/2⌉ messages of the type (k, pendingk, CHK)su
h that m is in pendingk, and p also re
eives ⌈(nchk + 1)/2⌉ messages of the type
(k, pendingk, CHK) su
h that m′ is in pendingk. Sin
e p waits for exa
tly nchkmessages of the type (k, pendingk, CHK), there must exist at least one pro
ess q in
Chkk

p su
h that m and m′ are in pendingk
q , 
ontradi
ting Lemma 4.1. 2Lemma 4.6 lies the basis for Propositions 4.2 and 4.3. It shows that (a) if some 
orre
tpro
ess exe
utes Consensus at some stage k, then all 
orre
t pro
esses also exe
uteConsensus at stage k, and (b) all 
orre
t pro
esses g-Deliver the same messages atstage k.Lemma 4.6 For any two 
orre
t pro
esses p and q, and all k ≥ 1:(1) If p exe
utes send(k,−, CHK), then q eventually exe
utes send(k,−, CHK).(2) If p exe
utes propose(k,−), then q eventually exe
utes propose(k,−).(3) If p g-Delivers messages in NCg_Deliverk

p ∪ Cg_Deliverk
p , then(3.1) q also g-Delivers messages in NCg_Deliverk

q ∪Cg_Deliverk
q , and(3.2) localNCg_Deliverk

p ∪NCg_Deliverk
p =

localNCg_Deliverk
q∪NCg_Deliverk

q and Cg_Deliverk
p = Cg_Deliverk

q .Proof: The proof is by simultaneous indu
tion on (1), (2) and (3). (Base step.)For k = 1, we �rst show that (1) holds: if p exe
utes send(1,−, CHK) (line 17),then q also exe
utes send(1,−, CHK). If p exe
utes send(1,−, CHK), then p hasR-delivered two messages, m and m′, that 
on�i
t. From the agreement of R-broad
ast, q also R-delivers m and m′. Assume that q �rst R-delivers m, and then m′.Thus, there is a time after q R-delivers m′ when m and m′ are in R_deliveredq \
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G_deliveredq , and m′ 6∈ pending1

q . So, q eventually exe
utes send(1,−, CHK)(line 17).To prove (2), assume that p exe
utes propose(1,−). From the algorithm, it is
lear that p exe
utes send(1,−, CHK), and from item (1) above, q also exe
utessend(1,−, CHK) and waits for nchk messages of the type (1,−, CHK) (line 18).Sin
e there are nchk pro
esses 
orre
t that exe
ute send(1,−, CHK), q eventuallyre
eives nchk messages of the type (1,−, CHK) (line 18), and exe
utes propose(1,−).To prove (3.1), assume that p g-Delivers messages in NCg_Deliver1
p∪Cg_Deliver1

p.Before exe
uting de
ide(1, (NCmsgSet1p, CmsgSet1p)), p exe
utes propose(1,−). Byitem (2) of the lemma, q also exe
utes propose(1,−). By termination and uni-form integrity of Consensus, q eventually exe
utes de
ide(1,−) and does it exa
tlyon
e. It follows from the algorithm (lines 23-26) that q g-Delivers messages in
NCg_Deliver1

q ∪ Cg_Deliver1
q .To prove (3.2) we show that (a) localNCg_Deliver1

p ∪ NCg_Deliver1
p =

localNCg_Deliver1
q ∪NCg_Deliver1

q , and (b) Cg_Deliver1
p = Cg_Deliver1

q .(a) From the algorithm, line 23, and the fa
t that initially G_deliveredp = ∅, wehave that NCg_Deliver1
p = (NCmsgSet1p \ localNCg_Deliver1

p), and thus,
localNCg_Deliver1

p∪NCg_Deliver1
p = localNCg_Deliver1

p∪(NCmsgSet1p\
localNCg_Deliver1

p). From Lemma 4.4, it follows that localNCg_Deliver1
p∪

NCg_Deliver1
p = NCmsgSet1p. A similar argument follows for q, and bythe agreement property of Consensus, we have NCmsgSet1p = NCmsgSet1q .Therefore, we 
on
lude that localNCg_Deliver1

p ∪ NCg_Deliver1
p =

localNCg_Deliver1
q ∪NCg_Deliver1

q .(b) From the algorithm, line 24, Cg_Deliver1
p = CmsgSet1p \ G_deliveredp.Sin
e initially G_deliveredp and G_deliveredq are empty, Cg_Deliver1

p =
CmsgSet1p, and Cg_Deliver1

q = CmsgSet1q . By agreement of Consensus, forevery p and q, CmsgSet1p = CmsgSet1q , and so, Cg_Deliver1
p = Cg_Deliver1

q .(Indu
tive step.) Assume that the Lemma holds for all k, 1 ≤ k < l. We pro-
eed by �rst showing that (1) if p exe
utes send(l,−, CHK) (line 17), then q alsoexe
utes send(l,−, CHK). If p exe
utes send(l,−, CHK), then from line 13, thereis some time t when two 
on�i
ting messages m and m′ are in R_deliveredp \
G_deliveredp. Sin
e m and m′ are not in G_deliveredp, m and m′ are not in
∪k

i=1(localNCg_Deliveri
p ∪NCg_Deliveri

p ∪Cg_Deliveri
p). By the indu
tion hy-pothesis, m and m′ 6∈ ∪k

i=1(localNCg_Deliveri
q ∪NCg_Deliveri

q ∪Cg_Deliveri
q).By the agreement property of R-broad
ast, eventually m and m′ belong to

R_deliveredq . From Lemma 4.1, and the fa
t that m and m′ 
on�i
t, there is a timeafter whi
h q g-Delivers all messages in ∪k
i=1(localNCg_Deliveri

q∪NCg_Deliveri
q∪

Cg_Deliveri
q) su
h that there exist two messages m and m′ in R_deliveredq \

G_deliveredq , and m and m′ are not both in pendingl
q . Thus, q eventually exe
utessend(l,−, CHK).Suppose that (2) p exe
utes propose(l,−). From the algorithm, p previously ex-e
uted send(l,−, CHK), and from item (1), q also exe
utes send(l,−, CHK) and
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astwaits for nchk messages of the type (l,−, CHK). Sin
e there are nchk pro
esses 
or-re
t that exe
ute send(l,−, CHK), q eventually re
eives nchk messages of the type
(l,−, CHK), and exe
utes propose(l,−).We now 
onsider that (3.1) p g-Delivers messages in NCg_Deliverl

p∪Cg_Deliverl
p.Before exe
uting de
ide(l, (NCmsgSetlp, CmsgSetlp)), p exe
utes propose(l,−). Byitem (1) of the lemma, q also exe
utes propose(l,−). By the termination and agree-ment properties of Consensus, q eventually exe
utes de
ide(l,−) exa
tly on
e. Fromthe algorithm, q g-Delivers messages in NCg_Deliverl

q ∪ Cg_Deliverl
q .To prove (3.2) we show that (a) localNCg_Deliverl

p ∪ NCg_Deliverl
p =

localNCg_Deliverl
p ∪NCg_Deliverl

q , and (b) Cg_Deliverl
p = Cg_Deliverl

q .(a) From the algorithm, line 23, and Lemma 4.4 (i.e., localNCg_Deliverl
p ⊆

NCmsgSetlp), it follows that localNCg_Deliverl
p ∪ NCg_Deliverl

p =

NCmsgSetlp − G_deliveredp. To see why, note that from lines 34 and 35,
localNCg_Deliverl

p ∩G_deliveredp = ∅. By the agreement property of Con-sensus, NCmsgSetlp = NCmsgSetlq. From the algorithm, G_delivered =

∪k
i=1(localNCg_Deliveri ∪ NCg_Deliveri ∪ Cg_Deliveri), and from theindu
tion hypothesis, G_deliveredp = G_deliveredq . Therefore, we have

localNCg_Deliverl
p∪NCg_Deliverl

p = localNCg_Deliverl
p∪NCg_Deliverl

q .(b) From the algorithm, line 24, Cg_Deliverl
p = CmsgSetlp \ G_deliveredp.But when line 24 is evaluated, G_deliveredp = ∪k

i=1(localNCg_Deliveri
p ∪

NCg_Deliveri
p ∪Cg_Deliveri

p), and it follows from the indu
tion hypothesisthat G_deliveredp = G_deliveredq . By the agreement property of Consensus,
CmsgSetlp = CmsgSetlq, and thus, Cg_Deliverl

p = Cg_Deliverl
q . 2The following propositions suppose f < max(nack, nchk). Proposition 4.2 is strongerthan the agreement property de�ned in Se
tion 4.1, sin
e it 
laims that any two
orre
t pro
esses not only g-Deliver the same messages, but also g-Deliver them inthe same stage.The proof for Proposition 4.2 
onsiders two 
ases. The �rst 
ase assumes that some
orre
t pro
ess p g-Delivers m in stage k and exe
utes Consensus in stage k. Inthis 
ase, m ∈ localNCg_Deliverk

p ∪ NCg_Deliverk
p ∪ Cg_Deliverk

p , and fromLemma 4.6, every 
orre
t pro
ess also g-Delivers m. The se
ond 
ase 
onsiders that
p g-Delivers m in stage k but never exe
utes Consensus in stage k. The proof pro
eedsby showing that if this happens, then all 
orre
t pro
esses send an a
knowledgementfor m in stage k, and eventually every 
orre
t pro
ess re
eives nack a
knowledgementmessages for m and g-Delivers m.Proposition 4.2 (Agreement). If a 
orre
t pro
ess p g-Delivers a message m insome stage k, then every 
orre
t pro
ess q eventually g-Delivers m in stage k.Proof: There are two 
ases to 
onsider: (a) p exe
utes Consensus on stage k, and(b) p never exe
utes Consensus in stage k.
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ast 65(a) Sin
e p g-Delivers m in stage k, m ∈ localNCg_Deliverk
p ∪NCg_Deliverk

p ∪

Cg_Deliverk
p , and so, from Lemma 4.6, we have m ∈ localNCg_Deliverk

q ∪

NCg_Deliverk
q ∪ Cg_Deliverk

q . Thus, q either g-Delivers m at line 36 (inwhi
h 
ase m ∈ localNCg_Deliverk
q ), or at line 25 (in whi
h 
ase m ∈

NCg_Deliverk
q ), or at line 26 (in whi
h 
ase m ∈ Cg_Deliverk

q ).(b) Sin
e p does not exe
ute Consensus in stage k, m ∈ localNCg_Deliverk
p , andit must be that p has re
eived nack messages of the type (k, pendingk, ACK)(line 30) su
h that m ∈ pendingk. There are nack ≥ (n+1)/2 
orre
t pro
esses,and so, p has re
eived the message (k, pendingk, ACK) from at least one 
orre
tpro
ess r.We 
laim that every 
orre
t pro
ess r′ exe
utes the send(k, pendingk, ACK)statement at line 15, su
h that m ∈ pendingk. From lines 12-15, r R-delivers

m, and by the agreement of Reliable Broad
ast, eventually r′ also R-delivers
m. Therefore, there is a time t when m ∈ R_deliveredr′ .It follows from the fa
t that m is g-Delivered by p in stage k that m 6∈
∪k−1

i=1 (localNCg_Deliverk
p ∪NCg_Deliverk

p ∪Cg_Deliverk
p). By Lemma 4.6,we have m 6∈ ∪k−1

i=1 (localNCg_Deliverk
r′ ∪ NCg_Deliverk

r′ ∪ Cg_Deliverk
r′),and so, there is a t′ > t when r′ exe
utes line 13. At time t′, m does not 
on�i
twith any other message. To see why, 
onsider that m 
on�i
ts with some mes-sage m′ in stage k. In this 
ase, r′ exe
utes send(k,−, CHK) in stage k, andfrom Lemma 4.6 all 
orre
t pro
esses also exe
ute send(k,−, CHK) in stage

k. It follows that r′ eventually exe
utes Consensus in stage k, a 
ontradi
tionthat 
on
ludes the 
laim.Sin
e there are nack 
orre
t pro
esses that exe
ute send(k, pendingk, ACK),su
h that m ∈ pendingk, q will eventually exe
ute the when statement atline 31, and g-Deliver m. 2Two situations are distinguished in the proof for Proposition 4.3. The �rst situation(a) 
onsiders that some pro
ess q g-Delivers two 
on�i
ting messages m and m′ inthe same stage k, and in the se
ond situation, (b) pro
ess q g-Delivers m and m′ indi�erent stages. Considering that q g-Delivers m before m′, it is shown for (a) thatsin
e m and m′ 
on�i
t, m′ ∈ CmsgSetk. Assuming, for a 
ontradi
tion, that p g-Delivers m′ before m, from a similar argument, it is 
on
luded that m ∈ CmsgSetk.Therefore, m,m′ ∈ CmsgSetk. However, all messages in CmsgSetk are g-Deliveredin the same deterministi
 order, and thus, it 
annot be that q g-Delivers �rst mand then m′, and p g-Delivers �rst m′ and then m. For situation (b), it followsdire
tly from Algorithm 1 that if p and q both g-Deliver m, respe
tively m′, in stage
k, respe
tively k′, then they g-Deliver m and m′ in the same order.Proposition 4.3 (Partial Order). If 
orre
t pro
esses p and q both g-Delivermessages m and m′, and m and m′ 
on�i
t, then p g-Delivers m before m′ if andonly if q g-Delivers m before m′.Proof: Assume that q g-Delivers message m before message m′. We show that palso g-Delivers m before m′. There are two 
ases to 
onsider: (a) q g-Delivers m and
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m′ at stage k, and by Proposition 4.2, p also g-Delivers m and m′ at stage k, and(b) q g-Delivers m at stage k, and m′ at stage k′ > k, and by Proposition 4.2, p alsog-Delivers m at stage k, and m′ at stage k′.(a) We 
laim that if messages m and m′ 
on�i
t, and q g-Delivers m before m′,then m′ ∈ CmsgSetk. To see why, noti
e that if q g-Delivers m before Con-sensus, m ∈ localNCmsgSetkq , and from Lemma 4.4, m ∈ NCmsgSetk. FromLemma 4.5, m and m′ 
annot be both in NCmsgSetk, thus m′ ∈ CmsgSetk,
on
luding the proof of our 
laim.Suppose, by way of 
ontradi
tion, that p g-Delivers m′ before m. From an ar-gument similar to the 
laim above, m ∈ CmsgSetk. Therefore, m and m′ are in

CmsgSetk, and m and m′ are g-Delivered by q and p at line 26. However, sin
e
q g-Delivers m before m′, and messages in CmsgSetk are g-Delivered a

ord-ing to some deterministi
 fun
tion, p and q do not use the same deterministi
fun
tion. A 
ontradi
tion that 
on
ludes the proof of 
ase (a).(b) From the algorithm, if p g-Delivers m at stage k, and m′ at stage k′ > k, then
p g-Delivers m before m′. 2Proposition 4.4 below proves that Algorithm 1 guarantees the validity property ofGeneri
 Broad
ast using two me
hanisms [CT96℄. The idea is to assume that somemessage m is g-Broad
ast and never g-Delivered and then rea
h a 
ontradi
tion.First, the proof of Proposition 4.4 shows that if m is never g-Delivered, then thereis a Consensus exe
ution k1 when every 
orre
t pro
ess proposes m. Noti
e thatthis 
an only be proved for 
orre
t pro
esses, sin
e to propose m, a pro
ess �rst hasto R-deliver m, and the properties of Reliable Broad
ast only ensure that 
orre
tpro
esses R-deliver all R-broad
ast messages. It then shows that from the de�nitionof faulty pro
esses, there is a Consensus exe
ution k2 that no faulty pro
ess exe
utes(they all 
rash before k2). The 
ontradi
tion follows immediately, sin
e at Consensusexe
ution k = max(k1, k2), only 
orre
t pro
esses propose a value, and m is alwaysproposed. Thus, m is in
luded in the de
ision of Consensus k, and will be g-Delivered.Proposition 4.4 (Validity). If a 
orre
t pro
ess p g-Broad
asts a message m,then p eventually g-Delivers m.Proof: For a 
ontradi
tion, assume that p g-Broad
asts m but never g-Delivers it.From Proposition 4.2, no 
orre
t pro
ess g-Delivers m. Sin
e p g-Broad
asts m, itR-broad
asts m, and from the validity property of Reliable Broad
ast, p eventuallyR-delivers m. By Algorithm 1, there is a time after whi
h m ∈ R_deliveredp. Itfollows from the agreement property of Reliable Broad
ast and the fa
t that m isnever g-Delivered, that eventually, for every 
orre
t pro
ess q, m ∈ (R_deliveredq \

