Generic Broadcast*

Fernando Pedone and André Schiper

Département d’Informatique
Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne EPFL, Switzerland
{Fernando.Pedone, Andre.Schiper}@epfl.ch

Abstract. Message ordering is a fundamental abstraction in distributed
systems. However, usual ordering guarantees are purely “syntactic”, that
is, message “semantics” is not taken into consideration, despite the fact
that in several cases, semantic information about messages leads to more
efficient message ordering protocols. In this paper we define the Generic
Broadcast problem, which orders the delivery of messages only if needed,
based on the semantics of the messages. Semantic information about
the messages is introduced in the system by a conflict relation defined
over messages. We show that Reliable and Atomic Broadcast are spe-
cial cases of Generic Broadcast, and propose an algorithm that solves
Generic Broadcast efficiently. In order to assess efficiency, we introduce
the concept of delivery latency.

1 Introduction

Message ordering is a fundamental abstraction in distributed systems.
Total order, causal order, view synchrony, etc., are examples of widely
used ordering guarantees. However, these ordering guarantees are purely
“syntactic” in the sense that they do not take into account the “seman-
tics” of the messages. Active replication for example (also called state
machine approach [12]), relies on total order delivery of messages on the
active replicated servers. By considering the semantics of the messages
sent to active replicated servers, total order delivery may not always be
needed. This is the case for example if we distinguish read messages from
write messages sent to active replicated servers, since read messages do
not need to be ordered with respect to other read messages. As message
ordering has a cost, it makes sense to avoid ordering messages when not
required.

In this paper we define the Generic Broadcast problem (defined by the
primitives g- Broadcast and g-Deliver), which establishes a partial order on

* Research supported by the EPFL-ETHZ DRAGON project and OFES under con-
tract number 95.0830, as part of the ESPRIT BROADCAST-WG (number 22455).

message delivery. Semantic information about messages is introduced in
the system by a conflict relation defined over the set of messages. Roughly
speaking, two messages m and m’ have to be g-Delivered in the same
order only if m and m’ are conflicting messages. The definition of message
ordering based on a conflict relation allows for a very powerful message
ordering abstraction. For example, the Reliable Broadcast problem is an
instance of the Generic Broadcast problem in which the conflict relation is
empty. The Atomic Broadcast problem is another instance of the Generic
Broadcast problem, in which all pair of messages conflict.

Any algorithm that solves Atomic Broadcast trivially solves any in-
stance of Generic Broadcast (i.e., specified by a given conflict relation),
by ordering more messages than necessary. Thus, we define a Generic
Broadcast algorithm to be strict if it only orders messages when neces-
sary. The notion of strictness captures the intuitive idea that total order
delivery of messages has a cost, and this cost should only be paid when
necessary.

In order to assess the cost of Generic Broadcast algorithms, we intro-
duce the concept of delivery latency of a message. Roughly speaking, the
delivery latency of a message m is the number of communication steps
between g-Broadcast(m) and g-Deliver(m). We then give a strict Generic
Broadcast algorithm that is less expensive than known Atomic Broadcast
algorithms, that is, in runs where messages do not conflict, our algorithm
ensures that the delivery latency of every message is always equal to 2
(known Atomic Broadcast algorithms have at least delivery latency equal
to 3).

The rest of the paper is structured as follows. Section 2 defines the
Generic Broadcast problem. Section 3 defines the system model and in-
troduces the concept of delivery latency. Section 4 presents a solution
to the Generic Broadcast problem. Section 5 discusses related work, and
Section 6 concludes the paper.

