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Abstract

Database replication protocols based on group communication primitives have recently
emerged as a promising technology to improve database fault-tolerance and performance.
Roughly speaking, this approach consists in exploiting the order and atomicity properties
provided by group communication primitives or, more specifically Atomic Broadcast, to guar-
antee transaction properties. This paper proposes a systematic classification of non voting

database replication algorithms based on Atomic Broadcast.

1 Introduction

Software based replication is considered a cheap way to increase data availability when
compared to hardware based specialised techniques [12]. However, designing a replication
scheme that provides synchronous replication (i.e., all copies are kept consistent) at good
performance is still an active area of research both in the database and in the distributed
systems communities. As an example, many commercial database products are based on the
asynchronous replication model, which permits copies to be inconsistent [9].

Recently, some authors have proposed to implement synchronous replicated database
systems on top of group communication primitives [3, 18, 20, 13]. Roughly speaking, the
approach consists in exploiting the order and atomicity properties provided by group com-
munication primitives or, more specifically Atomic Broadcast, to guarantee transaction prop-

erties. This approach does not use an atomic commit to terminate transactions, which is an



advantage, since Atomic Broadcast can be implemented more efficiently than atomic commit
(and provide the same reliability guarantees) [15].

Replicated database protocols based on group communication primitives can be charac-
terised as mon-voting transaction termination algorithms, since at the end of the transac-
tion, database replicas do not vote for the outcome of the transaction (in fact, the better
performance achieved by implementations of atomic broadcast primitives, when compared
to implementations of atomic commit, is explained by the fact that Atomic Broadcast has
no voting).

The decision to commit or to abort a transaction is made unilaterally by each replica. As
a result, transactions are only aborted due to concurrency control reasons, and a replica that
cannot commit a transaction for other reasons (e.g., insufficient resources, system error) has
to be handled in the same way as a crashed replica. Of course, this approach is only effective
when the number of replicas ensures that single replica crashes do not prevent progress of
the system.

Although different implementations of such approach have been proposed [16, 2], no
systematic study has been made yet. Existing classifications of database replication tech-
niques [6, 8] concentrate on more traditional, atomic commit based, schemes. This pa-
per proposes a systematic classification of database replication algorithms based on Atomic
Broadcast.

The paper is structured as follow: Section 2 describes the model of the database we
consider. Section 3 presents the different classification criteria, and Section 4 the different
replication algorithms resulting from combination of our classification criteria. Section 5

concludes the paper.

2 System Model and Architecture

We consider a system composed of client and server sites (see Figure 1). The set S =
{s1, 82, ..., n } represents all database servers in the system. Sites communicate to each other
by message passing, and do not have access to a shared memory. We additionally consider
the existence of an Atomic Broadcast primitive that guarantees that all destinations deliver
the same messages in the same order.

Each server site has a full copy of the database, and is able to execute transactional
requests originated at the client sites. Our correctness criterion for transaction execution is
serializability (or more specifically, one-copy serializability [4]), that is, any interleaved exe-
cution of transactions is equivalent to a serial execution of these transactions. Furthermore,
database updates are treated synchronously, that is, all replicas are kept always consistent,
with no need for reconciliation mechanisms (replicas never diverge [10]).

We model database servers as multi-threaded processes. Transactions are sequences of
read and write operations followed by a commit or abort operation. Let ¢ be a transaction.

We represent an operation of ¢ as o;. Each transaction executes in its own thread, and
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Figure 1: System Model

transaction execution is regulated by some concurrency control mechanism (see Figure 2).!
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Figure 2: Server Model

This model captures a client-server architecture, with clients and servers sites installed
on workstations connected by a local area network. Database replication has to main goals:
firstly, fault tolerance (e.g., the system can continue to work despite server crashes, and no
data is lost during such a crash), and secondly, performance (by distributing the work-load

among the replicas).

!While the server model we consider is very simple, it is sufficient to point out the relevant characteristics of
database replication protocols based on group communication.



3 Classification Criteria

In this section, we present the three criteria that we have identified as characterising the
space of replication strategies based on Atomic Broadcast. The different strategies resulting

from the combination of these criteria are described in Section 4.