G_deliveredq).By the 
ontradi
tion hypothesis, p does not g-Deliver m, and so, p does not re
eive
nack messages of the type (k, pendingk, ACK) su
h that m ∈ pendingk. But sin
ethere are nack 
orre
t pro
esses that exe
ute the if statement at line 13, there is atleast one 
orre
t pro
ess q su
h that, after m ∈ R_deliveredq\G_deliveredq , q never
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utes the then bran
h (lines 14-15), and always exe
utes the else bran
h (lines 17-30). Thus, q exe
utes send(k,−, CHK). From Lemma 4.6, item (1), every 
orre
tpro
ess also exe
utes send(k,−, CHK). Sin
e there are nchk 
orre
t pro
esses, no
orre
t pro
ess remains blo
ked forever at the wait statement (line 18), and every
orre
t pro
ess eventually exe
utes propose(k,−). Thus, there is a k1 su
h thatfor all l ≥ k1, all 
orre
t pro
esses exe
ute propose(l, (majMSetl , (R_delivered \
G_delivered) \majMSetl)), and m ∈ majMSetl ∪ (R_delivered \G_delivered).Assume that k2 is su
h that no faulty pro
ess exe
utes propose(l,−), l ≥ k2, (i.e., at
k2 all faulty pro
esses have 
rashed). Let k = max(k1, k2). All 
orre
t pro
esses ex-e
ute propose(k,−), and by the termination and agreement of Consensus, all 
orre
tpro
esses exe
ute de
ide(k, (NCmsgSetk , CmsgSetk)) with the same (NCmsgSetk,
CmsgSetk). By the uniform validity property of Consensus, some pro
ess q exe-
utes propose(k, (majMSetl , (R_delivered \G_delivered) \majMSetl)) su
h that
m ∈ majMSetl ∪ (R_delivered \ G_delivered), and so, all pro
esses g-Deliver m,a 
ontradi
tion that 
on
ludes the proof. 2Proposition 4.5 (Uniform Integrity). For any message m, ea
h pro
ess g-Delivers m at most on
e, and only if m was previously g-Broad
ast by sender(m).Proof: If a pro
ess p g-Delivers m at line 36, then p re
eived nack messages of thetype (k, pendingk, ACK),m ∈ pendingk. Let q be a pro
ess from whi
h p re
eivedthe message (k, pendingk

q , ACK),m ∈ pendingk
q . Sin
e q exe
utes send(k, pendingk

q ,
ACK), q has R-delivered m. By the uniform integrity of Reliable Broad
ast, pro
esssender(m) has R-broad
ast m, and so, sender(m) has g-Broad
ast m.Now 
onsider that p g-Delivers m at line 25 or 26. Thus, p exe
uted the state-ment de
ide(k, (NCmsgSetk , CmsgSetk)) for some k, su
h that m ∈ NCmsgSetk ∪
CmsgSetk. By the uniform validity property of Consensus, some pro
ess q musthave exe
uted propose(k, (majMSetk , (R_delivered \G_delivered) \majMSetk))su
h that m ∈ majMSetk∪(R_delivered\G_delivered). We distinguish two 
ases.Case (a). If m ∈ majMSetkq , then, from Algorithm 1, |Chkk

q (m)| ≥ ⌈(nchk + 1)/2⌉.Let r ∈ Chkk
q (m). Therefore, r exe
uted send(k, pendingk

r , CHK), su
h that m ∈

pendingk
r , and thus, r has R-delivered m.Case (b). If m ∈ R_delivered \ G_delivered, it is not di�
ult to see that q hasR-delivered m.In both 
ases, by the uniform integrity property of Reliable Broad
ast, pro
esssender(m) has R-broad
ast m, and so, sender(m) has g-Broad
ast m. 2Theorem 4.1 Algorithm 1 solves Generi
 Broad
ast, or redu
es Generi
 Broad
astto a sequen
e of Consensus in asyn
hronous systems with f < max(nack, nchk).Proof. Immediate from Propositions 4.2, 4.3, 4.4, and 4.5. 2
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 Broad
ast4.3 Evaluation of the Generi
 Broad
ast AlgorithmThe Generi
 Broad
ast algorithm is stri
t and 
heaper than known Atomi
 Broad
astimplementations based on the same assumptions. We evaluate next the 
ost of theGeneri
 Broad
ast algorithm using the delivery laten
y parameter, introdu
ed in thisse
tion.4.3.1 Generi
 Broad
ast Algorithm Stri
tnessProposition 4.6 states that the Generi
 Broad
ast algorithm of Se
tion 4.2.2 is astri
t implementation of Generi
 Broad
ast.Proposition 4.6 Algorithm 1 is a stri
t Generi
 Broad
ast algorithm.Proof. Immediate from Figure 4.1, where pro
ess p g-Broad
asts message m andpro
ess s g-Broad
asts messages m′. Pro
ess p (respe
tively s) R-delivers m′ (respe
-tively m) after g-Delivering m′ (respe
tively m) � not shown in Figure 4.1. Pro
ess
p only a
knowledges message m, pro
esses q and r a
knowledge messages m and m′,and pro
ess s only a
knowledges message m′.Pro
ess p re
eives the a
knowledges from p, q, and r and sin
e nack = 3, p g-Delivers
m. Pro
ess p then re
eives the a
knowledgement from s for m′, and g-Delivers m′.Similarly, s g-Delivers m′ and then m. Therefore, p g-Delivers m before m′, and sg-Delivers m′ before m. 2

g-Deliver(m’)R-broadcast(m)

g-Broadcast(m’)

g-Broadcast(m)

p

q

r

s

R-deliver(m)

R-deliver(m’)

R-deliver(m)
R-deliver(m’)

send(k,{m,m’},ACK)

g-Deliver(m)

g-Deliver(m)
g-Deliver(m’)

send(k,{m},ACK)

R-broadcast(m’) send(k,{m’},ACK)
g-Deliver(m’)

g-Deliver(m)Figure 4.1: Run R of Generi
 Broad
ast (nack = 3)



4.3. Evaluation of the Generi
 Broad
ast Algorithm 694.3.2 Generi
 Broad
ast Algorithm CostIn order to analyse the 
ost of the Generi
 Broad
ast algorithm, we introdu
e thedelivery laten
y parameter. We analyse the Generi
 Broad
ast algorithm 
onsideringbest 
ase runs, when messages 
an be g-Delivered without 
on�i
t, and with 
on�i
t.Delivery Laten
y. In the following, we introdu
e the delivery laten
y as a param-eter to measure the e�
ien
y of algorithms solving any Broad
ast problem (de�nedby the primitives α-Broad
ast and α-Deliver). The delivery laten
y is a variationof the Laten
y Degree introdu
ed in [S
h97℄, whi
h is based on modi�ed Lamport's
lo
ks [Lam78℄:
• a send event and a lo
al event on a pro
ess p do not modify p's lo
al 
lo
k,
• let ts(send(m)) be the timestamp of the send(m) event, and ts(m) the times-tamp 
arried by message m: ts(m)

def
= ts(send(m)) + 1, and

• the timestamp of receive(m) on a pro
ess p is the maximum between ts(m)and p's 
urrent 
lo
k value.The delivery laten
y of a message m α-Broad
ast in some run R of an algorithm Asolving a Broad
ast problem, denoted dlR(m), is de�ned as the di�eren
e between(1) the largest timestamp of all α-Deliver(m) events (at most one per pro
ess) in run
R and (2) the timestamp of the α-Broad
ast(m) event in run R. Let πR

m be the setof pro
esses that α-Deliver message m in run R. The delivery laten
y of m in R isformally de�ned as
dlR(m)

def
= max

p∈πR
m

(ts(α-Deliverp(m))− ts(α-Broad
ast(m))).For example, 
onsider a broad
ast algorithm Ab where (1) to broad
ast a message
m, a pro
ess p sends m to all pro
esses, (2) ea
h pro
ess q on re
eiving m sendsan a
knowledgement message ACK(m) to all pro
esses, and (3) as soon as q hasre
eived nack messages of the type ACK(m), q delivers m. Let R be a run of Ab, asshown in Figure 4.2. In this 
ase we have dlR(m) = 2.The delivery laten
y is a measure of the syn
hronisation among pro
esses in a givenrun produ
ed by some broad
ast algorithm A to deliver a message. The deliverylaten
y 
an be used to 
hara
terise the minimal syn
hronisation among pro
esses,required by an algorithm A, to deliver messages. For example, algorithm Ab requiresthat pro
esses send an ACK(m) message only after re
eiving message m, and so,no run generated by Ab where m is broad
ast will have sendp(ACK(m)) pre
edingre
eivep(m), for any pro
ess p. Nevertheless, algorithm Ab allows a pro
ess q to send
ACK(m) after having re
eived ACK(m) from some pro
ess p. Thus, there exists arun R′ of Ab where re
eiveq(ACK(m)) pre
edes sendq(ACK(m)) (see Figure 4.3).In this 
ase we have dlR

′

(m) = 3.
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send(m)

broadcast(m)

p

q

send(ACK(m))

deliver(m)

send(ACK(m))

deliver(m)Figure 4.2: Run R of Ab with dlR(m) = 2

send(ACK(m))

send(ACK(m))

send(m)

broadcast(m)

q

deliver(m)

deliver(m)

p

Figure 4.3: Run R′ of Ab with dlR
′

(m) = 3Therefore, when 
hara
terising a broad
ast algorithm A with the delivery laten
yparameter, we will 
onsider best 
ase s
enarios, whi
h 
hara
terise the minimal syn-
hronisation ne
essary to deliver messages.Cost Analysis. We now dis
uss the 
ost of our Generi
 Broad
ast algorithm. Ourmain result is that for messages that do not 
on�i
t, the Generi
 Broad
ast algorithm
an deliver messages with a delivery laten
y equal to 2, while for messages that
on�i
t, the delivery laten
y is at least equal to 4. Sin
e known Atomi
 Broad
astalgorithms deliver messages with a delivery laten
y of at least 3,5 this results showsthe tradeo� of the Generi
 Broad
ast algorithm: if messages 
on�i
t frequently, ourGeneri
 Broad
ast algorithm may be
ome less e�
ient than an Atomi
 Broad
astalgorithm, while if 
on�i
ts are rare, then our Generi
 Broad
ast algorithm leads tosmaller 
osts 
ompared to Atomi
 Broad
ast algorithms.Before stating Properties 4.8 � 4.11, we present Proposition 4.7 whi
h de�nes a lowerbound on algorithms that implement Reliable Broad
ast, and Corollary 4.1 whi
h5An ex
eption is the Optimisti
 Atomi
 Broad
ast algorithm (see Chapter 5), whi
h 
an delivermessages with delivery laten
y equal to 2 if the spontaneous total order property holds.



4.3. Evaluation of the Generi
 Broad
ast Algorithm 71states this lower bound in terms of the delivery laten
y parameter.Proposition 4.7 Let Arb be an algorithm that solves Reliable Broad
ast. For everyrun R of Arb where a pro
ess p R-broad
asts some message m and a pro
ess q 6=
p R-delivers m, there is a 
ausal 
hain of events 
onne
ting R-broad
astp(m) andR-deliverq(m).Proof. Suppose, by way of 
ontradi
tion, that there exists an algorithm Arb thatsolves Reliable Broad
ast su
h that in some runs of Arb, a pro
ess p R-broad
astsa message m, a pro
ess q 6= p R-delivers m, and there is no 
ausal 
hain of events
onne
ting R-broad
astp(m) and R-deliverq(m). Let R be su
h a run of Arb whereR-broad
astp(m) is the �rst event exe
uted by pro
ess p. From the hypothesis, thereis no event e ∈ R so that R-broad
astp(m)→ e and e→ R-deliverq(m).Consider now a run R′ similar to R ex
ept that p does not R-broad
ast m. Pro
ess
q is not able to distinguish between R and R′, and sin
e q R-delivers m in R, qR-delivers m in R′, violating the uniform integrity property of Reliable Broad
ast,and 
ontradi
ting our hypothesis that Arb solves Reliable Broad
ast. 2Corollary 4.1 There is no algorithm Arb that implements Reliable Broad
ast su
hthat for any message m R-delivered in some run R produ
ed by Arb, dlR(m) < 1.Proof. Immediate from Proposition 4.7 and the de�nition of delivery laten
y. 2Propositions 4.8 and 4.9 assess the 
ost of the Generi
 Broad
ast algorithm whenmessages do not 
on�i
t. Proposition 4.8 de�nes a lower bound on the deliverylaten
y of Algorithm 1 for messages g-Delivered without Consensus (line 36), andProposition 4.9 shows that this bound 
an be rea
hed in runs where there are nopro
ess failures.Proposition 4.8 There is no run R generated by Algorithm 1 where some message
m is only g-Delivered at line 36 and dlR(m) < 2.Proof. Assume for a 
ontradi
tion that there is a run R and a message m g-Delivered in R su
h that dlR(m) < 2. Sin
e m is g-Delivered in R, by the integrityproperty of Generi
 Broad
ast, there is a pro
ess q that g-Broad
asts m. By Algo-rithm 1, if q g-Broad
asts m, q R-broad
asts m, and every pro
ess p that g-Delivers
m �rst R-delivers m. We de�ne lRB

m,p = ts(R-deliverp(m))− ts(R-broad
astq(m)), and
lgB
m,p = ts(g-Deliverp(m))− ts(g-Broad
astq(m)), where lgB

m,p ≥ lRB
m,p. By Corollary 4.1,

lRB
m,p ≥ 1, and from the de�nition of delivery laten
y and the 
ontradi
tion hypothesis,
lgB
m,p ≤ dlR(m) < 2.It follows that 1 ≤ lRB

m,p ≤ lgB
m,p ≤ dlR(m) < 2, and it must be that lRB

m,p = lgB
m,p.Therefore, after R-delivering m, p does not re
eive any message m′ su
h that m→ m′,where → is the happens-before relation de�ned by Lamport [Lam78℄. Sin
e p g-Delivers m at line 36, p re
eives nack messages of the type (k, pendingk, ACK),
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 Broad
astsu
h that m ∈ pendingk. Let r be a pro
ess from whi
h p re
eives a message
(k, pendingk, ACK)r at line 18. Sin
e m ∈ pendingk, than r has re
eived m, andso, m→ (k, pendingk, ACK)r, a 
ontradi
tion. 2Proposition 4.9 Assume that Algorithm 1 uses the Reliable Broad
ast implemen-tation given in [CT96℄. There is a run R generated by Algorithm 1 where message
m is g-Delivered at line 36 and dlR(m) = 2.Proof. Immediate from Figure 4.4 where pro
ess p g-Broad
asts a message m.(Some messages have been omitted from Figure 4.4 for 
larity.) For all ρ ∈ {p, q, r, s},
ts(re
eiveρ(m)) = ts(sendp(m)) + 1, and, for all ρ′ ∈ {p, q, s}, ts(re
eiveρ(k, {m},
ACK) from ρ′) = ts(sendρ′(k, {m}, ACK)) + 1. But ts(sendρ′(k, {m}, ACK)) =
ts(re
eiveρ′(m)), and so, ts(re
eiveρ(k, {m}, ACK) from ρ′) = ts(sendp(m)) + 2.From Figure 4.4, ts(g-Broad
astp(m)) = ts(sendp(m)), and ts(g-Deliverρ(m)) =
ts(re
eiveρ(k, {m}, ACK) from ρ′). By the de�nition of delivery laten
y, we have
dlR(m) = 2. 2

send(m)

g-Broadcast(m)
R-broadcast(m)

g-Deliver(m)
R-deliver(m)

send(k,{m},ACK)