2 Generic Broadcast

2.1 Problem Definition

Generic Broadcast is defined by the primitives g-Broadcast and g-Deliver.!
When a process p invokes g-Broadcast with a message m, we say that p
g-Broadcasts m, and when p returns from the execution of g-Deliver with

! g-Broadcast has no relation with the GBCAST primitive defined in the Isis sys-
tem [1].

message m, we say that p g-Delivers m. Message m is taken from a set
M to which all messages belong. Central to Generic Broadcast is the def-
inition of a (symmetric) conflict relation on M x M denoted by C (i.e.,
CC MxM).If (m,m') € C then we say that m and m’ conflict. Generic
Broadcast is specified by (1) a conflict relation C and (2) the following
conditions:

gB-1 (VALIDITY) If a correct process g-Broadcasts a message m, then it
eventually g-Delivers m.

gB-2 (AGREEMENT) If a correct process g-Delivers a message m, then
all correct processes eventually g-Deliver m.

gB-3 (INTEGRITY) For any message m, every correct process g-Delivers
m at most once, and only if m was previously g-Broadcast by some
process.

gB-4 (PARTIAL ORDER) If correct processes p and ¢ both g-Deliver mes-
sages m and m’, and m and m’ conflict, then p g-Delivers m before
m' if and only if ¢ g-Delivers m before m/.

The conflict relation C determines the pair of messages that are sensitive
to order, that is, the pair of messages for which the g-Deliver order should
be the same at all processes that g-Deliver the messages. The conflict
relation C renders the above specification generic, as shown in the next
section.

2.2 Reliable and Atomic Broadcast as Instances of Generic
Broadcast

We consider in the following two special cases of conflict relations: (1)
the empty conflict relation, denoted by Cpy, where Cy = (), and (2) the
M x M conflict relation, denoted by Caixar, where Caqxpg = M X
M. In case (1) no pair of messages conflict, that is, the partial order
property gB-4 imposes no constraint. This is equivalent to having only
the conditions gB-1, gB-2 and gB-3, which is called Reliable Broadcast [4].
In case (2) any pair (m,m’) of messages conflict, that is, the partial
order property gB-4 imposes that all pairs of messages be ordered, which
is called Atomic Broadcast [4]. In other words, Reliable Broadcast and
Atomic Broadcast lie at the two ends of the spectrum defined by Generic
Broadcast. In between, any other conflict relation defines an instance of
Generic Broadcast.

Conflict relations lying in between the two extremes of the conflict
spectrum can be better illustrated by an example. Consider a replicated

Account object, defined by the operations deposit(z) and withdraw(x).
Clearly, deposit operations commute with each other, while withdraw
operations do not, neither with each other nor with deposit operations.?
Let M geposit denote the set of messages that carry a deposit operation,
and M ithdraw the set of messages that carry a withdraw operation. This
leads to the following conflict relation Caccount:

/ /
CAaccount = { (m7 m) i m € Muyjithdraw OF M € Mwithdraw}-

Generic Broadcast with the Cccount conflict relation for broadcasting the
invocation of deposit and withdraw operations to the replicated Account
object defines a weaker ordering primitive than Atomic Broadcast (e.g.,
messages in M geposit are not required to be ordered with each other), and
a stronger ordering primitive than Reliable Broadcast (which imposes no
order at all).

2.3 Strict Generic Broadcast Algorithm

From the specification it is obvious that any algorithm solving Atomic
Broadcast also solves any instance of the Generic Broadcast problem de-
fined by C C M x M. However, such a solution also orders messages
that do not conflict. We are interested in a strict algorithm, that is, an
algorithm that does not order two messages if not required, according to
the conflict relation C. The idea is that ordering messages has a cost (in
terms of number of messages, number of communication steps, etc.) and
this cost should be kept as low as possible. More formally, we define an al-
gorithm that solves Generic Broadcast for a conflict relation C C M x M,
denoted by A¢, strict if it satisfies the condition below.

(StricTNESS) Consider an algorithm Ae, and let RYC be the set
of runs of Ac. There exists a run R in R]cv €. in which at least two
correct processes g-Deliver two non-conflicting messages m and m/ in
a different order.

Informally, the strictness condition requires that algorithm Ac allow runs
in which the g-Deliver of non conflicting messages is not totally ordered.
However, even if Ac does not order messages, it can happen that total
order is spontaneously ensured. So we cannot require violation of total
order to be observed in every run: we require it in at least one run of Ac.

2 This is the case for instance if we consider that a withdraw(z) operation can only be
performed if the current balance is larger than or equal to x.

