Optimistic Atomic Broadcast*

Fernando Pedone and André Schiper

Département d’Informatique
Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland

Abstract. This paper presents an Optimistic Atomic Broadcast algo-
rithm (OPT-ABcast) that exploits the spontaneous total order message
reception property experienced in local area networks, in order to allow
fast delivery of messages. The OPT-ABcast algorithm is based on the Op-
timistic Consensus problem (OPT-Consensus) that allows processes to
decide optimistically or conservatively. A process optimistically decides
if it knows that the spontaneous total order message reception property
holds, otherwise it decides conservatively. We evaluate the efficiency of
the OPT-ABcast and the OPT-Consensus algorithms using the notion
of latency degree.

1 Introduction

Atomic Broadcast is a useful abstraction for the development of fault
tolerant distributed applications. Understanding the conditions under
which Atomic Broadcast is solvable is an important theoretical issue that
has been investigated extensively. Solving Atomic Broadcast efficiently is
also an important and highly relevant pragmatic issue. We consider in
this paper an Optimistic Atomic Broadcast algorithm (called hereafter
OPT-ABcast), derived from the Chandra-Toueg Atomic Broadcast algo-
rithm [4] (called hereafter CT-ABcast), which allows processes, in certain
cases, to deliver messages fast. The idea of our OPT-ABcast algorithm
stems from the observation that, with high probability, messages broad-
cast in a local area network are received totally ordered. We call this
property spontaneous total order message reception.! Our algorithm ex-
ploits this observation: whenever the spontaneous total order reception
property holds, the OPT-ABcast algorithm delivers messages fast.
Similarly to Chandra-Toueg Atomic Broadcast algorithm, our OPT-
ABcast algorithm is also based on a reduction to the Consensus problem.

* Research supported by the EPFL-ETHZ DRAGON project and OFES under con-
tract number 95.0830, as part of the ESPRIT BROADCAST-WG (number 22455).

! Spontaneous total order reception occurs for example with very high probability
when network broadcast or IP-multicast are used.

However, the classical Consensus problem is not the right abstraction
to use in the context of the OPT-ABcast algorithm. This led us to the
specification of the Optimistic Consensus problem (called hereafter OPT-
Consensus). In the OPT-Consensus problem a process can take up to two
decisions: (1) an optimistic decision, and (2) a conservative solution. The
two decisions are not necessarily the same. A process can decide only
optimistically, or both optimistically and conservatively, or only conser-
vatively. The details of the specification of the OPT-Consensus problem
are given in Section 5. In our OPT-ABcast algorithm, the consensus deci-
sions are optimistic whenever the spontaneous total order reception prop-
erty holds, and the run is failure free and suspicion free. The efficiency
of our OPT-ABcast algorithm is related to an optimistic decision of the
underlying OPT-Consensus problem. We evaluate the efficiency of our
OPT-ABcast algorithm using the notion of latency degree introduced in
[13].

The rest of the paper is structured as follows. Section 2 describes
some related work. Section 3 is devoted to the system model and to the
definition of latency degree. In Section 4 we give an overview of the OPT-
ABcast algorithm and of the OPT-Consensus problem. In Section 5 we
specify the OPT-Consensus problem and give an algorithm that solves the
problem. Section 6 describes the OPT-ABcast algorithm. We conclude in
Section 7. Due to space limitations, all proofs have been omitted. They
can be found in [12].

2 Related Work

The paper is at the intersection of two issues: (1) Atomic Broadcast al-
gorithms, and (2) optimistic algorithms.

The literature on Atomic Broadcast algorithms is abundant (e.g., [1],
(3], [4], [5], [6], [8], [11], [14]). However, the multitude of different models
(synchronous, asynchronous, etc.) and assumptions needed to prove the
correctness of the algorithms renders any fair comparison difficult. We
base our solution on the Atomic Broadcast algorithm as presented in [4]
because it provides a theoretical framework that permits to develop the
correctness proofs under assumptions that are realistic in practical system
(i.e., unreliable failure detectors).