p

q

r

s Figure 4.4: Run of Generi
 Broad
ast with dlR(m) = 2The results that follow are about the 
ost of the Generi
 Broad
ast algorithm inruns where 
on�i
ting messages are g-Broad
ast. Proposition 4.10 establishes alower bound for 
ases where messages 
on�i
t, and Proposition 4.11 shows that thebest 
ase with 
on�i
ts 
an be rea
hed in runs with no pro
ess failures nor failuresuspi
ions. Proposition 4.10 is based on Conje
ture 4.1, whi
h establishes a lowerbound on Consensus algorithms. This lower bound is based on the laten
y degreeparameter, introdu
ed in [S
h97℄.Conje
ture 4.1 Assume an asyn
hronous system model M augmented with a failuredete
tor that does not satisfy strong a

ura
y. There is no algorithm AC in M thatsolves Consensus with a laten
y degree smaller than 2.Noti
e that there are algorithms that solve Consensus with a laten
y degree equalto 2 in M [S
h97, MR99℄.
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 Broad
ast Algorithm 73Proposition 4.10 Assume that Conje
ture 4.1 is true. There is no run R generatedby Algorithm 1 in M where m and m′ are the only messages g-Delivered, m and m′
on�i
t, and dlR(m) < 4 and dlR(m′) < 4.Proof. Assume for a 
ontradi
tion that there is a run R and two messages m and m′g-Delivered in R su
h that m and m′ 
on�i
t and dlR(m) < 4 and dlR(m′) < 4. FromLemma 4.2, at most one message is g-Delivered in R before Consensus. Without lossof generality, assume that m is g-Delivered after Consensus. We will show that it
annot be that dlR(m) < 4.For every pro
ess p that g-Delivers m, p �rst exe
utes de
idep(−, (seta, setb)), su
hthat m ∈ setb. Thus, from the uniform validity property of Consensus, there is a pro-
ess q that exe
utes proposeq(−, (seta, setb)). Let lCp = ts(de
idep(−, (seta, setb))) −
ts(proposeq(−, (seta, setb))). From Conje
ture 4.1 and the de�nition of laten
y de-gree [S
h97℄, lCp ≥ 2.From Algorithm 1, before q exe
utes proposeq(−, (seta, setb)), q re
eives nchk mes-sages of the type (−, pending,CHK). Let r be a pro
ess from whi
h q re
eivesmessage (−, pendingr, CHK). We 
laim that r R-delivers m. To see why, noti
ethat in Algorithm 1, r only exe
utes sendr(−, pendingr, CHK) (line 17) after r R-delivers two 
on�i
ting messages: m and m′. It follows that ts(g-Deliverp(m)) −
ts(R-deliverr(m)) ≥ lCp + 1, and sin
e lCp ≥ 2, we have (a) ts(g-Deliverp(m)) −
ts(R-deliverr(m)) ≥ 3.We de�ne (b) lRB

m,r = ts(R-deliverr(m)) − ts(R-broad
ast(m)), and (
) lgB
m,p =

ts(g-Deliverp(m)) − ts(g-Broad
ast(m)). By Algorithm 1, (d) ts(g-Broad
ast(m)) =

ts(R-broad
ast(m)). It follows from (a), (b), (
), and (d) that lgB
m,p = lRB

m,p + 3.By the 
ontradi
tion hypothesis, dlR(m) < 4, and by the de�nition of delivery la-ten
y, for all p that g-Deliver m, lgB
m,p ≤ dlR(m). Thus, lRB

m,p + 3 ≤ dlR(m) < 4. We
on
lude that lRB
m,p = 0, whi
h 
ontradi
ts Proposition 4.7 and 
on
ludes the proof.2Proposition 4.11 Assume that Algorithm 1 uses the Reliable Broad
ast implemen-tation given in [CT96℄, and the Consensus implementation given in [S
h97℄. Thereexists a run R of Algorithm 1 where two messages 
on�i
ting m and m′ are g-Delivered in some stage k, and dlR(m) = 4 and dlR(m′) = 4.Proof. Immediate from Figure 4.5, where pro
ess q g-Broad
asts message m, andpro
ess r g-Broad
asts message m′. (The Consensus exe
ution and some mes-sages have been omitted for 
larity.) For all ρ ∈ {p, q, r, s}, ts(re
eiveρ(m)) =

ts(sendq(m)) + 1, and ts(re
eiveρ(m
′)) = ts(sendr(m

′)) + 1. It also follows thatfor all ρ′ ∈ {p, q, r}, ts(re
eiveρ(k,−, CHK) from ρ′) = ts(sendρ′(k,−, CHK)) + 1.From Figure 4.5, ts(sendρ′(k,−, CHK)) = ts(re
eiveρ′(m)) = ts(re
eiveρ′(m
′)), andthus, ts(re
eiveρ(k,−, CHK) from ρ′) = ts(sendρ′′(m)) + 2, ρ′′ ∈ {q, r}.By the Consensus algorithm given in [S
h97℄, ts(de
ideρ(−)) = ts(proposeρ(−)) +

2. From Figure 4.5, ts(proposeρ(−)) = ts(re
eiveρ(k,−, CHK)), and we have that
ts(de
ideρ(−)) = ts(re
eiveρ(k,−, CHK)) + 4. We 
on
lude by the de�nition ofdelivery laten
y and sin
e ts(g-Deliverρ(m)) = ts(g-Deliverρ(m

′)) = ts(de
ideρ(−)),
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ts(g-Broad
astq(m)) = ts(sendq(m)), and ts(g-Broad
astr(m)) = ts(sendr(m)), that
dlR(m) = 4 and dlR(m′) = 4. 2
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Figure 4.5: Run of Generi
 Broad
ast with dlR(m) = 4 and dlR(m′) = 4

4.4 Related WorkGroup 
ommuni
ation aim at extending traditional one-to-one 
ommuni
ation, whi
his insu�
ient in many settings. One-to-many 
ommuni
ation is typi
ally neededto handle repli
ation (repli
ated data, repli
ated obje
ts, et
.). Classi
al te
h-niques to manage repli
ated data are based on voting and quorum systems (e.g.,[Gif79, Her86, JM87℄ to 
ite a few). Early quorum systems distinguish read opera-tions from write operations in order to allow for 
on
urrent read operations. Theseideas have been extended to abstra
t data types in [Her86℄. In
reasing 
on
ur-ren
y without 
ompromising strong 
onsisten
y guarantees on repli
ated data is astandard way to in
rease system performan
e. Lazy repli
ation [RL92℄ is anotherapproa
h that aims at in
reasing performan
e by redu
ing the 
ost of repli
ation.Lazy repli
ation also distinguishes between read and write operations, and relaxesthe requirement of total order delivery of read operations. Consisten
y is ensured atthe 
ost of managing timestamps outside the set of repli
ated servers. Timestampsare used to ensure Causal Order delivery on the repli
ated servers.Our approa
h also aims at in
reasing the performan
e of repli
ation by in
reasing
on
urren
y in the 
ontext of group 
ommuni
ation. To the best of our knowledge,no previous work has de�ned group 
ommuni
ation in this way. Nevertheless, thereare some similarities between our Generi
 Broad
ast algorithm and quorum sys-tem [Gif79℄. From this perspe
tive, our work 
an be seen as a way to integrate group
ommuni
ation and quorum systems. There is even a stronger similarity betweenquorum systems and our Generi
 Broad
ast algorithm. Our algorithm is based on



4.5. Dis
ussion 75two sets: an a
knowledgement set and a 
he
king set. These sets play a role similarto quorum systems. However, quorum systems require weaker 
onditions to keep
onsisten
y than the 
ondition required by the a
knowledgement and 
he
king sets.6This dis
repan
y is explained in part by the fa
t that quorum systems are only
on
erned with safety guarantees (e.g., two writes on repli
as of the same obje
tshould not be performed 
on
urrently), whereas the Generi
 Broad
ast algorithm is
on
erned with safety and liveness guarantees.4.5 Dis
ussionGeneri
 Broad
ast is a powerful message ordering abstra
tion. The de�nition of aGeneri
 Broad
ast primitive is based on a 
on�i
t relation derived from semanti
information provided by the appli
ation. Reliable and Atomi
 Broad
ast are spe
ial
ases of Generi
 Broad
ast, where the 
on�i
t relation is the empty set in one 
ase(i.e., Reliable Broad
ast) and the Cartesian Produ
t over all messages in the other
ase (i.e., Atomi
 Broad
ast). Reliable and Atomi
 Broad
ast determine the twoends of a spe
trum of order relations. Between these two ends, we de�ned a 
on�i
trelation to be used by the Database State Ma
hine algorithm, whi
h 
hara
terises aserialisability based message ordering.The advantage of Generi
 Broad
ast over Atomi
 Broad
ast is a 
ost issue, where
ost is de�ned by the delivery laten
y of messages. The intuition behind the Generi
Broad
ast problem is that ordering messages has a 
ost, and this 
ost should only bepaid when ne
essary, that is, when messages 
on�i
t. This notion of 
ost is formallyde�ned by the stri
tness property. In this 
hapter, we have presented a stri
t Generi
Broad
ast algorithm.On a di�erent issue, the Generi
 Broad
ast algorithm proposed uses me
hanismsthat have similarities with quorum systems. This raises an interesting issue and laysthe basis for further investigation aiming at better understanding the di�eren
es be-tween repli
ation proto
ols based on group 
ommuni
ation (e.g., Atomi
 Broad
ast,Generi
 Broad
ast) and repli
ation proto
ols based on quorum systems.Finally, the Generi
 Broad
ast algorithm proposed requires at least (2n+1)/3 
orre
tpro
esses. Su
h a 
ondition is usual in the 
ontext of Byzantine failures, but rathersurprising in the 
ontext of 
rash failures. These observations suggest that theremight be room for optimised Generi
 Broad
ast algorithms.
6Let nr be the size of a read quorum, and nw the size of a write quorum. Quorum systemsusually requires that nr + nw ≥ n + 1, and nw ≥ ⌈(n + 1)/2⌉.
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Chapter 5Optimisti
 Atomi
 Broad
astA pessimist sees the di�
ulty in every opportunity;an optimist sees the opportunity in every di�
ulty.Winston Chur
hillBroad
ast proto
ols have been shown to play an important role in fault tolerantsystems. For repli
ation me
hanisms based on the state ma
hine approa
h [S
h90℄(e.g., the Database State Ma
hine), Atomi
 Broad
ast guarantees that every repli
adelivers requests in the same order. One way of improving the e�
ien
y of su
hrepli
ation me
hanisms is to use broad
ast primitives providing order guaranteesthat take advantage of appli
ation semanti
s, like Generi
 Broad
ast. Another wayis to exploit system properties to implement fast Atomi
 Broad
ast proto
ols.In this 
hapter, we introdu
e optimisti
 approa
hes to implementing broad
ast pro-to
ols (e.g., Atomi
 Broad
ast). These approa
hes are optimisti
 be
ause they arebased on system properties that do not always hold, but if these properties hold fora 
ertain period, messages 
an be delivered fast. This 
hapter des
ribes three opti-misti
 approa
hes in general lines, and presents one in detail, the Optimisti
 Atomi
Broad
ast (OPT-AB
ast) algorithm. The optimism in these approa
hes exploits thespontaneous total order property, that is, the fa
t that in some networks it is highlyprobable that messages are re
eived in the same total order.5.1 Degrees of OptimismThe optimisti
 approa
hes presented in this 
hapter exploit the spontaneous totalorder property to deliver messages fast. The spontaneous total order property holdsunder some 
ir
umstan
es (e.g., moderate load) in lo
al area networks. It 
an bestated as follows.(Spontaneous Total Order) Consider a set Ω of pro
esses. If a pro
ess psends a message m to all pro
esses in Ω, and a pro
ess q sends a message m′
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 Atomi
 Broad
astto all pro
esses in Ω, then the two messages are re
eived in the same order byall re
eivers.Under abnormal exe
ution 
onditions (e.g., high network loads), the spontaneoustotal order property may be violated. More generally, one 
an 
onsider that thesystem passes through periods when the spontaneous total order property holds,and periods when the property does not hold.To illustrate the spontaneous total order property, we 
ondu
ted some experimentsinvolving eight workstations (UltraSpar
 1+) 
onne
ted by an Ethernet network(10 Mbits/s). In the experiments (see Figure 5.1), ea
h workstation broad
astsmessages to all the other workstations, and re
eives messages from all workstationsover a 
ertain period of time (around 10 se
.). Broad
asts are implemented with IP-multi
ast, and messages have 1024 bytes. From Figure 5.1, it 
an be seen that thereis a relation between the time between su

essive broad
ast 
alls, and the per
entageof messages that are re
eived in the same order.

Time between su

essive broad
asts (mse
)Messagestot
allyordered(
%)

54.543.532.521.510.5

0.960.940.920.90.880.860.840.820.80.78Figure 5.1: Spontaneous total order propertyThe approa
hes presented next assume that in order to deliver a message, an Atomi
Broad
ast algorithm pro
eeds in two phases. In the �rst phase, the message ispropagated to all pro
esses, and in the se
ond phase, pro
esses determine the orderin whi
h messages have to be delivered.1In addition to the propagation phase and the order phase, we also 
onsider a 
he
kphase, and a treatment phase to 
hara
terise and 
ompare optimisti
 broad
ast ap-proa
hes. The 
he
k phase determines whether the spontaneous total order propertyholds, and the treatment phase represents the pro
essing exe
uted by the appli
ationupon A-delivering a message (e.g., the treatment done by a repli
a in the 
ontext of1Indeed, several Atomi
 Broad
ast algorithms based on non-
entralised 
ontrol are stru
turedin a propagation and order phases [AM92, CT96℄.
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tive Repli
ation [GS97℄). The treatment phase has been in
luded to help 
omparethe overhead introdu
ed by some of the optimisti
 te
hniques.To keep the presentation simple, we fo
us our attention on one message ordered at atime. However, the optimisti
 approa
hes presented 
an also be used when messagesare ordered in bat
hes. The beginning of the propagation phase is determined bythe A-broad
ast of a message, and the treatment phase starts on a pro
ess when themessage is A-delivered by this pro
ess.To assess the e�
ien
y of our optimisti
 approa
hes, we asso
iate with ea
h approa
ha �
ost� Λ, whi
h in
ludes ordering and pro
essing 
osts.5.1.1 Classi
al Atomi
 Broad
ast Algorithmwith Conservative TreatmentThis approa
h serves as a referen
e for the optimisti
 te
hniques presented next.Consider that m is a message A-broad
ast by a pro
ess p. Pro
ess p �rst sends m toall pro
esses (in
luding itself), and on
e m is re
eived by some pro
esses, a proto
olis used to de
ide on the delivery order of m. The number of pro
esses that have tore
eive m so that order 
an be de
ided depends on the proto
ol. A pro
ess q onlyA-delivers message m after m's order is known by q.Figure 5.2 depi
ts the propagation, order, and treatment phases involved in theClassi
al Algorithm with Conservative Treatment approa
h. In this 
ase, the 
ost is
ΛCC = Λp + Λo + Λt, where Λp represents the 
ost of the propagation phase, Λo the
ost of the ordering phase, and Λt the 
ost of the treatment phase.

treatment
phase

order
phase

propagation
phase

�������������
�������������
�������������
�������������

A-broadcast(m) A-deliver(m)