3.1 Criterion 1: Client-Server Interaction

Clients and servers can interact in one of three possible ways, as shown below. Each one of
these types of interaction corresponds to a different replication strategy (see Figure 3).

e the client interacts with a specific server: this is called primary backup replication

¢ the client interacts with any server: this is called multi-primary replication

e the client interacts with all servers: this is called active replication.
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Figure 3: Client-server interaction

Primary-Backup Replication. In this replication scheme (also called Passive Repli-
cation), all clients send their requests to a specific database server, the primary. The primary
does all the transaction processing and the resulting update for a transaction (or a bunch of
transactions) is forwarded to the other database servers, the backups. If the primary crashes,
one backup takes over the role of primary.

Figure 4 shows the communication between clients and servers in the passive replication
approach. Transaction operations are first sent by the client to the servers, that execute
them locally. When the transaction commit is requested, the primary executes an Atomic

Broadcast with the update message for this transaction to the other servers (the backups).2.

2A view synchronous FIFO broadcast primitive (a primitive weaker than Atomic Broadcast, and thus, less
expensive to implement) would be sufficient to propagate the update to all replicas [11]. This is considered as an
optimisation.
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Figure 4: Primary Backup replication

Multi-Primary Replication. Multi-Primary Replication is similar to Primary-Backup
Replication in the sense that a client sends the transaction operations to only one database
server, that executes them and forwards the resulting update to the other servers. However,
differently from Passive Replication, there can be several “primary” servers executing client
requests at the same time (e.g., two clients might choose two different servers). Since there
is no synchronisation during the transaction execution, some mechanism has to be used to
guarantee that concurrent executions are serializable.

Figure 5 shows the communication involved in the multi-passive replication. The clients
contact any database server, and send it the transaction to execute. The database server
executes the requests locally, and, at the end of the transactions, sends the update to the

other members of the group using an Atomic Broadcast primitive.

Active Replication. In the active replication scheme, each client interacts with the
database servers using the Atomic Broadcast primitive. (Active replication can be seen as an
instance of the state machine approach described in [19].) Each server processes the request
and answers back to the client. Once the client receives the first answer, it knows that its
request has been successfully executed.

Figure 6 shows the communication between clients and servers in the active replication
approach. The client contacts directly all database servers. Each server handles the request

on its own.
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Figure 5: Multi-Primary replication

3.2 Criterion 2: Request Transmission

While the client-server interaction criterion determines who the client contacts in the system
(i.e., which database server), the request transmission determines how the client transmits its
requests to the server (or servers). We consider two types of request transmission: one-shot
transactions, and ordinary transactions.

With one-shot transactions, a client submits all the operations of a transaction in one
single message. It means that a complete transaction can be stored in one message. We
further assume that the datasets of the transactions (i.e., their readsets and writesets) are
known before the transactions are executed. Stored procedures and remote procedure calls
are an example of one-shot transactions.?

With ordinary transactions, clients request the transactions one operation at a time,
which leads to one message per request. For example, this is the case of interactive transac-
tions, where the client defines some operations based on the response for previous operations,
all operations being part of the same transaction.

In the case of Primary-Backup replication, there are two cases of request transmission.
One between the client and the primary, and another between the primary and the backups.
Our criterion applies to the former. We assume that the primary communicates with the

backups each time there is a change in the state of the database (i.e., a transaction commits).

3Note that determining the datasets of stored procedures may lead to an overestimation of data items that are
really accessed by the transaction.
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Figure 6: Active replication

3.3 Criterion 3: Concurrency Control

The way concurrent transaction are scheduled on each server is an important factor for
replicated databases. In this paper we consider two types of schedulers: pessimistic and
optimistic.

A pessimistic scheduler checks for conflicts before executing a transaction operation,
and delays its execution if such a conflict exists. The most pessimistic scheduling policy is
simply to execute operations serially, however, this approach does not allow any concurrency
between transactions and may lead to poor performance. Therefore, pessimistic schedulers
usually use some form of locking mechanism (e.g., two-phase locking).

We consider an optimistic scheduler to be any scheduler that does not order transaction
operations during their execution. In this broad sense, we include certifier and time-stamp
based schedulers [14, 17, 5]. Since transactions execute without any ordering mechanism,
at commit time there is no guarantee that the resulting execution will generate a consistent
database state (i.e., serializable). For this reason, optimistic schedulers may abort or re-
schedule transactions in order to keep the database consistent. It has been shown that with
adequate hardware resources, optimistic concurrency control policies outperform pessimistic

ones [22].



4 The Various Replication Algorithms

In this section, we present our database replication classification resulting from the combi-
nation of the different criteria described in the previous section.