3 System Model and Definitions

3.1 Processes, Failures and Failure Detectors

We consider an asynchronous system composed of n processes I =
{p1,... ,pn}. Processes communicate by message passing. A process can
only fail by crashing (i.e., we do not consider Byzantine failures). Pro-
cesses are connected through reliable channels, defined by the two primi-
tives send(m) and receive(m). We assume that the asynchronous system
is augmented with failure detectors allowing to solve Consensus (e.g., the
class of failure detector .S allows Consensus to be solved if the maximum
number of failures is smaller than n/2) [2].

3.2 Delivery Latency

In the following, we introduce the delivery latency as a parameter to
measure the efficiency of algorithms solving a Broadcast problem (defined
by the primitives a-Broadcast and a-Deliver). The deliver latency is a
variation of the Latency Degree introduced in [11], which is based on
modified Lamport’s clocks [7].

— a send event and a local event on a process p do not modify p’s local
clock,
— let ts(send(m)) be the timestamp of the send(m) event, and ts(m)

. . d
the timestamp carried by message m: ts(m)) ts(send(m)) + 1,
— the timestamp of receive(m) on a process p is the maximum between
ts(m) and p’s current clock value.

The delivery latency of a message m a-Broadcast in a run R of an algo-
rithm A solving a Broadcast problem, denoted by dIf(m), is defined as the
difference between the largest timestamp of all a-Deliver(m) events (at
most one per process) in run R, and the timestamp of the a-Broadcast(m)
event in run R.

Let 7%(m) be the set of processes that a-Deliver message m in run
R, and a-Deliver,(m) the a-Deliver(m) event at process p. The deliver
latency of m in run R is formally defined as

dift(m) I max (ts(a-Deliver,(m)) — ts(a-Broadcast(m))).

peT(m)

For example, consider a broadcast algorithm where a process p, wish-
ing to broadcast a message m, (1) sends m to all processes, (2) each

process ¢ on receiving m sends an acknowledge message ACK(m) to
all processes, and (3) as soon as g receives n,. messages of the type
ACK (m), q delivers m. Let R be a run of this algorithm where only m
is broadcast. We have dI®(m) = 2.

4 Solving Generic Broadcast

4.1 Overview of the Algorithm

Processes executing our Generic Broadcast algorithm progress in a se-
quence of stages numbered 1,2, ..., k,.... Stage k terminates only if two
conflicting messages are g-Broadcast, but not g-Delivered in some stage

kK < k.

g-Delivery of non-conflicting messages. Let m be a message that is g-
Broadcast. When some process p receives m in stage k, and m does not
conflict with some other message m’ already received by p in stage k,
then p inserts m in its pendingg set, and sends an ACK(m) message to
all processes. As soon as p receives ACK (m) messages from n,.;, processes,
where

Nack = (n + 1)/27 (1)
p g-Delivers m.

g-Delivery of conflicting messages. If a conflict is detected, Consensus
is launched to terminate stage k. The Consensus decides on two sets of
messages, denoted by NCmsgSet® (NC stands for Non-Conflicting) and
CmsgSet* (C stands for Conflicting). The set NCmsgSet® U CmsgSet”
is the set of all messages that are g-Delivered in stage k. Messages in
NCmsgSetF are g-Delivered before messages in CmsgSet”, and messages
in NCmsgSet® may be g-Delivered by some process p in stage k before
p executes the k-th Consensus. The set NCmsgSet® does not contain
conflicting messages, while messages in CmsgSet* may conflict. Messages
in CmsgSet* are g-Delivered in some deterministic order. Process p starts
stage k + 1 once it has g-Delivered all messages in CmsgSet*.

Properties. To be correct, our algorithm must satisfy the following prop-
erties:

(a) If two messages m and m’ conflict, then at most one of them is g-
Delivered in stage k before Consensus.

(b) If message m is g-Delivered in stage k by some process p before Con-
sensus, then m is in the set NCmsgSetF.