Figure 5.2: Classi
al approa
h5.1.2 Optimisti
 Atomi
 Broad
ast Algorithmwith Conservative TreatmentThe Optimisti
 Algorithm with Conservative Treatment approa
h assumes that 
he
k-ing whether the spontaneous total order property holds or not is 
heaper than a
-tually totally ordering messages. Thus, instead of exe
uting the order phase afterre
eiving a message m, pro
esses try to determine whether m is re
eived in the sameorder by all re
eivers. If this is the 
ase, m 
an be delivered. Otherwise, pro
esseshave to agree on the order m should be delivered. Figure 5.3 depi
ts the Optimisti
Algorithm with Conservative Treatment approa
h, with the 
he
k phase, and α, theprobability that the spontaneous total order property holds.
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Figure 5.3: Optimisti
 Algorithm approa
hThe messages ne
essary to exe
ute the 
he
k phase introdu
es an additional 
ost,and so, when the spontaneous total order property does not hold, the Optimisti
Algorithm approa
h is more expensive than the Classi
al Algorithm approa
h (seeSe
tion 5.1.1). In this 
ase we de�ne the 
ost ΛOC as Λp + Λc + (1 − α)Λo + Λt,where Λc represents the 
ost of the 
he
k phase. Se
tion 5.2 presents in detail analgorithm that uses the Optimisti
 Algorithm approa
h.An interesting optimisation would be to overlap the 
he
k with the order phases toredu
e (or 
ompletely eliminate) the overhead with the delivery of messages whenthe spontaneous total order property does not hold.5.1.3 Classi
al Atomi
 Broad
ast Algorithmwith Optimisti
 TreatmentA more aggressive way of exploiting the spontaneous total order property than theprevious te
hnique is as follows [KPAS99℄. When a pro
ess p re
eives a message m, pA-delivers m to the appli
ation before exe
uting the order phase. This way, a messageis A-delivered �rst in a tentative order. Pro
esses also exe
ute the order phase, andon
e the de�nitive order for a message is known, the message is A-delivered again.Although the order phase is always performed, its exe
ution is overlapped with thetreatment phase. If the de�nitive order does not 
orrespond to the tentative order,the appli
ation has to �undo� some operations and �redo� them in the 
orre
t order(see Figure 5.4).For the Classi
al Atomi
 Broad
ast Algorithm with Optimisti
 Treatment approa
h,the 
ost is ΛCO = Λp + (1 − α)(Λo + Λu) + Λt, where Λu represents the 
ost forthe undo phase, and either (1) Λt ≤ Λo, or (2) if the tentative order is not thesame de�nitive order, on
e the de�nitive order is known for some message m, theappli
ation treatment of m 
an be interrupted. Sin
e messages 
an be re
eived the�rst time in a wrong order, this approa
h requires the appli
ation to be able to undothe operations of the treatment phase.As pointed out previously, this te
hnique does not 
orrespond to the Atomi
 Broad-
ast spe
i�
ation presented in Chapter 2. The new spe
i�
ation is de�ned by theprimitives Opt-broad
ast(m), Opt-deliver(m), and TO-deliver(m), whi
h satisfy the
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Figure 5.4: Optimisti
 Problem approa
hfollowing properties [KPAS99℄.(Validity) If a 
orre
t pro
ess Opt-broad
asts a message m, then it eventuallyOpt-delivers m and TO-delivers m.(Agreement) If a 
orre
t pro
ess Opt-delivers a message m then every 
orre
tpro
ess eventually Opt-delivers m. If a 
orre
t pro
ess TO-delivers m thenevery 
orre
t pro
ess eventually TO-delivers m.(Uniform integrity) For every message m, every pro
ess Opt-delivers andTO-delivers m at most on
e, and only if m was previously Opt-broad
ast bysender(m).(Global Order) If two 
orre
t pro
esses p and q TO-deliver two messages mand m′, then p TO-delivers m before m′ if and only if q TO-delivers m before
m′.(Lo
al Order) A pro
ess does not TO-deliver a message m before Opt-delivering m.These properties state that every message Opt-broad
ast by a 
orre
t pro
ess iseventually Opt-delivered and TO-delivered by every 
orre
t pro
ess in the system.Order is guaranteed in su
h a way that no pro
ess TO-delivers a message before Opt-delivering it, and every message is TO-delivered (but not ne
essarily Opt-delivered)in the same order by all the 
orre
t pro
esses.5.1.4 Optimisti
 Atomi
 Broad
ast Algorithmwith Optimisti
 TreatmentAn algorithm 
an be devised by 
ombining the two approa
hes presented before.That is, pro
esses Opt-deliver messages as soon as they re
eive them, but only ex-e
ute the order phase if the spontaneous total order property does not hold (seeFigure 5.5).



82 Chapter 5. Optimisti
 Atomi
 Broad
ast
treatment

phase

undo

order
phase

check
phase

phase

phase
treatment

Opt-broadcast(m)

Opt-deliver(m)

1- α

propagation
phase �������������

�������������
�������������

�������������
�������������
�������������

�������
�������
�������
�������

�������
�������
�������
�������

α
TO-deliver(m)

Figure 5.5: Hybrid approa
hThis approa
h has the advantages of both the Optimisti
 Atomi
 Broad
ast Algo-rithm with Conservative Treatment and the Classi
al Atomi
 Broad
ast Algorithmwith Optimisti
 Treatment: it overlaps the treatment phase with the exe
ution ofthe 
he
k phase, and it takes advantage of system properties to deliver messages(in the de�nitive order) fast. In this 
ase, the 
ost is ΛOO = Λp + (1 − α)(Λc +max(Λo,Λu)) + Λt, where (1) Λt ≤ Λc, or (2) if the tentative order of m is not 
or-re
t, the appli
ation treatment started by the Opt-delivery of some message m 
anbe interrupted.Table 5.1 shows the approa
hes presented in this se
tion. Ea
h approa
h is 
hara
-terised by its 
ost.Approa
h CostConservative Treatment:Classi
al Atomi
 Broad
ast Alg. ΛCC = Λp + Λo + ΛtOptimisti
 Atomi
 Broad
ast Alg. ΛOC = Λp + Λc + (1− α) Λo + ΛtOptimisti
 Treatment:Classi
al Atomi
 Broad
ast Alg. ΛCO = Λp + (1− α)(Λo + Λu) + ΛtOptimisti
 Atomi
 Broad
ast Alg. ΛOO = Λp + (1 − α)(Λc + max(Λo, Λu)) + ΛtTable 5.1: Cost of the various approa
hes5.1.5 A Strawman Analysis of the Degrees of OptimismFrom the 
ost 
hara
terisation presented in the previous se
tions, and by makingsome simplifying assumptions, we 
an evaluate and draw some 
on
lusions aboutthe behaviour of ea
h optimisti
 approa
h.In the following, we �quantify� the 
ost of a phase by its laten
y (also known as
ommuni
ation steps). The values taken for the propagation, order, and 
he
k phases
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ase analysis (i.e., no failures nor pro
ess suspi
ions). The 
ost fora pro
ess to propagate a message to all the other pro
esses (broad
ast), supposing npro
esses, is Λp = 1. To 
he
k whether the spontaneous total order property holds,we 
onsider that one pro
ess is 
hosen a priori as the 
oordinator and the otherpro
esses send to the 
oordinator a list with the order of the messages re
eived.The 
oordinator determines whether the spontaneous total order property holds andinforms all pro
esses. Therefore, Λc = 2. The order phase 
an be implementedusing the optimised Chandra and Toueg Consensus algorithm with unreliable failuredete
tors of 
lass 3S [CT96℄.2 In the best 
ase we have Λo = 3.We pro
eed 
onsidering two 
ases: (a) Λt = Λu = 0 (i.e., the 
ost for the treatmentphase and the undo phase are equal), and (b) Λt = Λu = Λo (i.e., the treatment,undo, and ordering phases have the same 
ost). In 
ase (a), the 
osts of the treatmentand the undo phases are very low (e.g., lo
al resour
es are mu
h faster than thenetwork), and in 
ase (b), the 
osts of the treatment and undo phases are high,relatively to the send to all, 
he
k, and order phases.Simple 
al
ulations lead to the relations shown in Table 5.2, whi
h are depi
ted inFigures 5.6 and 5.7.
Λt = Λu = 0 Λt = Λu = Λo

ΛCC/ΛOC 4/(6− 3α) 7/(9− 3α)

ΛCC/ΛCO 4/(4− 3α) 7/(10− 6α)

ΛCC/ΛOO 4/(6− 5α) 7/(9− 5α)Table 5.2: Relationships between degrees of optimismFigures 5.6 and 5.7 show that the Classi
al Algorithm with Optimisti
 Treatment andthe Optimisti
 Algorithm with Optimisti
 Treatment approa
hes �perform better� (interms of laten
y) than the Optimisti
 Algorithm with Conservative Treatment ap-proa
h. This is in part be
ause even when the spontaneous total order propertyholds, a message 
an only be delivered using the Optimisti
 Algorithm with Conser-vative Treatment approa
h after the 
he
k phase has terminated, whi
h is not the
ase with the other te
hniques. However, this analysis does not take into a

ountresour
es utilisation (i.e., pro
essor and network). If resour
es were 
onsidered, theresults might have been di�erent. The reason is that the Optimisti
 Algorithm withConservative Treatment approa
h never has to undo operations (i.e., it generates lesspro
essor a
tivity), and only orders messages when the spontaneous total order prop-erty does not hold (i.e., it generates less network a
tivity). Furthermore, as alreadystated, there is a fundamental di�eren
e between the Optimisti
 Algorithm with Con-servative Treatment approa
h and the approa
hes based on optimisti
 treatment, inthat the latter 
an only be used when the appli
ation is able to undo operations.From Figures 5.6 and 5.7, the Classi
al Algorithm with Optimisti
 Treatment ap-proa
h is more e�
ient than the Optimisti
 Algorithm with Optimisti
 Treatment2The optimised Chandra and Toueg Consensus algorithm 
onsists in eliminating the �rst phaseof the algorithm, when pro
esses send their initial values to the 
oordinator (see the Appendix),and having the 
oordinator propose its initial value as estimate [S
h97℄.
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Optimisti
 TreatmentOptimisti
 AB
ast withOptimisti
 TreatmentClassi
al AB
ast withConservative TreatmentOptimisti
 AB
ast with

α
10.90.80.70.60.50.40.30.2

43.532.521.510.5Figure 5.6: Degrees of optimism (Λt = Λu = 0)approa
h when the 
ost of the treatment and undo phases are low, and worse whenthey are high. This is explained by the fa
t that the Optimisti
 Algorithm withOptimisti
 Treatment approa
h allows an overlap between the order and the undophases, with the additional 
ost of a 
he
k phase. The Classi
al Algorithm withOptimisti
 Treatment approa
h does not have the additional 
he
k phase 
ost, buttreats the order and the undo phases sequentially. If the 
ost of the undo phase iszero, the Optimisti
 Algorithm with Optimisti
 Treatment approa
h does not haveany advantage over the Classi
al Algorithm with Optimisti
 Treatment approa
h,and, a
tually, further augments the overall 
ost to deliver a message. Finally, forvalues of α very 
lose to one, both approa
hes based on optimisti
 treatment have asimilar behaviour.5.2 Optimisti
 Atomi
 Broad
ast AlgorithmIn this se
tion, we present in detail an algorithm that exploits the Optimisti
 Ap-proa
h introdu
ed in the previous se
tion: the Optimisti
 Atomi
 Broad
ast (OPT-AB
ast) algorithm. Our interest in the Optimisti
 Approa
h 
omes from the fa
tthat the OPT-AB
ast algorithm 
an repla
e 
lassi
al implementations of Atomi
Broad
ast in the Database State Ma
hine without further modi�
ations in the waytransa
tions are pro
essed (see [KPAS99℄ for a database repli
ation proto
ol basedon optimisti
 treatment).This se
tion 
onsiders an asyn
hronous system model. Pro
esses 
ommuni
ate bymessage passing through FIFO Quasi-Reliable 
hannels, and have the 
rash-stopmode of failure. The system is augmented with failure dete
tors to allow us to solveConsensus (Chapter 2).
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Optimisti
 TreatmentOptimisti
 AB
ast withOptimisti
 TreatmentClassi
al AB
ast withConservative TreatmentOptimisti
 AB
ast with

α
10.90.80.70.60.50.40.30.2

1.81.71.61.51.41.31.21.110.90.80.7Figure 5.7: Degrees of optimism (Λt = Λu = Λo)5.2.1 Overview of the AlgorithmIn the OPT-AB
ast algorithm, pro
esses progress in a sequen
e of stages. Messages
an be delivered �during� a stage or at the �end� of a stage, and the key idea is thatduring a stage, messages 
an be delivered faster than at the end of a stage. Figure 5.8depi
ts the OPT-AB
ast algorithm when messages are delivered during a stage k.3In order for a pro
ess p to deliver messages during stage k, p has to determinewhether the spontaneous total order property holds. Pro
ess p determines whetherthis property holds by ex
hanging information about the order in whi
h messagesare re
eived. On
e p re
eives this order information from all the other pro
esses, puses a pre�x fun
tion to determine whether there is a non-empty 
ommon sequen
eof messages re
eived by all pro
esses.
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ast algorithm (stage k)3In Figures 5.8 and 5.9, 〈m1, m2, ...〉 denotes the sequen
e m1, m2, ... of messages.
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astFigure 5.9 depi
ts the way the OPT-AB
ast algorithm pro
eeds from stage k tostage k+1. Whenever the spontaneous total order property does not hold, pro
essesterminate the 
urrent stage, and start a new one. The termination of a stage involvesthe exe
ution of a Consensus, whi
h 
an lead to the delivery of messages. Pro
essfailures are dis
ussed in Se
tion 5.3.3.
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stage k+1stage kFigure 5.9: Overview of the OPT-AB
ast algorithm (stages k and k + 1)The notion of e�
ien
y is 
aptured by the delivery laten
y de�ned in Se
tion 4.3.2,whi
h informally de�nes a measure of the syn
hronisation needed by the OPT-AB
astalgorithm to deliver messages. We show that messages delivered during a stage havea deliver laten
y equal to 2, and messages delivered at the end of a stage have adeliver laten
y equal to 4. The additional 
ost payed to deliver messages at the endof a stage 
omes from the Consensus exe
ution.Known Atomi
 Broad
ast implementations for the asyn
hronous model augmentedwith failure dete
tors deliver messages with a deliver laten
y equal to 3 [CT96℄. Thismeans that if the spontaneous total order property is violated too frequently, theOPT-AB
ast algorithm may be
ome ine�
ient. However, in 
ase the spontaneoustotal order property holds frequently, messages 
an be delivered e�
iently using theOPT-AB
ast algorithm.5.2.2 Additional NotationThe Optimisti
 Atomi
 Broad
ast algorithm presented in the next se
tion handlessequen
es of messages. In the following we de�ne some terminology needed for thepresentation of the algorithm.A sequen
e of messages is denoted by seq = 〈m1,m2, . . . 〉. We de�ne the operators
⊕ and ⊖ for 
on
atenation and de
omposition of sequen
es. Let seqi and seqj be twosequen
es of messages. Then, seqi ⊕ seqj is the sequen
e of all the messages in seqifollowed by the sequen
e of all the messages in seqj, and seqi ⊖ seqj is the sequen
eof all the messages in seqi that are not in seqj . So, the sequen
e seqi ⊖ seqj doesnot 
ontain any message in seqj. The pre�x fun
tion ⊙ applied to a set of sequen
es
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ast Algorithm 87returns the longest 
ommon sequen
e that is a pre�x of all the sequen
es, or theempty sequen
e denoted by ǫ.For example, if seqi = 〈m1,m2,m3〉 and seqj = 〈m1,m2,m4〉, then seqi ⊕ seqj =
〈m1,m2,m3,m1,m2,m4〉, seqi ⊖ seqj = 〈m3〉, and ⊙(seqi, seqj) = 〈m1,m2〉.5.2.3 Detailed AlgorithmAlgorithm 2 (page 89) solves Atomi
 Broad
ast. Pro
esses exe
uting Algorithm 2progress in a sequen
e of lo
al stages numbered 1, ..., k, .... Messages A-delivered by apro
ess during stage k are in
luded in the sequen
e stgA_deliverk. These messagesare A-delivered without the 
ost of Consensus. Messages A-delivered by a pro
essat the end of stage k are in
luded in the sequen
e endA_deliverk. These messagesare A-delivered with the 
ost of a Consensus exe
ution. We say that a message mis A-delivered in stage k if m is A-delivered either during stage k or at the end ofstage k.Every stage k is terminated by a Consensus to de
ide on a sequen
e of messages, de-noted by msgStgk. Algorithm 2 guarantees that if a 
orre
t pro
ess starts Consensus(by invoking the propose primitive), all 
orre
t pro
esses also start Consensus. Noti
ethat if not all 
orre
t pro
esses invoke the propose primitive in the k-th Consensusexe
ution, then Consensus termination 
annot be ensured.The sequen
e msgStgk 
ontains all message that are A-delivered in stage k (i.e.,during stage k and at the end of stage k) by every pro
ess that rea
hes the endof stage k. Pro
ess p starts stage k + 1 on
e it has A-delivered all messages in
endA_deliverk, where endA_deliverk = msgStgk ⊖ stgA_deliverk.The 
orre
tness of Algorithm 2 is based on two properties:1. for any 
orre
t pro
esses p and q, all the messages A-delivered by p in stage kare also A-delivered by q in stage k (i.e., stgA_deliverk

p ⊕ endA_deliverk
p =

stgA_deliverk
q ⊕ endA_deliverk

q ), and2. every sequen
e of messages A-delivered by some pro
ess p in stage k before pexe
utes Consensus k is a non-empty pre�x of the sequen
e de
ided in Con-sensus k (i.e., stgA_deliverk
p is a pre�x of msgStgk).All tasks in Algorithm 2 exe
ute 
on
urrently. At ea
h pro
ess p, tasks GatherMsgs(lines 11-12) and TerminateStage (lines 25-35) are started at initialisation time. TaskStgDeliverk (lines 13-24) is started by p when p begins stage k. Lines 20 and 21 intask StgDeliverk are atomi
, that is, task StgDeliverk is not interrupted (by taskTerminateStage) after it has exe
uted line 20 and before having exe
uted line 21.Pro
ess p in stage k manages the following sequen
es.