We graphically represent the database replication strategies as a tree (see Figure 7).
Replications strategies are first classified by the way client and server interact. The second
level of our classification is based on the transaction model criterion. This criterion has no
relevant impact on passive replication (see Section 3.2). The last level of our classification is
related to the scheduling policy. As explained below, certain branches of our classification

tree are dead since they do not represent a valid replication scheme.
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Figure 7: Database replication classification

The following sections present the various algorithms resulting from our classification.
For all algorithms, we consider the execution of a transaction ¢, requested by a client c.

(Figure 7 depicts a reference to the section where every database replication algorithm is

discussed.)

4.1 Active Replication - Ordinary Transaction - Optimistic Schedul-
ing

In active replication, the key issue is how to guarantee that server execution is deterministic.

That is, all replicas have to handle the request in the same way. Specifically, care must be



taken to abort transaction in a deterministic way.

1. Client ¢ sends each operation oy of transaction t to every server s;,s; € S, using the

Atomic Broadcastprimitive, and waits for the first message containing the result of o;.
2. Each server s; delivers and executes operation o; in the same order.

3. If o; is commit operation, all servers check for conflicts.* If ¢ conflicts with some other
transaction, ¢ is aborted by s;. No new operation is delivered until the commit has
been executed. Note that the deterministic way in which operations are executes by s;

ensures that transaction ¢ is either aborted by all servers or none.

4. Each server s; sends the result of o; to client c.

Correctness (Sketch). Serializability is ensured by the local concurrency control mech-
anism of each server, and the order guarantee of the communication primitive. The argument
for correctness follows from the fact that the execution order of the whole system is equivalent
to the execution order of one database server. Which, by the local scheduler, is guaranteed

to be serializable.

4.2 Active Replication - Ordinary Transaction - Pessimistic Schedul-
ing
This approach is very similar to the previous one. The main constraint remains the fact that

servers must behave in a deterministic way. In this case, it requires that all replicas acquire

locks in the same way [1].

1. Client ¢ sends operation o; of transaction ¢ to each server s;,s; € S, using the Atomic
Broadcastprimitive, and waits for the first message containing the result of operation

O¢.
2. All servers deliver operation o; in the same order.

3. Once s; delivers oy, it tries to grant the lock for o;. If the lock can be granted, the
operation is executed. Otherwise, the operation is stored until the lock associated
with it can be granted. If the operation is commit, no new operation is delivered until
transaction ¢ has been committed. It is important that locks be granted according to

the order operations are delivered at database servers.

4. Server s; sends the result of o; to client c.

Correctness (Sketch). As for the previous approach (see Section 4.1) serializability is
guaranteed by the local scheduler, which, in this case, makes sure that locks are acquired at

all replicas in the same order.

4A transaction t' conflicts with ¢ if ¢t and ¢ are concurrent and have conflicting operations. Two operations
conflict if they are issued by different transactions, access the same data item and at least one of them is a write.



4.3 Dead Branch: Active Replication - One Shot Transaction - Op-

timistic Scheduling

This combination of criteria does not lead to a valid replication mechanism. To understand
why, consider two transactions, ¢ and t', delivered in two database servers, s; and s; (see
Figure 8). When transaction ¢’ is delivered in s;, transaction ¢ has already been committed at
si, and so t' will commit without any problems in s;. In server s;, transaction ¢’ is delivered
and starts its execution before transaction ¢ commits. When #' finishes its execution and
requests the commit, it can be that it will have to be aborted due to some conflict with .
To avoid inconsistencies, database server s; has to commit transaction ¢’ before executing
any other transaction, say t"”. However, this would require some synchronisation between ¢

and t", and therefore, a pessimistic scheduler.

Database Database
Server s; Server s;

Transaction t

Transaction t'

%

o
Overlap

Figure 8: Overlapping effect
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4.4 Active Replication - One Shot Transaction - Pessimistic Schedul-
ing

Contrary to the previous approach, active replication with one shot transaction is possible
with pessimistic scheduling. The idea was first described in [18]. Determinism is attained

by making sure that transactions are handled in the order they are delivered, which can be

achieved with a pessimistic scheduler.
1. Client ¢ sends transaction ¢ to every server s;,s; € S, using the Atomic Broad-
castprimitive, and waits until the first result for ¢ arrives.
2. Server s; delivers the transaction ¢ in the same order.

3. Server s; acquires locks for all the operations of transaction ¢. Once all the locks are
acquired by s;, the server s; launches a new thread and executes the operations of ¢ in

this thread.
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4. Each server s; sends the result of transaction ¢ to the client c.