(c) The set NCmsgSet® does not contain any conflicting messages.?
Property (a) is ensured by condition (1). Property (b) is ensured as fol-
lows. Before starting Consensus, every process p sends its pending;f set
to all processes (in a message of type checking, denoted by CHK), and
waits for messages of type CHK from exactly n.pr processes. Only if some
message m is at least in [(nqpr + 1)/2] messages of type CHK, then m
is inserted in majM Set’;, the initial value of Consensus that decides on
NCmsgSet”. So, if m is in less than [(n.,+1)/2] messages of type CHK,
m is not inserted in majM Set’;. Indeed, if condition

2Mqck + Nepk = 2n+ 1 (2)

holds, then m could not have been g-Delivered in stage k£ before Consen-
sus. To understand why, notice that from (2), we have

(n = nenk) + [(Menr +1)/2] < nger, (3)

where (n —nepi) is the number of processes from which p knows nothing.
From (3), if m is in less than [(nenx +1)/2] messages of type CHK, then
even if all processes from which p knows nothing had sent AC K (m), there
would not be enough AC K (m) messages to have m g-Delivered by some
process in stage k before Consensus.

Property (c) is ensured by the fact that m is inserted in majM Set’;
only if m is in at least [(n.nr + 1)/2] messages of type CHK received by
p (majority condition). Let m and m’ be two messages in majM Set’;.
By the majority condition, the two messages are in the pendz’ngéC set of
at least one process ¢. This is however only possible if m and m’ do not
conflict.

Minimal number of correct processes. Our Generic Broadcast algorithm
waits for n,.; messages before g-Delivering non-conflicting messages, and
nenk messages if a conflict is detected before starting Consensus. So our
algorithm requires max(ngek, Nepx) correct processes. The minimum of
this expression happens to be (2n + 1)/3, when ngep = nepg-

3 Property (c) does not follow from (a) and (b). Take for example two messages m and
m/ that conflict, but are not g-Delivered in stage k& without the cost of Consensus:
neither property (a), nor property (b) applies.

4.2 The Generic Broadcast Algorithm

Provided that the number of correct processes is at least max(ngck, Nenk)s
Nack > (n+1)/2, and 2n40 + nepk > 2n + 1, Algorithm 1 solves Generic
Broadcast for any conflict relation C. All tasks in Algorithm 1 execute
concurrently, and Task 3 has two entry points (lines 12 and 31). Process
p in stage k manages the following sets.

— R_delivered,: contains all messages R-delivered by p up to the current
time,

— G_delivered,: contains all messages g-Delivered by p in all stages k' <
k7

— pending}’;: contains every message m such that p has sent an ACK
message for m in stage k up to current time, and

— local N C’g_Delz’ver{j: is the set of non conflicting messages that are
g-Delivered by p in stage k, up to the current time (and before p
executes the k-th Consensus).

When p wants to g-Broadcast message m, p executes R-broadcast(m)
(line 8). After R-delivering a message m, the actions taken by p depend on
whether m conflicts or not with some other message m’ in R_delivered,, \
G _delivered,.

No conflict. If no conflict exists, then p includes m in pendinggj (line 14),
and sends an AC'K message to all processes, acknowledging the R-deliver
of m (line 15). Once p receives ngp ACK messages for a message m
(line 31), p includes m in local NCg_Deliverk (line 35) and g-Delivers m
(line 36).

Conflict. In case of conflict, p starts the terminating procedure for stage k.
Process p first sends a message of the type (k,pendingg,CH K) to all
processes (line 17), and waits the same information from exactly n.px
processes (line 18). Then p builds the set majM Sety (line 20).* It can
be proved that majM Set’; contains every message m such that for any
process g, m € localNC’g_Deliver(’;. Then p starts consensus (line 21)
to decide on a pair (NCmsgSetk, CmsgSet*) (line 22). Once the deci-
sion is made, process p first g-Delivers (in any order) the messages in
NCmsgSet” that is has not g-Delivered yet (lines 23 and 25), and then p
g-Delivers (in some deterministic order) the messages in CmsgSet” that it
has not g-Delivered yet (lines 24 and 26). After g-Delivering all messages
decided in Consensus execution k, p starts stage k + 1 (lines 28-30).