• R_deliveredp: 
ontains all messages R-delivered by p up to the 
urrent time,
• A_deliveredp: 
ontains all messages A-delivered by p up to the 
urrent time,
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• stgA_deliverk

p : is the sequen
e of messages A-delivered by p during stage k,up to the 
urrent time,
• endA_deliverk

p : is the sequen
e of messages A-delivered by p at the end ofstage k.When p wants to A-broad
ast message m, p exe
utes R-broad
ast(m) (line 9). After
p R-delivers a message m (line 11), p in
ludes m in R_deliveredp, and eventuallyexe
utes task StgDeliverk (line 13). At task StgDeliverk, p sends a sequen
e ofmessages that it has not A-delivered yet to all pro
esses (line 14), and waits for su
hsequen
e from all pro
esses (line 15). The next a
tions exe
uted by p depend on themessages it re
eives at the wait statement (line 15).1. If p re
eives a sequen
e from all pro
esses, and there is a non-empty pre�x
ommon to all these sequen
es, then p A-delivers the messages in the 
ommonpre�x (line 20). If not, p R-broad
asts message (k,EndStg) to terminate the
urrent stage k (line 23).2. On
e p R-delivers message (k,EndStg) at line 25, p terminates task StgDeliverk(line 26), and starts the k-th Consensus exe
ution (line 27), proposing a se-quen
e of all messages p has R-delivered up to the 
urrent time but not A-delivered in any stage k′, k′ < k. Upon de
iding for Consensus k (line 28), pbuilds the sequen
e endA_deliverk (line 29) and A-delivers the messages in

endA_deliverk (line 30). Pro
ess p then starts stage k + 1 (lines 32-35).5.2.4 Proof of Corre
tnessThe 
orre
tness of the OPT-AB
ast algorithm follows from Propositions 5.1 (Agree-ment), 5.2 (Total Order), 5.3 (Validity), and 5.4 (Integrity). In the following proofs,we 
onsider the number of times that pro
esses exe
ute lines 13-21 in a given stage.Hereafter, stgA_deliverk,lk
p denotes the value of stgA_deliverk

p after p exe
utedline 21 for the lk-th time in stage k, lk > 0, and stgA_deliverk,0
p denotes ǫ (thevalue of stgA_deliverk

p before p exe
utes lines 13-21 for the �rst time). Likewise,
prefixlk

p , respe
tively msgSeqlk , denotes the value of prefixp, respe
tively msgSeq,after p exe
uted line 17, respe
tively 15, for the lk-th time in a given stage. In theproofs presented next �∀p� means �∀p ∈ Π�.The proofs of Lemmata 5.1 and 5.3 use the FIFO property of the 
ommuni
a-tion 
hannels to 
on
lude that for any pro
ess p that exe
utes the l-th iterationof line 17, prefixl
p = ⊙∀qmsgSeql

q. This statement holds sin
e when p exe
utesthe l-th iteration of line 17, p has re
eived l messages of the type (−,msgSeqq)from every pro
ess q. The FIFO 
hannels guarantee that all pro
esses that exe
utethe l-th iteration of line 17 re
eive the messages (−,msgSeqq) in the same order
(−,msgSeq1

q ), (−,msgSeq2
q ), . . . , (−,msgSeql

q) from every q.Lemma 5.1 If p and q are two pro
esses that exe
ute the lk-th iteration of line 21in stage k, then stgA_deliverk,lk
p = stgA_deliverk,lk

q .
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Algorithm 2 OPT-AB
ast algorithm1: Initialisation (see Se
tion 5.2.3 for a des
ription of the variables):2: R_delivered← ǫ3: A_delivered← ǫ4: k ← 15: stgA_deliverk ← ǫ6: endA_deliverk ← ǫ7: fork tasks { GatherMsgs, StgDeliver1, TerminateStage }8: To exe
ute A-broad
ast(m):9: R-broad
ast(m)10: A-deliver(−) o

urs as follows:11: when R-deliver(m) {Task GatherMsgs}12: R_delivered← R_delivered ⊕ 〈m〉13: when (R_delivered⊖A_delivered)⊖ stgA_deliverk 6= ǫ {Task StgDeliverk}14: send (k, (R_delivered⊖A_delivered)⊖ stgA_deliverk) to all15: wait until for [∀q ∈ Π : received (k, msgSeqq) from q or Dp 6= ∅]16: π = { q | p received (k, msgSeqq) from q }17: prefix← ⊙∀q∈π msgSeqq18: if π = Π and prefix 6= ǫ then19: stgDeliver← prefix⊖ stgA_deliverk20: [ deliver all messages in stgDeliver a

ording to their order in stgDeliver;21: stgA_deliverk ← stgA_deliverk ⊕ prefix ]22: else23: R-broad
ast(k,EndStg)24: end task25: when R-deliver(k,EndStg) {Task TerminateStage}26: terminate task StgDeliverk, if exe
uting27: propose(k, R_delivered⊖A_delivered)28: wait until de
ide(k, msgStgk)29: endA_deliverk ← msgStgk ⊖ stgA_deliverk30: deliver all messages in endA_deliverk following their order in endA_deliverk31: A_delivered← A_delivered⊕ (stgA_deliverk ⊕ endA_deliverk)32: k ← k + 133: stgA_deliverk ← ǫ34: endA_deliverk ← ǫ35: fork task StgDeliverk
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p = prefixl

q. Sin
e pand q exe
ute line 21 for the l-th time in stage k, p and q re
eive a message ofthe type (k,msgSeq) from every pro
ess in the l-th iteration of lines 15. Fromline 17 and the fa
t that 
ommuni
ation between pro
esses follows a FIFO order,
prefixl

p = ⊙∀rmsgSeql
r, and prefixl

q = ⊙∀rmsgSeql
r, where msgSeql

r is the l-thmessage of the type (k,msgSeqr) re
eived from pro
ess r, and we 
on
lude that
prefixl

p = prefixl
q. From line 21, stgA_deliverk,l = stgA_deliverk,l−1 ⊕ prefixl,and a simple indu
tion on lk leads to stgA_deliverk,lk

p = stgA_deliverk,lk
q . 2Lemma 5.2 If some pro
ess p exe
utes line 21 l times, then all pro
esses in Πexe
ute the send statement at line 14 l times.Proof. This follows dire
tly from the algorithm sin
e p 
an only exe
ute line 21after re
eiving message (k,msgSeq) (line 15) from all pro
esses. Thus, if p exe
utesline 21 l times, it re
eives message (k,msgSeq) from all pro
esses l times, and fromthe no 
reation property of Reliable Channels, all pro
esses exe
ute the send(k,−)statement at line 14 l times. 2Lemma 5.3 For any pro
ess p, and all k ≥ 1, if p exe
utes de
ide(k,msgStgk), then(a) stgA_deliverk

p is a pre�x of msgStgk, and (b) stgA_deliverk
p does not 
ontainthe same message more than on
e.Proof. Assume that p exe
utes de
ide(k,msgStgk). By uniform validity of Con-sensus, there is a pro
ess q that exe
uted propose(k,R_deliveredq ⊖A_deliveredq),su
h that R_deliveredq ⊖A_deliveredq = msgStgk. Let lk be the number of timesthat p exe
utes line 21 before exe
uting de
ide(k,−). From Lemma 5.2, all pro
essesin Π exe
ute the send statement at line 14 lk times.We show by indu
tion on lk that stgA_deliverk,lk

p is a pre�x of R_deliveredq ⊖

A_deliveredq , and stgA_deliverk,lk
p does not 
ontain the same message more thanon
e. Base step. (lk = 0) In this 
ase, stgA_deliverk,0

p = ǫ and the lemma istrivially true. Indu
tive step. Assume that the lemma holds for all l′k, 0 < l′k <

lk. We show that stgA_deliverk,lk
p is a pre�x of R_deliveredq ⊖ A_deliveredq ,and stgA_deliverk,lk

p does not 
ontain the same message more than on
e. Byline 21, stgA_deliverk,lk
p = stgA_deliver

k,(lk−1)
p ⊕ prefixlk

p . Sin
e 
ommuni
a-tion 
hannels are FIFO, any message sent by some pro
ess r in the lk-th exe
u-tion of send(k,msgSeqlk
r ) (line 14) is re
eived by p in the lk-th exe
ution of thestatement re
eive(k,msgSeqlk

r ) (line 15), and therefore, after p exe
utes line 17,
prefixlk

p = ⊙∀rmsgSeqlk
r . From lines 14 and 15, msgSeqlk

r = (R_deliveredr ⊖

A_deliveredr) ⊖ stgA_deliver
k,(lk−1)
r , and so, prefixlk

p = ⊙∀r((R_deliveredr ⊖

A_deliveredr) ⊖ stgA_deliver
k,(lk−1)
r ). By Lemma 5.1, we have prefixlk

p =

⊙∀r((R_deliveredr⊖A_deliveredr)⊖stgA_deliver
k,(lk−1)
p ). So, stgA_deliverk,lk

p =

stgA_deliver
k,(lk−1)
p ⊕(⊙∀r(R_deliveredr⊖A_deliveredr)⊖stgA_deliver

k,(lk−1)
p ).From the indu
tion hypothesis, item (a), we have that stgA_deliver

k,(lk−1)
p is a pre�x
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ast Algorithm 91of R_deliveredq ⊖ A_deliveredq . Furthermore, from item (b) of the indu
tion hy-pothesis, all messages in stgA_deliver
k,(lk−1)
p are unique. Thus, stgA_deliverk,lk

p =

⊙∀r(R_deliveredr ⊖ A_deliveredr),4 and therefore, stgA_deliverk,lk
p is a pre�x of

R_deliveredq ⊖ A_deliveredq . It also follows that stgA_deliverk,lk
p does not 
on-tain the same message more than on
e. For a 
ontradi
tion, assume that message

m is more than on
e in stgA_deliverk,lk
p . Thus, for every pro
ess r, m is more thanon
e in R_deliveredr. From the algorithm, lines 11 and 12, m has been R-deliveredmore than on
e by r, 
ontradi
ting uniform integrity of Reliable Broad
ast. 2Lemma 5.4 For any two 
orre
t pro
esses p and q, and all k ≥ 1, if p exe
utes line30 in stage k, then q exe
utes line 30 in stage k.Proof. If p exe
utes line 30 in stage k, then p exe
utes the de
ide(k,msgStgk)statement at line 28, and the propose(k,−) statement at line 27. Therefore, p R-delivers a message of the type (k,EndStg) at line 25. By the agreement propertyof Reliable Broad
ast, q eventually R-delivers message (k,EndStg), and exe
utesthe propose(k,−) statement at line 27. By agreement of Consensus, q exe
utes thede
ide(k,msgStgk) statement, and line 30. 2Lemma 5.5 For any two pro
esses p and q, and all k ≥ 1, if both p and q exe
uteline 29, then stgA_deliverk

p ⊕ endA_deliverk
p = stgA_deliverk

q ⊕ endA_deliverk
q .Proof. From line 29, endA_deliverk

p = msgStgk ⊖ stgA_deliverk
p , and therefore,

stgA_deliverk
p ⊕ endA_deliverk

p = stgA_deliverk
p ⊕ (msgStgk ⊖ stgA_deliverk

p ).By Lemma 5.3, stgA_deliverk
p is a pre�x of msgStgk, and so, stgA_deliverk

p ⊕

endA_deliverk
p = msgStgk. From a similar argument, we have stgA_deliverk

q ⊕

endA_deliverk
q = msgStgk. We 
on
lude that stgA_deliverk

p ⊕ endA_deliverk
p =

stgA_deliverk
q ⊕ endA_deliverk

q . 2Lemma 5.6 For any pro
ess p, and all k ≥ 1, if message m ∈ stgA_deliverk
p ⊕

endA_deliverk
p then there is no k′, k′ < k, su
h that m ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p .Proof. The proof is by 
ontradi
tion. Assume that there exist a pro
ess p, a mes-sage m, some k, and some k′ < k, su
h that m ∈ stgA_deliverk
p ⊕ endA_deliverk

p ,and m ∈ stgA_deliverk′

p ⊕ endA_deliverk′

p . We distinguish two 
ases: (a) m ∈

stgA_deliverk
p , or (b) m ∈ endA_deliverk

p . Note that from line 29, it 
annot bethat m ∈ stgA_deliverk
p and m ∈ endA_deliverk

p .Case (a). From lines 21, 17 and 15 stgA_deliverk
p is a 
ommon non-empty pre-�x among the messages of the type (k,msgSeq) re
eived by p from all pro
esses.4Let seqi and seqj be two sequen
es su
h that seqi is a pre�x of seqj , and messages in seqj areunique. It 
an be shown that seqi ⊕ (seqj ⊖ seqi) = seqj .
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astThus p has re
eived the message (k,msgSeqp) (i.e., a message that p sent to itself),su
h that m ∈ msgSeqp. But msgSeqp = R_deliveredp ⊖ A_deliveredp (line 14),and so, m 6∈ A_deliveredp. When p exe
utes line 14 at stage k, A_deliveredp =
⊕k−1

i=1 (stgA_deliveri
p⊕endA_deliveri

p). This follows from line 31, the only line where
A_delivered is updated. Therefore, m 6∈ ⊕k−1

i=1 (stgA_deliveri
p ⊕ endA_deliveri

p),
ontradi
ting the fa
t that there is a k′ < k su
h that m ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p .Case (b). From line 29, m ∈ msgStgk, and from line 28, and validity of Consensus,there is a pro
ess q that exe
utes propose(k,R_deliveredq ⊖ A_deliveredq) su
hthat m ∈ R_deliveredq ⊖ A_deliveredq . So, m 6∈ A_deliveredq . Sin
e when
q exe
utes line 27, A_deliveredq = ⊕k−1

i=1 (stgA_deliveri
q ⊕ endA_deliveri

q),m 6∈

⊕k−1
i=1 (stgA_deliveri

q⊕endA_deliveri
q), and from Lemma 5.5 ⊕k−1

i=1 (stgA_deliveri
p⊕

endA_deliveri
p) = ⊕k−1

i=1 (stgA_deliveri
q ⊕ endA_deliveri

q). Thus, we 
on
lude that
m 6∈ ⊕k−1

i=1 (stgA_deliveri
p ⊕ endA_deliveri

p), a 
ontradi
tion that 
on
ludes theproof. 2Proposition 5.1 (Agreement). If a 
orre
t pro
ess p A-delivers a message m,then every 
orre
t pro
ess q eventually A-delivers m.Proof: Consider that p has A-delivered message m in stage k. We show that q alsoA-delivers m in stage k. There are two 
ases to 
onsider: (a) p A-delivers messagesin endA_deliverk
p , and (b) p does not A-deliver messages in endA_deliverk

p .Case (a). From Lemma 5.4 and the fa
t that p A-delivers messages in endA_deliverk
p ,

q A-delivers messages in endA_deliverk
q , and from Lemma 5.5, stgA_deliverk

p ⊕

endA_deliverk
p = stgA_deliverk

q ⊕endA_deliverk
q . Sin
e p A-delivers m in stage k,

m ∈ stgA_deliverk
p⊕endA_deliverk

p , and so, m ∈ stgA_deliverk
q⊕endA_deliverk

q .Therefore, q either A-delivers m at line 20 (in whi
h 
ase m ∈ stgA_deliverk
q ), orat line 30 (in whi
h 
ase m ∈ stgA_deliverk

q ).Case (b). Sin
e p does not A-deliver messages in endA_deliverk
p , from Lemma 5.4,no 
orre
t pro
ess q A-delivers messages in endA_deliverk