Optimistic algorithms have been widely studied in transaction con-
currency control ([9,2]). To our knowledge, there has been no attempt,
prior to this paper, to introduce optimism in the context of agreement
algorithms. The closest to the idea presented in the paper is [7], where

the authors reduce the Atomic Commitment problem to Consensus and,
in order to have a fast decision, exploit the following property of the Con-
sensus problem: if every process starts Consensus with the same value v,
then the decision is v. This paper presents a more general idea, and does
not require that all the initial values be equal. Moreover, we have here the
trade-off of typical optimistic algorithms: if the optimistic assumption is
met, there is a benefit (in efficiency), but if the optimistic assumption is
not met, there is a loss (in efficiency).

3 System Model and Definitions

3.1 System Model

We consider an asynchronous system composed of n processes Il =
{p1,-..,pn}. Processes communicate by message passing. A process can
only fail by crashing (i.e., we do not consider Byzantine failures). Pro-
cesses are connected through reliable channels, defined by the two prim-
itives send(m) and receive(m).

We assume causal order delivery for a subset of the messages.? We dis-
tinguish two types of messages, denoted by M and M. Causal order
delivery is ensured only for messages of type M. Causal order is defined
by the send(m) primitive and the CO-deliver(m) primitive. If m; and my
are two messages of type Mg sent to the same destination process p;,
and send(m1) — send(mgz), then CO-deliver(m,) — CO-deliver(msy),
where — is the happened before relation [10]. In order to simplify the no-
tation, we rename the CO-deliver(m) primitive to receive(m). So, if m;
and mo are two messages of type Mo sent to the same destination pro-
cess p;, and send(mq) — send(ms), we have receive(my) — receive(ms).

Each process p has access to a local failure detector module that pro-
vides (possibly incorrect) information about the processes that are sus-
pected to have crashed. A failure detector may make mistakes, that is, it
may suspect a process that has not failed or never suspect a process that
has failed. Failure detectors have been classified according to the mistakes
they can make [4]. We consider in the paper the class of Eventually Strong
failure detectors, denoted by ©S.

%2 Causal order simplifies the presentation of the OPT-ABcast algorithm. However,
OPT-ABcast can also be implemented with an algorithm that does not need causal
order.

3.2 Reliable Broadcast and Atomic Broadcast

We assume the existence of a Reliable Broadcast primitive, defined by R-
broadcast(m) and R-deliver(m). Reliable Broadcast satisfies the follow-
ing properties [4]: (i) if a correct process R-broadcasts a message m, then
it eventually R-delivers m (walidity), (ii) if a correct process R-delivers
a message m, then all correct processes eventually R-deliver m (agree-
ment), and (iii) for every message m, every process R-delivers m at most
once, and only if m was previously R-broadcast by sender(m) (uniform
integrity). We assume that the execution of R-broadcast(m) results in the
execution of send(m) to every process p.

Atomic Broadcast is defined by A-broadcast(m) and A-deliver(m).
In addition to the properties of Reliable Broadcast, Atomic Broadcast
satisfies the total order property [4]: if two correct processes p and g A-
deliver two messages m and m/, then p A-delivers m before m/' if and only
if ¢ A-delivers m before m/.

3.3 Latency Degree

The latency degree has been introduced in [13] as a measure of the effi-
ciency of a distributed algorithm. It has been defined based on a slight
variation of Lamport’s clocks [10]:

— a send event and a local event on a process p; do not modify p;’s local
clock;
— let ts(send(m)) be the timestamp of the send(m) event, and ts(m)

the timestamp carried by message m: ts(m) < ts(send(m)) + 1;
— the timestamp of receive(m) on a process p; is the maximum between
ts(m) and p;’s current clock value.

With this definition, the latency of a run R of an algorithm Ap solving
an agreement problem P is defined as the largest timestamp of all decide
events (at most one per process) of run R. The latency degree of algorithm
Ap is defined as the minimum latency over all the runs that can be
generated by the algorithm Ap. The minimal latency is obtained in failure
free and suspicion free runs.

We consider in the paper the Atomic Broadcast problem. To define
the latency degree of Atomic Broadcast we assume that every process p;
A-broadcasts only one single message, and that A-broadcast is the first
event of process p;.

4 Overview of the Results

4.1 OPT-Consensus Problem

Similarly to the Chandra-Toueg Atomic Broadcast algorithm, our OPT-
ABcast algorithm is based on a reduction to the Consensus problem [4].
However, the classical Consensus problem is not adequate here: we need
a Consensus that, under certain (problem dependent) conditions, allows
processes to decide fast, even if without the guarantee that all processes
decide on the same value. We call this Consensus the OPT-Consensus
problem. We formalise the OPT-Consensus problem by introducing the
notion of optimistic and conservative decisions, where the optimistic de-
cision is the fast one. A process p; can decide optimistically if it knows
that a certain condition is satisfied (evaluating this condition requires
the knowledge about the initial values of all processes; however, it does
not necessarily require that all the initial values be identical). If a pro-
cess p; cannot decide optimistically, then p; decides conservatively. The
optimistic and the conservative decisions can be different, but are related.