Y majMSety = {m : |ChkE(m)| > (nenr + 1)/2}

Algorithm 1 Generic Broadcast

1: Initialisation:
2. R.delivered « ()
3. G_delivered — ()
4: k1
5. pending' — 0
6: localNCg_Deliver' «— ()
7: To execute g-Broadcast(m): {Task 1}
8 R-broadcast(m)
9: g-Deliver(—) occurs as follows:
10: when R-deliver(m) {Task 2}
11: R_delivered < R_delivered U {m}
12: when (R_delivered \ G_delivered) \ pending® # 0 {Task 3}
13: if | for all m,m’ € R_delivered \ G_delivered, m #m’' : (m,m’) & Conflict |
then
14: pending® — R_delivered \ G_delivered
15: send(k, pending®, ACK) to all
16: else
17: send(k, pending®, CHK) to all
18: wait until [for ncar processes q : p received (k, pending{;, CHK) from q |
19: #Define Chk®(m) = {q : p received (k, pending(’;, CHK) from q and
m € pending¥}
20: majMSet® «— {m : |Chk*(m)| > [(nenr +1)/2]}
21: propose(k, (majMSet®, (R_delivered \ G _delivered) \ majM Set*))
22: wait until decide(k, (NCmsgSet®, CmsgSet*))
23: NCg_Deliver® « (NCmsgSet® \ local NCg_Deliver®) \ G_delivered
24: Cg_Deliver*® — CmsgSet® \ G_delivered
25: g-Deliver messages in NCg_Deliver® in any order
26: g-Deliver messages in C'g_Deliver® using some deterministic order
27: G _delivered — (local NCg_Deliver® U NCg_Deliver® U Cg_Deliver®)u
G_delivered
28: k—k+1
29: pending® — 0
30: local NCg_Deliver® — (
31: when receive(k, pending?,ACK) from ¢
32: #Define Ack*(m) = {q : p received (k, pendingf;, ACK) from ¢ and
m € pending¥}
33: ackMSet® — {m : |Ack®*(m)| > nacs}
34: localNCmsgSet® «— ackM Set® \ (G_delivered U NCmsgSet¥)
35: local NCyg_Deliver® «— local NCg_Deliver® U local NC'msgSet®
36: g-Deliver all messages in localNCmsgSet® in any order

4.3 Proof of Correctness

Due to space limitations, we have only included some of the proofs in this
section. All proofs (Agreement, Partial Order, Validity, and Integrity)
can be found in [9]. In the following, we prove that the three properties
((a)-(c)) presented in Section 4.1 hold.

Lemma 1 states that the set pending® does not contain conflicting
messages. It is used to prove Lemmata 2 and 5 below.

Lemma 1. For any process p, and all k > 1, if messages m and m' are
m pendingg, then m and m' do not conflict.

PROOF: Suppose, by way of contradiction, that there is a process p, and
some k > 1 such that m and m/ conflict and are in pending;f. Since m and
m/ are in pendz’ng]],f, p must have R-delivered m and m/. Assume that p
first R-delivers m and then m’. Thus, there is a time ¢ after p R-delivers m’
such that p evaluates the if statement at line 13, and m’ € R_delivered,,
m' ¢ G_delivered,, and m' ¢ pendingg. At time t, m € R_delivered,
(by the hypothesis m is R-delivered before m’), and m ¢ G_delivered, (if
m € G_delivered, from lines 27-29 m and m’ cannot be both in pending}’;).
Therefore, when the if statement at line 13 is evaluated, m and m’ are
in R_delivered \ G_delivered, and since m and m’ conflict, the condition
evaluates false, and m’ is not included in pending’;, a contradiction that
concludes the proof. |

Lemma 2 proves property (a).

Lemma 2. If two messages m and m' conflict, then at most one of them
is g-Delivered in stage k before Consensus.