Correctness (Sketch). Serializability is guaranteed by the the concurrency control
mechanism of each server. Because the transactions are delivered to all servers, and no
re-ordering occurs in case of lock conflict (the second transaction is simply delayed) the

execution is the same on all replicas.

4.5 Primary-Backup - Optimistic Scheduling

For the algorithm showed next, we consider sp,sp € S, the server playing the role of primary,
and Sgp =S — {sp} the set containing the backup servers.
1. Client ¢ sends transaction ¢ to sp.

2. Server sp executes the operations of ¢, and at commit time it checks for conflicts

involving t. If ¢ conflicts with some other transaction in sp, ¢ is aborted.

3. If ¢ is not aborted, sp sends the updates of t to every server sp,s; € Sp using the

Atomic Broadcastprimitive.
4. On delivering t’s writes, every server s, updates its copy of the database.

5. The primary sends the result of transaction ¢ to client c.

Correctness (Sketch). Since the execution on the primary is serializable (guaranteed
by the local scheduler), and the backups receive the updates all in the same order (guaranteed
by the Atomic Broadcast primitive), their database are also serializable, and the system is

consistent.

4.6 Primary-Backup - Pessimistic Scheduling
This approach is similar to the one with optimistic scheduling. The only difference being

that the primary acquires locks® for the different incoming transactions.

Correctness (Sketch). As with optimistic scheduling (see Section 4.5), serialisability

is guaranteed by the primary.

4.7 Multi-Primary - Optimistic Scheduling

Multi-primary replication algorithms are fully described in [16, 2]. The key issue in multi-
primary algorithms is to keep the database consistent while permitting different transaction

to execute on different primaries.

1. Client ¢ sends transaction ¢ to one database server s;,s; € S.

SIf transactions are submitted in one single message, because the concurrency control is pessimistic, it is
possible to optimise the scheduling such that no deadlocks occur [7].
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2. Server s; executes transaction ¢ locally (whether s; executes ¢ locally using a pessimistic
or an optimistic scheduling policy is not relevant for the discussion). When ¢ requests

t’s commit, s; sends ¢ updates to all the servers with the Atomic Broadcastprimitive.

3. Each server s;,s; € S delivers ¢’s updates and certifies #’s execution. The result of the
certification test is either the commit or abort of . The certification test only takes

into account transactions that have been delivered at s; before ¢.

4. Server s; sends the result of ¢ to the client c.

Correctness (Sketch). Algorithm correctness relies on the fact that there is no replica
divergence: every database server delivers transactions in the same order and the certifica-
tion test only considers transactions that are delivered. Serialisability is guaranteed by the

optimistic concurrency control mechanism of certification.

4.8 Dead Branch:Multi-Primary - Pessimistic Scheduling

No pessimistic scheduler is possible with a multi-primary scheme. This is because during
their execution, transactions are not synchronised with other transactions in execution on
other servers.

One might argue that one way of implementing multi-passive replication using a pes-
simistic scheduler is to synchronise all replicas using the Atomic Broadcastprimitive: each
server sends a transaction ¢ to all replicas without executing ¢. All replicas deliver and ex-
ecute t. The result of ¢ is sent back to the client by the server that was first contacted.

However, this approach is in fact an active replication scheme (see Section 4.1).

5 Discussion

This paper proposes a systematic classification of replicated databases protocols based on
the atomic broadcast communication primitive. Database replication protocols following
this approach have recently emerged as a promising technology to improve database fault-
tolerance and performance, and until now no comparative classification of this kind is known.

Our classification takes into account three criteria: the interaction between clients and
servers, the way requests are transmitted, and the concurrency control mechanism of the
servers. The combination of all criteria leads to several replication techniques.

This study has allowed us to better understand the tradeoffs of database non-voting
replication strategies. Active replication offers a transparent way of leading with failures,
however, it requires deterministic execution, which, as shown, reduces concurrency inside the
database server. Primary-backup is the most common replication technique in commercial
databases. It does not have any constraint related to determinism but does not offer the same
degree of transparency as active replication, and concentrates all execution on a single server.
Multi-primary replication is a compromise between active and primary-backup replication.

It localises transaction execution on one server, and permits clients to contact any server.

12



Our study has also shown that information about transaction datasets can be useful for

active replication techniques but do not lead to any improvement in passive replication.

Presently, we are developing a simulation model that should provide quantitative infor-

mation about database replication protocols based on group communication primitives. We

also expect to use this simulation model to evaluate transaction profiles that can be more

adequate for certain replication strategies.
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