The details of the specification of the OPT-Consensus problem are
given in Section 5.1.3 In Section 5.2, we show that the Chandra-Toueg
consensus algorithm using ¢S can, with minor modifications, evaluate
the condition that allows the fast decision and solve the OPT-Consensus
problem.

4.2 OPT-ABcast Algorithm

The Chandra-Toueg Atomic Broadcast algorithm is based on a Reliable
Broadcast and on a sequence of consensus problems, where the initial
value of each consensus is a set of messages (i.e., the decision of each
consensus is a set of messages). Our OPT-ABcast algorithm is based on
a Reliable Broadcast and on a sequence of OPT-Consensus problems,
where the initial value of each consensus is a sequence of messages (i.e.,
the decision of each OPT-Consensus problem is a sequence of messages).
The initial value of process p; for the OPT-Consensus depends on the
order in which the messages that are Atomically Broadcast are received
(more precisely, R-delivered) by p;.

Consider the k-th OPT-Consensus problem, and let v¥ be the initial
value of p;. The optimistic decision is possible whenever all the sequences

3 The OPT-Consensus problem is defined with the optimistic Atomic Broadcast algo-
rithm in mind, but we believe that it can be used to solve other problems, where
assumptions about the values proposed by the processes can be made. For lack of
space we do not further develop this statement in the paper.

’UZI-C (1 <4 < n) have a non empty common prefix. If a process p; decides
optimistically, the optimistic decision is the longest common prefix. If a
process p; decides conservatively, the conservative decision is an initial
value. So, an optimistic decision is a prefix of a conservative decision.
In other words, the fact that an optimistic decision is different from a
conservative decision does not lead to the violation of the properties of
Atomic Broadcast.

The performance of our OPT-ABcast algorithm is directly related to
an optimistic decision of the OPT-Consensus algorithm, which depends
on the order of reception (more precisely, the order of R-delivery) of the
messages that are Atomically Broadcast. We show in Section 6.4 that,
in failure free and suspicion free runs, if messages are spontaneously R-
delivered in the same order at all processes, then all the OPT-Consensus
algorithms terminate with an optimistic decision. Furthermore, if the
spontaneous ordering property does not hold for a while, then as soon
as the property holds again, all OPT-Consensus problems again termi-
nate with an optimistic decision.

4.3 Latency Degree of the OPT-ABcast Algorithm

The latency degree of the OPT-ABcast algorithm is given by Lopr 4 =
Lgp + Lopr_c, where Lpp is the latency degree of the Reliable Broad-
cast algorithm and Lopr_¢ is the latency degree of the OPT-Consensus
algorithm.

The OPT-Consensus algorithm given in Section 5.2 is such that the
latency of an optimistic decision is equal to 2, and the latency of a conser-
vative decision is at least equal to 4. Therefore, the latency degree of our
OPT-ABcast algorithm is equal to Lrp+2. By comparison, the Chandra-
Toueg Consensus algorithm, using the failure detector ¢S, has latency
degree of 4, but a trivial optimisation leads to a latency degree of 3. This
results in a latency degree of Lrp + 3 for the CT-ABcast algorithm.

The latency degree of the OPT-ABcast algorithm can even be reduced
by considering another algorithm for solving OPT-Consensus. If, instead
of deriving the OPT-Consensus algorithm from the Chandra-Toueg con-
sensus algorithm, we derive it from the Early Consensus algorithm [13],
we get an OPT-Consensus algorithm such that the latency of an opti-
mistic decision is equal to 1, and the latency of a conservative decision
is at least equal to 3. So the latency degree of the overall OPT-ABcast
algorithm is equal to Lgp + 1.