q . However, m is A-delivered in stage k by p, and so, it must be that m ∈ stgA_deliverk
p . Assume that

m ∈ stgA_deliverk,lk
p , where lk is su
h that for any l′k < lk, m 6∈ stgA_deliver

k,l′
k

p .Therefore, p exe
utes the lk-th iteration of line 21 in stage k, and we 
laim that
q also exe
utes the lk-th iteration of line 21 in stage k. The 
laim is proved by
ontradi
tion. From the algorithm, q exe
utes R-broad
ast(k,−). By agreementand validity of Reliable Broad
ast, every 
orre
t pro
ess R-delivers the message
(k,EndStg) and exe
utes propose(k,−). By agreement and termination of Consen-sus, every 
orre
t pro
ess de
ides on Consensus k, and eventually A-delivers messagesin endA_deliverk, 
ontradi
ting the fa
t that no 
orre
t pro
ess A-delivers messagesin endA_deliverk, and 
on
luding the proof of the 
laim. Sin
e p and q exe
ute the
lk-th iteration of line 21 in stage k, and m ∈ stgA_deliver

k,l′
k

p , from Lemma 5.1,
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m ∈ stgA_deliver

k,l′
k

q , and from lines 20-21, q A-delivers m. 2Proposition 5.2 (Total Order). If 
orre
t pro
esses p and q both A-deliver mes-sages m and m′, then p A-delivers m before m′ if and only if q A-delivers m before
m′.Proof: Assume that p A-delivers message m in stage k, and m′ in stage k′, k′ >
k. Therefore, m ∈ stgA_deliverk

p ⊕ endA_deliverk
p , and m′ ∈ stgA_deliverk′

p ⊕

endA_deliverk′

p , and it follows immediately from Lemma 5.5 that q A-delivers mbefore m′. Now, assume that m and m′ are A-delivered by p in stage k. Thus, mpre
edes m′ in stgA_deliverk
p⊕endA_deliverk

p , and by Lemma 5.5, stgA_deliverk
p⊕

endA_deliverk
p = stgA_deliverk

q ⊕ endA_deliverk
q .We 
laim that if m pre
edes m′ in stgA_deliverk

q⊕endA_deliverk
q , then q A-delivers

m before m′. If m,m′ ∈ stgA_deliverk
q (respe
tively m,m′ ∈ endA_deliverk

q ), then,from task stgDeliverk, line 20 (respe
tively TerminateStage, line 30), q A-delivers mbefore m′. Thus, 
onsider that m ∈ stgA_deliverk
q and m′ ∈ endA_deliverk

q . Torea
h a 
ontradi
tion, assume that q A-delivers m′ before m. Before A-delivering mat line 20, q exe
utes line 26 and terminates task stgA_deliverk
q , and so, m 
annotbe A-delivered in stage k, 
ontradi
ting that m and m′ are A-delivered in stage k,and 
on
luding the proof of the lemma. 2Lemma 5.7 If a 
orre
t pro
ess p exe
utes line 25 in stage k, then every 
orre
tpro
ess q exe
utes line 25 in stage k.Proof. The proof is by indu
tion on k. Base step. (k = 1) Initially, all 
orre
tpro
esses are in stage 1. Thus, if p exe
utes line 25 in stage 1 and R-delivers message

(1,EndStg), by the agreement property of Reliable Channels, every 
orre
t pro-
ess eventually exe
utes line 25 and R-delivers message (1,EndStg). Indu
tivestep. Assume that if a 
orre
t pro
ess p exe
utes line 25 in stage k − 1, then every
orre
t pro
ess q exe
utes line 25 in stage k − 1. We show that if p exe
utes line25 in stage k, then q also exe
utes line 25 in stage k. From the algorithm and thetermination property of Consensus, after R-delivering message (k − 1,EndStg), all
orre
t pro
esses eventually terminate Consensus in stage k − 1 and exe
ute lines32-35, starting stage k. Sin
e p R-delivers message (k,EndStg), by agreement ofReliable Channels, every 
orre
t pro
ess q R-delivers message (k,EndStg). 2Lemma 5.8 No 
orre
t pro
ess p has a task stgDeliverkp , k > 0, that is permanentlyblo
ked in the wait statement of line 15.Proof. For a 
ontradi
tion, 
onsider that there exists a 
orre
t pro
ess p su
h thatfor some lk > 0, task stgDeliverkp is permanently blo
ked at the lk-th iteration ofline 15. Therefore, (a) there is a pro
ess q su
h that p never re
eives the message
(k,msgSeq) for the lk-th time from q and (b) q 6∈ Dp. From (b), and the 
ompletenessproperty of Dp, q is a 
orre
t pro
ess. From Lemma 5.7, if p exe
utes line 25 in stage
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k, then q exe
utes line 25 in stage k, but sin
e p never re
eives (k,msgSeq) for the
lk-th time from q, by the no loss property of Reliable Channels, q does not sendmessage (k,msgSeq) for the lk-th time to p (line 14).We now prove the following 
laim: if q does not exe
ute send(k,msgSeq) for the lk-thtime, q exe
utes R-deliver(k,EndStg). When p exe
utes the wait statement for the
lk-th time in stage k, there exists a message m su
h that m ∈ (R_deliveredp ⊖

A_deliveredp) ⊖ stgA_deliver
k,(lk−1)
p . So, (1a) m 6∈ stgA_deliver

k,(lk−1)
p , andfrom line 31, (1b) m 6∈ ⊕k−1

i=1 stgA_deliveri
p ⊕ endA_deliveri

p. If q does not sendthe message (k,msgSeq) for the lk-th time to p, then either (i) (R_deliveredq ⊖

(⊕k−1
i=1 (stgA_deliveri

q ⊕ endA_deliveri
q)))⊖ stgA_deliver

k,(lk−1)
q is empty (line 13)or (ii) task stgDeliverkq is terminated before q sends message (k,msgSeq) for the

lk-th time to p (i.e., q terminates stage k). Furthermore, sin
e p exe
utes line 15for the lk-th time, p has exe
uted the (lk − 1)-th iteration of lines 13-21, and re-
eived a message from all pro
esses at line 15 for the (lk − 1)-th time. Thus, everypro
ess exe
utes the send statement at line 14 at least lk − 1 times, and, fromLemma 5.1, (2a) stgA_deliver
k,(lk−1)
p = stgA_deliver

k,(lk−1)
q . From Lemma 5.5,(2b) for all k′, 1 ≤ k′ < k, stgA_deliverk′

p ⊕ endA_deliverk′

p = stgA_deliverk′

q ⊕

endA_deliverk′

q . From (1a) and (2a), we 
on
lude that m 6∈ stgA_deliver
k,(lk−1)
q ,and, from (1b) and (2b), m 6∈ ⊕k−1

i=1 stgA_deliveri
q ⊕ endA_deliveri

q . Sin
e q doesnot send message (k,msgSeq) for the lk-th time to p at line 14, m will never be in
R_deliveredq . However, by the agreement property of Reliable Broad
ast, eventu-ally m ∈ R_deliveredq (item (i) of the 
laim is false), and so, task stgDeliverkq isterminated at line 24 or 26 before q sends message (k,msgSeq) for the lk-th time to
p (item (ii) of the 
laim is true), and q exe
utes R-deliver(k,EndStg), 
on
ludingour 
laim.By the agreement of Reliable Broad
ast, p eventually R-delivers message (k,EndStg),and so, p exe
utes line 26 and terminates task stgDeliverkp , 
ontradi
ting our initialhypothesis that task stgDeliverkp remains permanently blo
ked. 2Proposition 5.3 (Validity). If a 
orre
t pro
ess p A-broad
asts a message m,then p eventually A-delivers m.Proof: For a 
ontradi
tion, assume that p A-broad
asts m but never A-deliversit. From Proposition 5.1, no 
orre
t pro
ess A-delivers m. Sin
e p A-broad
asts
m, it R-broad
asts m, and from the validity of Reliable Broad
ast, p eventually R-delivers m and in
ludes m in R_deliveredp. Sin
e no 
orre
t pro
ess A-delivers m,
m 6∈ A_deliveredp, and for all k, m 6∈ stgA_deliverk, k > 0. From the agreementof Reliable Broad
ast, there is a stage k1 su
h that for all l ≥ k1, and every 
orre
tpro
ess q, m ∈ (R_deliveredq ⊖A_deliveredq)⊖ stgA_deliverl

q .Let k2 be a stage su
h that for all l ≥ k2 every faulty pro
ess has 
rashed (i.e., nofaulty pro
ess exe
utes stage l), and let k ≥ max(k1, k2). Thus, no faulty pro
ess exe-
utes stage k, and for every 
orre
t pro
ess q, m ∈ (R_deliveredq⊖A_deliveredq)⊖
stgA_deliverk

q at stage k. From Lemma 5.8, for every 
orre
t p, no task stgDeliverkpremains permanently blo
ked at line 15, and if task stgDeliverkp is terminated, task
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p is eventually started by p. Thus, all 
orre
t pro
esses exe
ute thewhen statement at line 13, and there are two 
ases two 
onsider: (a) for all lk > 0,every pro
ess exe
utes the then bran
h of the if statement at line 18 (in whi
h 
asethere are no faulty pro
esses in the system), and (b) for some lk > 0, there is apro
ess r that exe
utes the else bran
h, and R-broad
asts message (k,EndStg).Case (a). We 
laim that there exists an l′k > 0 su
h that m ∈ ⊙∀r∈Π msgSeq

l′
k

r . Fromthe algorithm, for every pro
ess r, msgSeqlk
r = (R_deliveredr ⊖ A_deliveredr) ⊖

stgA_deliverk,lk
r , and so, m ∈ msgSeqlk

r . Assume, for a 
ontradi
tion, that forevery l′k > 0, m 6∈ ⊙∀r∈Π msgSeq
l′
k

r . Sin
e m ∈ msgSeqlk
r , for all r, this 
an only bepossible if for two pro
esses p′ and p′′, m pre
edes some message m′ in msgSeqlk

p′ and
m′ pre
edes m in msgSeqlk

p′′ . However, in this 
ase, eventually, ⊙∀r∈Π msgSeqr = ǫ,and pro
esses do not exe
ute the then bran
h, 
ontradi
ting the assumption of 
ase(a).Case (b). By the validity of Reliable Broad
ast, r R-delivers message (k,EndStg).From Lemma 5.7, if p rea
hes line 25 in stage k, then q rea
hes line 25 in stage
k, and from agreement of Reliable Broad
ast, every 
orre
t pro
ess q R-delivers
(k,EndStg) and exe
utes propose(k,R_deliveredq⊖A_deliveredq), su
h that m ∈
R_deliveredq ⊖ A_deliveredq . By agreement and termination of Consensus, every
q de
ides on the same msgStgk, and by validity of Consensus m ∈ msgStgk. Itfollows that q A-delivers m, a 
ontradi
tion that 
on
ludes the proof. 2Proposition 5.4 (Uniform Integrity). For any message m, ea
h pro
ess A-delivers m at most on
e, and only if m was previously A-broad
ast by sender(m).Proof: We �rst show that, for any message m, ea
h pro
ess A-delivers m only if mwas previously A-broad
ast by sender(m). There are two 
ases to 
onsider. (a) Apro
ess p A-delivers m at line 20. Thus, p re
eived a message (k,msgSeqq) fromevery pro
ess q, for some k, and m ∈ msgSeqq. From line 14, m ∈ R_deliveredq ,and from line 12, p has R-delivered m. By uniform integrity of Reliable Broad-
ast, sender(m) R-broad
asts m, and so, sender(m) A-broad
asts m. (b) Pro
ess
p A-delivers m at line 30. Thus, from line 29, m ∈ msgSetk, for some k, and pexe
uted de
ide(k,msgStgk). By uniform validity of Consensus, some pro
ess q ex-e
uted propose(k,R_deliveredq ⊖ A_deliveredq), su
h that m ∈ R_deliveredq ⊖
A_deliveredq . From an argument similar to the one presented in item (a), sender(m)A-broad
asts m.We now show that m is only A-delivered on
e by p. From Lemma 5.6, it is 
lear thatif m is A-delivered in stage k (i.e., m ∈ stgA_deliverk ⊕ endA_deliverk), then m isnot A-delivered in some other stage k′, k′ 6= k. It remains to be shown that m is notA-delivered more than on
e in stage k. There are three 
ases to be 
onsidered: m isA-delivered at line 20 and will not be A-delivered again (a) at line 20 or (b) at line30, and (
) m is A-delivered at line 30 and will not be A-delivered again at line 20.Case (a). After A-delivering m at line 20, p in
ludes m in stgA_deliverk

p , and from
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 Atomi
 Broad
astline 19, p will not A-deliver m again at line 20.Case (b). For a 
ontradi
tion, assume that m is A-delivered on
e at line 20 and againat line 30. Thus, when p exe
utes line 29, m 6∈ stgA_deliverk
p . Sin
e m has alreadybeen A-delivered at line 20, it follows that task StgDeliverk is terminated after pA-delivers m at line 20 and before p exe
utes line 21. This leads to a 
ontradi
tionsin
e lines 20 and 21 are exe
uted atomi
ally.Case (
). Before exe
uting line 30, p exe
utes line 26, and terminates task StgDeliverk.So, on
e p A-delivers some message at line 30 in stage k, no message 
an be A-delivered at line 20 in stage k by p. 2Theorem 5.1 Algorithm 2 solves Atomi
 Broad
ast.Proof. Immediate from Propositions 5.1, 5.2, 5.3, and 5.4. 25.3 Evaluation of the OPT-AB
ast AlgorithmIntuitively, the key idea to evaluating the OPT-AB
ast algorithm is that if Consensusis not needed to deliver some message m, but ne
essary to deliver some other message

m′, then the delivery laten
y of m′ is greater than the delivery laten
y of m. Beforegoing into details about the delivery laten
y of messages delivered with and withoutthe 
ost of a Consensus exe
ution (see Se
tion 5.3.2), we present a more generalresult about the ne
essity of Consensus in the OPT-AB
ast algorithm.5.3.1 On the Ne
essity of ConsensusProposition 5.5 states that in a failure free and suspi
ion free run, Consensus is notexe
uted in stage k if the spontaneous total order message re
eption property holdspermanently in k.Lemma 5.9 For any two pro
esses p and q, and all k ≥ 1, if p exe
utes line 21 forthe lk-th time in stage k, lk > 0, then q exe
utes line 21 for the (lk − 1)-th time instage k.Proof. If p exe
utes line 21 for the lk-th time in stage k, then p exe
utes the waitstatement at line 15 for the lk-th time in stage k su
h that p does not suspe
t anypro
ess and re
eives a message from every pro
ess (furthermore, there is a non-emptypre�x between all messages re
eived by p). From the no 
reation property of ReliableChannels, every pro
ess q exe
utes the send statement at line 14 for the lk-th time instage k. For a 
ontradi
tion, assume that q does not exe
ute line 21 for the (lk−1)-thtime. Then, q exe
utes R-broad
ast(k,EndStg) (line 23) in the l′k iteration of lines14-24, l′k ≤ (lk − 1), and q �nishes task StgDeliverk (line 24). Therefore, q neverexe
utes the send statement at line 14 for the lk-th time, a 
ontradi
tion. 2
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ast Algorithm 97Proposition 5.5 Let R be a failure free and suspi
ion free run of the OPT-AB
astalgorithm. If for every two pro
esses p and q, all k > 0, and all lk > 0,
((R_deliveredp ⊖ A_deliveredp) ⊖ stgA_deliverk,lk

p ) ⊙ ((R_deliveredq ⊖

A_deliveredq) ⊖ stgA_deliverk,lk
q ) 6= ǫ, then no pro
ess exe
utes Consensus k in