PROOF: The proof is by contradiction. Assume that there are two mes-
sages m and m’ that conflict and are g-Delivered in stage k before Con-
sensus. Without lack of generality, consider that m is g-Delivered by pro-
cess p, and m’ is g-Delivered by process q. From the Generic Broad-
cast algorithm (lines 31-36), p (q) has received n,. messages of the type
(k, pending®, ACK) such that m € pending® (m’ € pending”). Since
Ngek > (n + 1)/2, there must be a process r that sends the message
(k,pendingF, ACK) to processes p and ¢, such that m and m’ are in
pending®, contradicting Lemma 1. O

Lemma 3 relates (1) the set Ack¥(m) of processes that send an ac-
knowledgement for some message m in stage k and (2) the set C’hk’; of

processes from which some process p receives CHK messages in stage
k, with (3) the set Chk}(m) of processes from which p receives a CHK
message containing m in stage k.

Lemma 3. Let Ack(m) be a set of processes that execute the statement
send(k, pending®, ACK) (line 15) in stage k with m € pending®, and
let Chk;f be the set of processes from which some process p receives mes-
sages of the type (k,pending®, CHK) in stage k (line 18). If Ack*(m) >
nack,C’hk’; > Nepk, and 2Nger + Nepre > 2n + 1, then there are at least
[(nenk + 1)/2] processes in Chkk(m) et Chkl 0 Ackk(m).

PROOF: We prove the contrapositive, that is, if |ChEE(m)| < [(nenr +
1)/2] then |Ack¥(m)| < nge. From the definitions of Ack®(m) and
ChEF(m), it follows that [Ack¥(m)| < (n — newr) + [Chkl(m)] (1). To
see why, notice that set Chk;f(m) contains all processes from set Chk’;
that sent an acknowledgement message for m. Process p does not know
anything about the remaining processes in II \ C’hk{;’, but even if all of
them acknowledged message m, the number of acknowledges is at most
equal to (n — nepk).

From (1) and the fact that [ChE(m)| < [(new + 1)/2], we have
|Ack®(m)| — (n—nenk) < [ChEE(m)| < [(nepe +1)/2]. Thus, (n—nepe) >
|A0kk(m)| - Rnchk + 1)/21 (2) From 2ngc, + nenr > 2n + 1, and the
fact that ngek, nenk, and n are integers, we have that (n — negy) <
Nack — [(Menk +1)/2] (3). Therefore, from (2) and (3), we conclude that
|Ack®(m)| < ngek- O

Lemma 4 proves property (b) presented in Section 4.1. It states that
any message g-Delivered by some process g during stage k, before ¢ exe-
cutes Consensus in stage k will be included in the set NCmsgSet® decided
by Consensus k.

Lemma 4. For any two processes p and q, and all k > 1, if p executes
decide(k, (NCmsgSetF, —)), then localNC’g_Deliver(’; C NCmsgSet*.

PROOF: Let m be a message in localNC’g_Deliver(’;. We first show that if p
executes the statement propose(k, majMSet’;, —)), thenm € majMSet’;.
Since m € local N C’g_DeliveT’;, q must have received n,., messages of the
type (k,pending®, ACK) (line 31) such that m € pending®. Thus, there
are nger processes that sent m to all processes in the send statement at
line 15. From Lemma 3, Chk¥(m) > (n +1)/2, and so, from the algo-
rithm line 20, m € majM Set’;. Therefore, for every process q that exe-

cutes propose(k, (majMSet’;, —)), m¢€ majMSet’;. Let (NCmsgSet®, —)
be the value decided on Consensus execution k. By the uniform validity of
Consensus, there is a process 7 that executed propose(k, (majM Setk, —))
such that NCmsgSet® = majM Set¥, and so, m € NCmsgSet*. O

Lemma 5 proves property (c).

Lemma 5. If two messages m and m' conflict, then at most one of them
is in NCmsgSet*.

PROOF: The proof is by contradiction. Assume that there are two mes-
sages m and m’ that conflict, and are both in NCmsgSet*. From the
validity property of Consensus, there must be a process p that exe-
cutes propose(k, (majMSet’;, —)), such that NCmsgSetF = majMSet’;.
Therefore, m and m’ are in majM Set’;, and from the algorithm, p re-
ceives [(nenr +1)/2] messages of the type (k, pending®, CHK) such that
m is in pending®, and p also receives [(nqui +1)/2] messages of the type
(k, pending®, CHK) such that m' is in pending®. Since p waits for n.
messages of the type (k,pendingk,CH K), there must exist at least one
process ¢ in Chk]’,f such that m and m' are in pending’;, contradicting
Lemma 1. O

4.4 Strictness and Cost of the Generic Broadcast Algorithm

Proposition 5 states that the Generic Broadcast algorithm of Section 4.2
is a strict implementation of Generic Broadcast.

Proposition 5. Algorithm 1 is a strict Generic Broadcast algorithm.

We now discuss the cost of our Generic Broadcast algorithm. Our
main result is that for messages that do not conflict, the Generic Broad-
cast algorithm can deliver messages with a delivery latency equal to 2,
while for messages that conflict, the delivery latency is at least equal
to 4. Since known Atomic Broadcast algorithms deliver messages with
a delivery latency of at least 3,° this results shows the tradeoff of the
Generic Broadcast algorithm: if messages conflict frequently, our Generic
Broadcast algorithm may become less efficient than an Atomic Broadcast
algorithm, while if conflicts are rare, then our Generic Broadcast algo-
rithm leads to smaller costs compared to Atomic Broadcast algorithins.

5 An exception is the Optimistic Atomic Broadcast algorithm [8], which can deliver
messages with delivery latency equal to 2 if the spontaneous total order property
holds.

Propositions 6 and 7 assess the cost of the Generic Broadcast algo-
rithm when messages do not conflict. In order to simplify the analysis of
the delivery latency, we concentrate our results on runs with one message
(although the results can be extended to more general runs). Proposi-
tion 6 defines a lower bound on the delivery latency of the algorithm,
and Proposition 7 shows that this bound can be reached in runs where
there are no process failures. We consider a particular implementation of
Reliable Broadcast that appears in [2].9

Proposition 6. Assume that Algorithm 1 uses the Reliable Broadcast
implementation presented in [2]. If R¢ is a set of runs generated by Al-
gorithm 1 such that m is the only message g-Broadcast and g-Delivered
in runs in Re, then there is no run R in Re where diff(m) < 2.

Proposition 7. Assume that Algorithm 1 uses the Reliable Broadcast
implementation presented in [2]. If Re is a set of runs generated by Al-
gorithm 1, such that in runs in Re, m is the only message g-Broadcast
and g-Delivered, and there are no process failures, then there is a run R
in Re where dift(m) = 2.

The results that follow define the behaviour of the Generic Broadcast
algorithm in runs where conflicting messages are g-Broadcast. Proposi-
tion 8 establishes a lower bound for cases where messages conflict, and
Proposition 9 shows that the best case with conflicts can be reached when
there are no process failures nor failure suspicions.

Proposition 8. Assume that Algorithm 1 uses the Reliable Broadcast
implementation presented in [2], and the Consensus implementation pre-
sented in [11]. Let R¢ be a set of runs generated by Algorithm 1, such
that m and m’ are the only messages g-Broadcast and g-Delivered in Re.
If m and m’ conflict, then there is no run R in Re¢ where dift(m) < 4
and dIf(m’) < 4.

Proposition 9. Assume that Algorithm 1 uses the Reliable Broadcast
implementation presented in [2], and the Consensus implementation pre-
sented in [11]). Let Re be a set of runs generated by Algorithm 1, such
that m and m' are the only messages g-Broadcast and g-Delivered in Re,
and there are no process failures nor failure suspicions. If m and m’ con-
flict, then there is a run R in Re where m is g-Delivered before m' and
dI®(m) =2 and dIf(m') = 4.

6 Whenever a process p wants to R-broadcast a message m, p sends m to all processes.
Once a process g receives m, if ¢ # p then ¢ sends m to all processes, and g R-delivers
m.