R.Proof. Assume that there is a pro
ess p that exe
utes Consensus k in R. Fromthe algorithm, p R-delivers a message of the type (k,EndStg), and by uniformintegrity of Reliable Broad
ast, some pro
ess q exe
uted R-broad
ast(k,EndStg).From line 18, either (a) q suspe
ts some pro
ess, or (b) there is an iteration lk ≥ 0of lines 14-17, su
h that prefixlk+1
q = ǫ. Case (a) 
ontradi
ts the hypothesis that nopro
ess is suspe
ted, so it must be that prefixlk+1

q = ǫ.From Lemma 5.9 and lines 17, 14 and 15, we have prefixlk+1
q = ⊙∀rmsgSeqlk+1

r =

⊙∀r((R_deliveredr ⊖ A_deliveredr) ⊖ stgA_deliverk,lk
r ), and therefore,

⊙∀r((R_deliveredr ⊖ A_deliveredr)⊖ stgA_deliverk,lk
r ) = ǫ. So, there must existtwo pro
esses p and q su
h that ((R_deliveredp⊖A_deliveredp)⊖stgA_deliverk,lk

p )⊙

((R_deliveredq⊖A_deliveredq)⊖stgA_deliverk,lk
q ) = ǫ, 
ontradi
ting the hypoth-esis. 2Thus, from Proposition 5.5, in a failure free and suspi
ion free run, Consensus is onlyne
essary in stage k when the spontaneous total order property does not hold in k.5.3.2 Delivery Laten
y of the OPT-AB
ast AlgorithmWe now dis
uss in more detail the e�
ien
y of the OPT-AB
ast algorithm. Forevery pro
ess p and all stages k, there are two 
ases to 
onsider: (a) messages A-delivered by p during stage k (line 20), and (b) messages A-delivered by p at the endof stage k. The main result is that for 
ase (a), the Optimisti
 Atomi
 Broad
astalgorithm 
an A-deliver messages with a delivery laten
y equal to 2, while for 
ase(b), the delivery laten
y is at least equal to 4. Sin
e known Atomi
 Broad
astalgorithms deliver messages with a delivery laten
y of at least 3, these results showthe tradeo� of the Optimisti
 Atomi
 Broad
ast algorithm: if the spontaneous totalorder message re
eption property only holds rarely, the OPT-AB
ast algorithm isnot attra
tive, while otherwise, the OPT-AB
ast algorithm leads to smaller 
osts
ompared to known Atomi
 Broad
ast algorithms.Propositions 5.6 and 5.7 assess the minimal 
ost of the Optimisti
 Atomi
 Broad
astalgorithm to A-deliver a message m. Proposition 5.6 de�nes a lower bound on thedelivery laten
y of Algorithm 2 for messages A-delivered without Consensus (line 20),and Proposition 5.7 states that this bound 
an be rea
hed in runs where no pro
essA-delivers m at the end a of stage.Proposition 5.6 There is no run R generated by Algorithm 2 where some message

m is only A-delivered at line 20 (without Consensus) and dlR(m) < 2.
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 Atomi
 Broad
astProof. Assume that m is only A-delivered during some stage k > 0 (i.e., with-out Consensus), and let p be a pro
ess that A-delivers m in R. Pro
ess p re
eivesa message (k,msgSeqq) from every pro
ess q su
h that m ∈ msgSetq . Sin
e qexe
utes send(k, (R_deliveredq ⊖ A_deliveredq) ⊖ stgA_deliverk) su
h that m ∈
(R_deliveredq ⊖A_deliveredq)⊖ stgA_deliverk, q exe
utes R-deliver(m). By theway timestamps are assigned to events (see Se
tion 4.3.2), ts(A-deliverp(m)) ≥
ts(R-deliverq(m)) + 1 (1). By uniform integrity of Reliable Broad
ast, there is somepro
ess r that exe
utes R-broad
ast(m), whi
h, from Algorithm 2, is the pro
ess thatexe
utes A-broad
ast(m). Thus, ts(A-broad
astr(m)) = ts(R-broad
astr(m)) (2).From (1) and (2), ts(A-deliverp(m)) − ts(A-broad
astr(m)) ≥ ts(R-deliverq(m)) −
ts(R-broad
astr(m))+1 (3). Let lRB

m,q = ts(R-deliverq(m))− ts(R-broad
astr(m)) (4),and lAB
m,p = ts(A-deliverp(m)) − ts(A-broad
astr(m)) (5). Therefore, from (3), (4),and (5), lAB

m,p ≥ lRB
m,q + 1. From the de�nition of delivery laten
y, dlR(m) ≥ lAB

m,p.It follows that dlR(m) ≥ lAB
m,p ≥ lRB

m,q + 1. From Proposition 4.7, lRB
m,q ≥ 1, and we
on
lude that dlR(m) ≥ 2. 2Proposition 5.7 Assume that Algorithm 2 uses the Reliable Broad
ast implemen-tation given in [CT96℄. There is a run R generated by Algorithm 2 where message

m is A-delivered during stage k > 0, and dlR(m) = 2.Proof. Immediate from Figure 5.10, where pro
ess p A-broad
asts message m.(Some messages have been omitted from Figure 5.10 for 
larity.) Let ρ, ρ′ ∈ {p, q, r, s}.It follows that ts(re
eiveρ(m)) = ts(sendp(m))+1, and ts(re
eiveρ(k, 〈m〉) from ρ′) =
ts(sendρ′(k, 〈m〉)) + 1. But ts(sendρ′(k, 〈m〉)) = ts(re
eiveρ′(m)), and therefore,
ts(re
eiveρ(k, 〈m〉) from ρ′) = ts(sendp(m)) + 2. From Figure 5.10, we have that
ts(A-broad
astp(m)) = ts(sendp(m)), and ts(A-deliverρ(m)) = ts(re
eiveρ(k, 〈m〉)from ρ′). By the de�nition of delivery laten
y, we 
on
lude that dlR(m) = 2. 2

send(m)
R-broadcast(m)

A-deliver(m)
R-deliver(m)

send(k,<m>)

A-broadcast(m)

p

q

r

s Figure 5.10: Run of OPT-AB
ast with dlR(m) = 2The results that follow de�ne the behaviour of the Optimisti
 Atomi
 Broad
astalgorithm for messages A-delivered at the end of stage k. Proposition 5.8 establishes
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ast Algorithm 99a lower bound for this 
ase, and Proposition 5.9 shows that this bound 
an be rea
hedwhen there are no pro
ess failures and no failure suspi
ions.Proposition 5.8 Assume that Conje
ture 4.1 is true (see page 72). There is no run
R generated by Algorithm 2 where m and m′ are the only messages A-delivered, mand m′ are both A-delivered at line 30, and dlR(m) < 4 and dlR(m′) < 4.Proof. Assume for a 
ontradi
tion that there is a run R su
h that dlR(m) < 4 and
dlR(m′) < 4. Sin
e p A-delivers m and m′ at line 30, from Algorithm 2, p exe
utesde
idep(−,msgStg), su
h that m,m′ ∈ msgStg. By uniform validity of Consen-sus, there is a pro
ess q that exe
utes proposeq(−, R_deliveredq ⊖ A_deliveredq),su
h that msgStg = R_deliveredq ⊖ A_deliveredq . Thus, q R-delivers message
(−,EndStg). By uniform integrity of Reliable Broad
ast, there is a pro
ess r thatexe
utes R-broad
astr(−,EndStg). Therefore, r has R-delivered at least one mes-sage that is neither in A_deliveredr nor in stgA_deliverr (line 13). Without loss ofgenerality, assume that this message is m. Sin
e r R-delivered m, there is a pro
ess sthat exe
utes R-broad
asts(m), and this is the pro
ess that exe
utes A-broad
asts(m).We de�ne:

lAB
m,p = ts(A-deliverp(m))− ts(A-broad
asts(m)),

lCp = ts(de
idep(−,msgStg))− ts(proposeq(−,msgStg)),

lRBEndStg,q = ts(R-deliverr(EndStg))− ts(R-broad
astr(EndStg)), and
lRB
m,r = ts(R-deliverr(m))− ts(R-broad
asts(m)).It follows that lAB

m,p ≥ lCp + lRBEndStg,q + lRB
m,r. From Conje
ture 4.1 and the de�nitionof laten
y degree [S
h97℄, lCp ≥ 2, and from Proposition 4.7, lRBEndStg,q ≥ 1, and

lRB
m,r ≥ 1. Thus, lAB

m,p ≥ 4. By the de�nition of delivery laten
y, dlR(m) ≥ lAB
m,p, andwe 
on
lude that dlR(m) ≥ 4. 2Proposition 5.9 Assume that Algorithm 2 uses the Reliable Broad
ast implemen-tation given in [CT96℄, and the Consensus implementation given in [S
h97℄. Thereexists a run R of Algorithm 2 where messages m and m′ are both A-delivered atline 30, and dlR(m) = 4 and dlR(m′) = 4.Proof. Immediate from Figure 5.11, where pro
ess q A-broad
asts message m,and pro
ess r A-broad
asts message m′. (The Consensus exe
ution and some mes-sages have been omitted for 
larity.) For all ρ ∈ {p, q, r, s}, ts(re
eiveρ(m)) =

ts(sendq(m)) + 1, and ts(re
eiveρ(m
′)) = ts(sendr(m

′)) + 1. It also follows that
ts(re
eiveρ(k,EndStg)) = ts(sends(k,EndStg)) + 1. From Figure 5.11,
ts(sends(k,EndStg)) = ts(re
eives(m)) = ts(re
eives(m

′)), and therefore,
ts(re
eiveρ(k,EndStg)) = ts(sendρ′(m)) + 2, ρ′ ∈ {q, r}.By the Consensus algorithm given in [S
h97℄, ts(de
ideρ(−)) = ts(proposeρ(−)) + 2.From Figure 5.11, ts(proposeρ(−)) = ts(re
eiveρ(k,EndStg)), and we have that
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ts(de
ideρ(−)) = ts(re
eiveρ(k,EndStg)) + 4. We 
on
lude by the de�nition ofdelivery laten
y and sin
e ts(A-deliverρ(m)) = ts(A-deliverρ(m′)) = ts(de
ideρ(−)),
ts(A-broad
astq(m)) = ts(sendq(m)), and ts(A-broad
astr(m)) = ts(sendr(m)), that
dlR(m) = 4 and dlR(m′) = 4. 2
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Figure 5.11: Run of OPT-AB
ast with dlR(m) = 4 and dlR(m′) = 45.3.3 Handling FailuresIn the OPT-AB
ast algorithm (line 18), whenever task StgDeliverk does not re
eivemessages from all pro
esses in Π, the 
urrent stage k is terminated, whi
h leads toan exe
ution of Consensus to A-deliver the messages. Therefore, as soon as a pro
ess
p ∈ Π 
rashes, the A-deliver of messages will always be slow (i.e., with a deliverylaten
y of at least 4). This 
an be solved by adding a membership servi
e to ourOPT-AB
ast algorithm as follows. Let vi be the 
urrent view of system Π (vi ⊆ Π):
• at line 18, repla
e 
ondition π = Π by π = vi.On
e a pro
ess p 
rashes (or is suspe
ted to have 
rashed), p is removed from theview and fast A-deliver of messages is again possible. We do not dis
uss furtherthis extension to the OPT-AB
ast algorithm, but we note that the instan
e of themembership problem needed to remove a 
rashed pro
ess 
an easily be integratedinto the Consensus problem that terminates a stage.5.4 Related WorkThe work presented in this 
hapter 
ombines Atomi
 Broad
ast algorithms withoptimisti
 te
hniques. The literature on Atomi
 Broad
ast algorithms is abundant



5.5. Dis
ussion 101(e.g., [AMMS+93, BSS91, CT96, CM84, GMS91, Jal98, LG90, WS95℄). However,the multitude of di�erent models and assumptions needed to prove the 
orre
tnessof the algorithms renders any fair 
omparison di�
ult. We base our solution on theAtomi
 Broad
ast algorithm of [CT96℄ be
ause it provides a theoreti
al frameworkthat permits to develop the 
orre
tness proofs under assumptions that are realisti
in many settings (i.e., unreliable failure dete
tors).Optimisti
 algorithms have been widely studied in database 
on
urren
y 
ontrol (seeChapter 2). However, there have not been attempts, prior to this work, to introdu
eoptimism in the 
ontext of agreement algorithms. The Classi
al Atomi
 Broad
astAlgorithm with Optimisti
 Treatment approa
h des
ribed in Se
tion 5.1 is 
on
ep-tually similar to Virtual Time, and its implementation Time Warp [Jef85℄. TheTime Warp me
hanism exe
utes operations in a pre-determined virtual time. Alloperations have to be exe
uted a

ording this time, but sin
e a pro
ess is neversure whether it has re
eived all the operations that pre
ede a given operation, inorder to guarantee the order 
onstraint, some previously operations may have tobe undone, and pro
essed again. An important di�eren
e between these two opti-misti
 strategies is that operations are undone and re-exe
uted at most on
e withthe Classi
al Atomi
 Broad
ast Algorithm with Optimisti
 Treatment approa
h, butan unbounded number of times with the Time Warp me
hanism.The 
losest to the idea exploited by the Optimisti
 Atomi
 Broad
ast algorithmis [GLS96℄, where the authors redu
e the Atomi
 Commitment problem to Consensusand, in order to have a fast de
ision, exploit the following property of the Consensusproblem: if every pro
ess starts Consensus with the same value v, then the de
isionis v. This work presents a more general idea, and does not require that all theinitial values be equal. Moreover, we have here the trade-o� of typi
al optimisti
algorithms: if the optimisti
 assumption is met, there is a bene�t (in e�
ien
y), butif the optimisti
 assumption is not met, there is a loss (in e�
ien
y).5.5 Dis
ussionThe work presented in this 
hapter originated from the pragmati
 observation that,with high probability, messages broad
ast in a lo
al area network are �spontaneously�totally ordered. Exploiting this observation led to proposing the optimisti
 ap-proa
hes, and developing the Optimisti
 Atomi
 Broad
ast algorithm. Pro
essesexe
uting the OPT-AB
ast algorithm progress in a sequen
e of stages, and messages
an be delivered during stages or at the end of stages. Messages are delivered fasterduring stages than at the end of stages. For any pro
ess, the 
urrent stage is termi-nated, and another one started, whenever the spontaneous total order property doesnot hold.The e�
ien
y of the OPT-AB
ast algorithm has been quanti�ed using the notion ofdelivery laten
y. The delivery laten
y of messages delivered during a 
ertain stagehas been shown to be equal to 2, while the delivery laten
y of messages deliveredat the end of a stage equal to 4. This result shows the tradeo� of the OPT-AB
astalgorithm: if most messages are delivered during the stages, the OPT-AB
ast algo-
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 Atomi
 Broad
astrithm outperforms known Atomi
 Broad
ast algorithms, otherwise, the OPT-AB
astalgorithm is outperformed by known Atomi
 Broad
ast algorithms.Finally, to the best of our knowledge, there have not been previous attempts of ex-ploiting optimisti
 properties for the development of agreement algorithms. If thisproperty is satis�ed the e�
ien
y of the algorithm is improved, if the property is notnot satis�ed the e�
ien
y of the algorithm deteriorates (however the optimisti
 prop-erty has no impa
t on the safety and liveness guarantees of the system). We believethat this opens interesting perspe
tives for revisiting or improving other agreementalgorithms.
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Chapter 6Con
lusion This is not the end. It is not even thebeginning of the end. But it is, perhaps,the end of the beginning.Winston Chur
hillDistributed 
omputing has enabled the development of appli
ations and servi
es thatwere not feasible before 
omputers started to 
ommuni
ate to ea
h other. Several
urrent appli
ations show eviden
e that the distributed 
omputing paradigm is re-shaping the way people think about and do daily life a
tivities. Consequently, the dis-semination of distributed appli
ations is in
reasing the demand for high-availabilityand high-performan
e me
hanisms to support these appli
ations.However, designing high-availability systems that provide good performan
e has beenthe hole grail of fault tolerant 
omputing. In order to rea
h this obje
tive, someproposals in the 
ontext of database systems have suggested weakening 
onsisten
yguarantees. This approa
h is very attra
tive in some 
ases, but to be e�e
tive, deepknowledge about the appli
ation is usually ne
essary. More re
ently, some resear
hershave proposed to use group 
ommuni
ation me
hanisms to develop high-availabilityand high-performan
e databases that also ensure strong data 
onsisten
y.This thesis dis
usses the details involved in the design of a repli
ated database pro-to
ol based on group 
ommuni
ation primitives, and proposes the use of appli
ationsemanti
s and optimisti
 te
hniques to develop e�
ient group 
ommuni
ation prim-itives.6.1 Resear
h AssessmentThis resear
h has led to four major 
ontributions. In the database domain, theDatabase State Ma
hine and the Reordering te
hnique have been proposed. In thedistributed system domain, the Generi
 Broad
ast problem and algorithm and the
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lusionOptimisti
 Atomi
 Broad
ast algorithm have been introdu
ed.Database State Ma
hine. This thesis has presented the Database State Ma
hine,an approa
h to exe
uting transa
tions in a 
luster of database sites that 
ommuni-
ate by message passing, and do not have a