5 Related Work

Group communication aim at extending traditional one-to-one communi-
cation, which is insufficient in many settings. One-to-many communica-
tion is typically needed to handle replication (replicated data, replicated
objects, etc.). Classical techniques to manage replicated data are based
on voting and quorum systems (e.g., [3, 5, 6] to cite a few). Early quorum
systems distinguish read operations from write operations in order to al-
low for concurrent read operations. These ideas have been extended to
abstract data types in [5]. Increasing concurrency, without compromis-
ing the strong consistency guarantees on replicated data, is a standard
way to increase the performance of the system. Lazy replication [10] is
another approach that aims at increasing the performance by reducing
the cost of replication. Lazy replication also distinguishes between read
and write operations, and relaxes the requirement of total order delivery
of read operations. Consistency is ensured at the cost of managing times-
tamps outside of the set of replicated servers; these timestamps are used
to ensure Causal Order delivery on the replicated servers.

Our approach also aims at increasing the performance of replication by
increasing concurrency in the context of group communication. Similarly
to quorum systems, our Generic Broadcast algorithm allows for concur-
rency that is not possible with traditional replication techniques based on
Atomic Broadcast. From this perspective, our work can be seen as a way
to integrate group communications and quorum systems. There is even a
stronger similarity between quorum systems and our Generic Broadcast
algorithm. Our algorithm is based on two sets: an acknowledgement set
and a checking set.” These sets play a role similar to quorum systems.
However, quorum systems require weaker conditions to keep consistency
than the condition required by the acknowledgement and checking sets.®
Although the reason for this discrepancy is very probably related to the
guarantees offered by quorum systems, the question requires further in-
vestigation.

6 Conclusions

The paper has introduced the Generic Broadcast problem, which is de-
fined based on a conflict relation on the set of messages. The notion of

7 Used respectively for g-Delivering non-conflicting messages during a stage, and de-
termining non-conflicting messages g-Delivered at the termination of a stage.

8 Let n, be the size of a read quorum, and n., the size of a write quorum. Quorum
systems usually requires that n, + n, > n + 1.

conflict can be derived from the semantic of the messages. Only conflicting
messages have to be delivered by all processes in the same order. As such,
Generic Broadcast is a powerful message ordering abstraction, which in-
cludes Reliable and Atomic Broadcast as special cases. The advantage of
Generic Broadcast over Atomic Broadcast is a cost issue, where cost is
defined by the notion of delivery latency of messages.

On a different issue, our Generic Broadcast algorithm uses mecha-
nisms that have similarities with quorum systems. As future work it
would be interesting to investigate this point to better understand the
differences between replication protocols based on group communication
(e.g., Atomic Broadcast, Generic Broadcast) and replication protocols
based on quorum systems.

Finally, as noted in Section 4.1, our Generic Broadcast algorithm re-
quires at least (2n + 1)/3 correct processes. Such a condition is usual in
the context of Byzantine failures, but rather surprising in the context of
crash failures.

References

1. K. Birman and T. Joseph. Reliable Communication in the Presence of Failures.
ACM Transactions on. Computer Systems, 5(1):47 76, February 1987.

2. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, March 1996.

3. D.K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the 7th
Symposium on Operating Systems Principles, pages 150—159, December 1979.

4. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In
Distributed Systems, chapter 5. Addison Wesley, second edition, 1993.

5. M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types.
ACM Transactions on. Computer Systems, 4(1):32 53, February 1986.

6. S. Jajodia and D. Mutchler. Dynamic Voting. In Proc. of the ACM SIGMOD Int.
Conference on Management of Data, pages 227-238, May 1987.

7. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558 565, July 1978.

8. F. Pedone and A. Schiper. Optimistic Atomic Broadcast. In Proc. of 12th Inter-
national Symposium on Distributed Computing, pages 318-332, September 1998.

9. F. Pedone and A. Schiper. Generic broadcast. Technical Report SSC/1999/012,
EPFL, Communication Systems Department, April 1999.

10. S. Ghemawat R. Ladin, B. Liskov. Providing High Availability Using Lazy Repli-
cation. ACM Transactions on Computer Systems, 10(4):360-391, November 1992.

11. A. Schiper. Early consensus in an asynchronous system with a weak failure detec-
tor. Distributed Computing, 10(3):149 157, 1997.

12. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