ess to shared memory nor to a 
ommon
lo
k. In the Database State Ma
hine, read-only transa
tions are pro
essed lo
allyon a database site, and update transa
tions do not in
ur in any syn
hronisationamong sites during their exe
ution. When an update transa
tion requests a 
om-mit operation, it is atomi
ally broad
ast. Lo
al exe
ution of update transa
tions ondatabase sites 
an be seen as a pre-pro
essing, sin
e a transa
tion 
an only be 
om-mitted (i.e., updates applied to the database) by some sites after the transa
tion isdelivered and su

essfully 
erti�ed on this database site. Consisten
y is guaranteedby a lo
al 
on
urren
y 
ontrol me
hanism (two phase lo
king), and the 
erti�
ationtest.Some important aspe
ts about the Database State Ma
hine are that transa
tionsare never involved in distributed deadlo
ks (only lo
al deadlo
ks are possible), theload 
an be fairy distributed in the system (lo
al transa
tions are exe
uted lo
allyand update transa
tions are pre-pro
essed by only one database site), and all 
om-muni
ation is en
apsulated in the Atomi
 Broad
ast primitive. Basing all databasesite intera
tion on a high level group 
ommuni
ation primitive has some bene�ts.First, it simpli�es the portability of the Database State Ma
hine to systems withdi�erent network 
hara
teristi
s (i.e., only the Atomi
 Broad
ast primitive has to bere-implemented). Se
ond, it fo
uses e�orts to improve 
ommuni
ation performan
eon a single point, and �nally, it simpli�es the proof of 
orre
tness of the proto
ol.Reordering Te
hnique. The 
erti�
ation test ne
essary to 
ommit an updatetransa
tion is an optimisti
 way of pro
essing transa
tions. Depending on the pro�leof the transa
tions (e.g., number of read and write operations), and 
hara
teristi
sof the database (e.g., number of data items), optimisti
 
on
urren
y 
ontrol mayresult in high abort rates. In order to in
rease the number of transa
tions that passthe 
erti�
ation test, we have introdu
ed the Reordering te
hnique. The Reorderingte
hnique originated from the observation that 
on
urrent transa
tions 
an be 
erti-�ed in any order, but sin
e some orders 
an lead to more aborts than others, insteadof taking a 
han
e, the Reordering te
hnique looks for favourable 
erti�
ation orders.Simulation results show that this 
an be very e�e
tive.The Reordering te
hnique was implemented in the Database State Ma
hine by meansof a Reorder List with maximum size determined by the Reorder Fa
tor. At �rstglan
e, the greater the Reorder Fa
tor, the better. Nevertheless, big Reorder Fa
torshave the undesirable side e�e
t of augmenting the system's response time. Therefore,a �good� Reorder Fa
tor is a 
ompromise between abort rate and response time, anddepends on system 
hara
teristi
s. The Reorder Fa
tor allows the Database StateMa
hine to be tuned a

ording to the system requirements.
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tions and Open Questions 105Generi
 Broad
ast. So far, order properties o�ered by group 
ommuni
ationprimitives existed in two �avours: no message order guarantee and message orderguarantee for all messages.1 Su
h primitives, Reliable and Atomi
 Broad
ast, respe
-tively, are important abstra
tions, however, in several s
enarios, Reliable Broad
astis too weak to ensure system 
orre
tness, and Atomi
 Broad
ast is to strong. Sin
eordering messages has a 
ost, to be e�
ient, appli
ations need group 
ommuni
ationwith order guarantees that mat
h their exa
t ne
essities. This observation was thestarting point for the 
on
eption of Generi
 Broad
ast.Generi
 Broad
ast permits an appli
ation to de�ne any order semanti
s that it needs.In addition to de�ning Generi
 Broad
ast, we have also proposed an algorithm thatsolves it. The Generi
 Broad
ast algorithm proposed uses a quorum to determinewhen messages 
an be safely delivered without the 
ost of a Consensus exe
ution(whose aim is to order messages), and when messages 
on�i
t, and so, Consensusis ne
essary. No previous attempt of de�ning a primitive like Generi
 Broad
astis known. When messages do not 
on�i
t, the Generi
 Broad
ast algorithm has asmaller delivery laten
y than known Atomi
 Broad
ast algorithms, and when mes-sages 
on�i
t, it has a delivery laten
y greater than the delivery laten
y of knownAtomi
 Broad
ast algorithms.Optimisti
 Atomi
 Broad
ast. We have des
ribed three optimisti
 approa
hesin the 
ontext of Atomi
 Broad
ast. These approa
hes take advantage of the spon-taneous total order property, typi
al in lo
al area networks. The approa
hes basedon optimisti
 treatment guarantee di�erent properties from Atomi
 Broad
ast. Wehave also presented in detail an Optimisti
 Algorithm with Conservative Treatment,the Optimisti
 Atomi
 Broad
ast algorithm.A very simple analysis shows that the approa
hes based on optimisti
 treatment out-perform the Optimisti
 Atomi
 Broad
ast with Conservative Treatment approa
h.Nevertheless, the former two allow messages to be delivered twi
e, and so, they
annot repla
e Atomi
 Broad
ast without 
hanges in the appli
ation, whi
h is pos-sible with the Optimisti
 Atomi
 Broad
ast with Conservative Treatment approa
h.Therefore, appli
ations using the approa
hes based on optimisti
 treatment must beable to 
ope with messages delivered �rst in a tentative order that may be di�erentfrom a de�nitive order [KPAS99℄.6.2 Future Dire
tions and Open QuestionsBesides the 
ontributions presented in the previous se
tion, this work has raisedseveral issues that deserve further analysis. In the following, we des
ribe some futuredire
tions and open questions related to this resear
h.1This in
ludes Total Order and Causal Order. Only Total Order has been 
onsidered in thethesis.



106 Chapter 6. Con
lusionSafety vs. Liveness Database Guarantees. Traditionally, database proto
olshave only been 
on
erned with safety properties (i.e., ACID properties) [BHG87,GR93℄, and very few works have addressed liveness properties (e.g., [RSL78, PG97℄).The Database State Ma
hine 
ould be used as a framework to study liveness guar-antees in repli
ated databases. The fa
t that Atomi
 Broad
ast is de�ned by safetyand liveness guarantees may help 
hara
terise the liveness property ensured by theDatabase State Ma
hine. As a se
ond step, it would be interesting to study how tode�ne and a
hieve stronger and weaker liveness guarantees.The Database State Ma
hine in Pra
ti
e. Simulation results have broughtto light some of the 
hara
teristi
s of the Database State Ma
hine. Experimentsusing a �real setting� would be interesting to take further 
on
lusions about the ap-proa
h. The Database State Ma
hine was designed in su
h a way to simplify itsintegration with existing database engines (e.g., without modifying internal 
ode).Some preliminary studies involving the POET database [Obj97℄ have shown thatthe Database State Ma
hine 
an indeed be integrated in an existing database en-gine without 
hanging the database engine's 
ode. However, additional work is stillne
essary to 
on
eive a prototype.Partial Repli
ation. The Database State Ma
hine assumes that ea
h databasesite has a full 
opy of the database. This hypothesis allows database sites to exe
utethe 
erti�
ation test independently of one another, and rea
h the same out
ome.One natural question is whether it is possible to build a Database State Ma
hinebased on a weaker assumption (i.e., partial repli
ation). It seems that this 
an onlybe done by introdu
ing some 
oordination among database sites, when exe
uting the
erti�
ation test. The resulting proto
ol would be a sort of Atomi
 Commitment.One might wonder whether total order is still ne
essary in this s
enario. It turns outthat the answer is a�rmative, sin
e it has been shown that if database sites 
ertifytransa
tions in the same order, the 
erti�
ation test 
an be mu
h more e�e
tive (i.e.,more transa
tions pass the test) [PGS98℄. The exa
t way transa
tions are exe
uted,broad
ast, and 
erti�ed in this s
enario is subje
t to further investigation.Group Communi
ation in the Crash-Re
over Model. Only re
ently, group
ommuni
ation in the (asyn
hronous) 
rash-re
over model has attra
ted the atten-tion of resear
hers. Works developed so far have fo
used on solving Consensus in the
rash-re
over model [OGS97, HMR97, ACT98℄. This is an important step towardsgroup 
ommuni
ation proto
ols in the 
rash-re
over model sin
e some group 
om-muni
ation problems have been shown to be equivalent to Consensus (e.g., Atomi
Broad
ast). Although these results were developed in the 
rash-stop model, it isreasonable to expe
t that they have analogues in the 
rash-re
over model. To thepresent time, no work has expli
itly addressed the problem of group 
ommuni
ationin the 
rash-re
over model where all pro
esses 
an 
rash and re
over.2 This seems2Some group 
ommuni
ation toolkits allow new pro
esses to join pro
esses in exe
ution [BJ87,Mal96, vBM96℄. This me
hanism 
an be seen as a kind of �re
over,� sin
e a pro
ess that has



6.2. Future Dire
tions and Open Questions 107to be a fruitful resear
h dire
tion for the next years.Optimisti
 Generi
 Broad
ast. The ideas underlying Generi
 Broad
ast andOptimisti
 Atomi
 Broad
ast are orthogonal, and one 
ould think of 
ombining them.The result would be an optimisti
 implementation of Generi
 Broad
ast. For exam-ple, the Optimisti
 Generi
 Broad
ast algorithm would only order messages if they
on�i
t and the spontaneous total order property does not hold. Su
h me
hanismwould redu
e the likelihood that messages have to be ordered with a Consensus.The Optimisti
 Design Prin
iple. Some thoughts about the Optimisti
 Atomi
Broad
ast algorithm suggest an optimisti
 design prin
iple. The idea is that in some
ir
umstan
es, a problem 
an be solved by two me
hanisms: a fast me
hanism,that ensures the problem properties in most 
ases, and a slow me
hanism, thatalways guarantees the problem properties. By being able to dete
t whenever the�rst me
hanism does not su

eed, and swit
h to the se
ond whenever this happens,a system designer 
an 
ome up with an optimisti
 way of solving a problem. Thisoptimisti
 design prin
iple requires re�nements, a

ording to the situation where it isapplied. For example, in same 
ases, wrong results produ
ed by the fast me
hanismshould never be observed by the appli
ation, and in other 
ases, this may be tolerated.The study about degrees of optimism shows that the optimisti
 design prin
iple 
anbe put in pra
ti
e in both 
ases. Furthermore, while the implementation of the fastand the slow me
hanisms depend on spe
i�
 
hara
teristi
s about the problem beingsolved and the model, the dete
tion me
hanism might exploit resear
h done on thedete
tion of global predi
ates [CL85, BM93℄.


rashed 
an restart again (with a di�erent identi�
ation). Nevertheless, 
orre
tness is not ensuredif all pro
esses 
rash and then re
over.
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Appendix ABroad
asts and ConsensusAlgorithmsThis appendix presents broad
ast and Consensus algorithms referen
ed throughoutthis thesis. The Reliable Broad
ast (Algorithm 3), Consensus (Algorithm 4), andAtomi
 Broad
ast (Algorithm 6) algorithms have been proposed by Chandra andToueg [CT96℄. The Early Consensus algorithm (Algorithm 5) has been proposedby S
hiper [S
h97℄. All algorithms assume the asyn
hronous model augmented withfailure dete
tors where pro
esses 
ommuni
ate by message passing, using reliable
hannels, and fail by stopping their 
omputation (i.e., same model as the one 
onsid-ered in Chapters 3 and 4). The Consensus algorithms use a failure dete
tor of 
lass
3S.
Algorithm 3 Reliable broad
ast algorithmEvery pro
ess p exe
utes the following:To exe
ute R-broad
ast(m):send(m) to all (in
luding p);R-deliver(m) o

urs as follows:when re
eive(m) for the �rst timeif sender(m) 6= p then send(m) to all ;R-deliver(m);
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asts and Consensus Algorithms
Algorithm 4 Chandra and Toueg 
onsensus algorithmEvery pro
ess p exe
utes the following:pro
edure propose(vp)

estimatep ← vp

statep ← undecided

rp ← 0
tsp ← 0while statep = undecided do

rp ← rp + 1
cp ← (rp mod n) + 1send (p, rp, estimatep, tsp) to cp {Phase 1}if p = cp then {Phase 2}wait until for ⌈(n + 1)/2⌉ pro
esses q: re
eived(q, rp, estimateq, tsq) from q℄

msgsp[rp]← {(q, rp, estimateq, tsq) | p re
eived (q, rp, estimateq, tsq) from q}
t← largest tsq su
h that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimateq ← sele
t one estimateq su
h that (q, rp, estimateq, t) ∈ msgsp[rp]send (p, rp, estimateq) to allwait until [re
eived (cp, rp, estimateq) from cp or cp ∈ Dp℄ {Phase 3}if [re
eived (cp, rp, estimateq) from cp℄ then
estimateq ← estimatecp

tsp ← rpsend (p, rp, ack) to cpelsesend (p, rp, nack) to cpif p = cp then {Phase 4}wait until [for ⌈

(n+1)
2

⌉pro
esses q : re
eived (q, rp, ack) or (q, rp, nack)℄if [for ⌈

(n+1)
2

⌉pro
esses q : re
eived (q, rp, ack)℄ thenR-broad
ast(p, rp, estimatep, decide)when R-deliver(q, rq , estimateq, decide)if statep = undecided then
decide(estimateq)
statep ← decided



119Algorithm 5 Early 
onsensus algorithmfun
tion propose(vp)
ri ← 0
estimatei ← (i, vi)
obeginupon re
eption of (pj , rj , vj , decide) from pj :send(pi, rj , vj , decide) to all;return vjloop

phase i ← 1; currentRoundTerminated i ← false ;
coordSuspected i ← false; nbSuspicions i ← 0;
coord i ← (ri mod n) + 1;if i = coord i thensend (pi, ri, 1, estimatei) to all;while not currentRoundTerminated isele
tupon re
eption of (pj , ri, 1, estimatej) from pj when phasei = 1:�rst re
eption:

msgCounter i ← 1;if i 6= coord i then
estimatei ← estimatej ;send (pi, ri, 1, estimatei) to all;other re
eptions:

msgCounter i ← msgCounter i + 1;if msgCounter i > n/2 thensend (pi, ri, estimatei .second , decide) to all;return estimatei .second ;upon coord i ∈ 3Si when not coordSuspected i:send (pi, ri, suspicion) to all;
coordSuspected i ← true;upon re
eption of (pj , ri, suspicion) from pj when phase i = 1:
nbSuspicions i ← nbSuspicionsi + 1;if nbSuspicionsi > n/2 then

phase i ← 2;send (pi, ri, 2, estimatei) to all;upon re
eption of (pj , ri, 2, estimatej) from pj :�rst re
eption:
msgCounter i ← 1;if phasei = 1 then

phase i ← 2;send (pi, ri, 2, estimatei) to all;other re
eptions:
msgCounter i ← msgCounter i + 1;if estimatej .first = coord i then estimatei ← estimatej ;if msgCounter i > n/2 then
currentRoundTerminated i ← true;
ri ← ri + 1;
estimatei.f irst← i;
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asts and Consensus Algorithms

Algorithm 6 Atomi
 broad
ast algorithmEvery pro
ess p exe
utes the following:Initialisation:
R_delivered← ǫ
A_delivered← ǫ
k ← 0To exe
ute A-broad
ast(m): {Task 1}R-broad
ast(m)A-deliver(−) o

urs as follows:when R-deliver(m) {Task 2}

R_delivered← R_delivered ∪ {m}when R_delivered \A_delivered 6= ∅ {Task 3}
k ← k + 1
A_undelivered← R_delivered \A_deliveredpropose(k, A_undelivered)wait until de
ide(k, msgSetk)
A_deliverk → msgSetk \A_deliveredatomi
ally deliver all messages in A_deliverk in some deterministi
 order
A_delivered← A_delivered ∪A_deliverk
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