5 The Optimistic Consensus Problem

5.1 Problem Definition

The Optimistic Consensus problem is defined in terms of the primitive
propose(v, fopt) and the primitives decide(OPT,v) and decide(CSV,v).
The propose primitive has two parameters: an initial value v (the initial
value of p; is denoted by v;), and a function fo, : V* — V U L, where
v eV and L €V (the function f,p; is the same for all processes). The
primitive decide(OPT,v) corresponds to an “optimistic” decision, and
the primitive decide(C SV, v) corresponds to a “conservative” decision. A
process can decide both optimistically and conservatively, and the two
decisions can be different. The Optimistic Consensus problem is specified
as follows.

— Termination. Every correct process eventually decides optimistically
or conservatively. If a process conservatively decides, then all correct
processes also eventually conservatively decide.

— Uniform Integrity. No process can optimistically decide more than
once and no process can conservatively decide more than once. More-
over, no process can decide optimistically after having decided con-
servatively.

— Uniform Validity. If a process p conservatively decides v then v was
proposed by some process. If a process optimistically decides v then
Jopt(Vi,-..,vp) # L and v = fope(v1,...,v,).

— Uniform Conservative Agreement. No two processes conservatively de-
cide differently.

The Termination condition requires that if some process decides con-
servatively, then every correct process also decides conservatively. This
is not true for the optimistic decision: some processes might decide op-
timistically and others not. So, some processes may decide twice (once
optimistically and once conservatively), while other processes decide only
once (conservatively). The above specification allows, for example, the
following runs: (1) all the correct processes decide optimistically, and no
process decides conservatively, or (2) some processes decide optimistically
and all correct processes decide conservatively, or (3) no process decides
optimistically and all correct processes decide conservatively.

Furthermore, it follows from the Uniform Validity condition that no
two processes optimistically decide differently. This is because an opti-
mistic decision is computed by the function foy; over all proposed values.
Thus we have the following result.

Lemma 1. (UNIFORM OPTIMISTIC AGREEMENT). No two processes op-
timistically decide differently.

5.2 The OPT-Consensus Algorithm

Algorithm 1 solves the OPT-Consensus problem using any Eventual Strong
failure detector D € ¢S and assuming a majority of correct processes.

The algorithm is very similar to Chandra-Toueg’s Consensus algorithm [4]:

the mainly difference is in Phase 2 of the algorithm, and in the task re-

sponsible for the decision. However, the advantage of the OPT-Consensus

algorithm is that it has a latency degree of 2, whereas the Chandra-Toueg

Consensus algorithm has a latency degree of 3. A run with latency 2

happens whenever all processes can decide optimistically and no process

decides conservatively. The OPT-Consensus algorithm works as follows:

1. In Phase 2 of the first round, the coordinator waits either (1) for es-
timates from a majority of participants if some process is suspected,
or (2) for the estimates from all participants if no participant is sus-
pected.

2. If all estimates are received, the coordinator applies the function f,,;
over them. Let tmp, be the value returned by fo,. If tmp, # L, then
tmp, is the optimistic decision, and the coordinator R-broadcasts the
message (OPT, —, —,tmp,, decide).

3. A process that R-delivers the message (OPT, —, —, estimate, decide)
optimistically decides estimate.

4. If not all the estimates are received by the coordinator (item 2 above),
the execution proceeds as in Chandra-Toueg’s algorithm. In this case,
the decision is conservative, and the latency is at least equal to 4.

The messages in the OPT-Consensus algorithm that are issued using
the send primitive are of type M (see Section 3.1). The messages in the
OPT-Consensus algorithm that are issued using the R-Broadcast primi-
tive (R-Broadcast of the optimistic or conservative decisions) are of type
Mco. We come back to this issue in Section 6.2 when discussing the
reduction of Atomic Broadcast to OPT-Consensus.

5.3 Proof of Correctness

Lemma 2. No process remains blocked forever in the wait statement of
Phase 2 in the OPT-Consensus algorithm.

Theorem 1. If f < n/2, the OPT-Consensus algorithm solves the OPT-
Consensus problem using a failure detector of class ©S.

Algorithm 1 OPT-consensus algorithm

procedure propose(vyp, fopt)

estimate, < vp

OPTstate, < undecided

CSVstatep < undecided

rp 0

tsp <0

while OPTstate, = undecided and CSVstate, = undecided do
rp—Trp+1
cp < (rp modn) +1
send (p, 7y, estimate,, tsp) to cp
if p = ¢, then

{Phase 1}
{Phase 2}

(n+1)/2] g: received(q, rp, estimatey, tsq) from g and
[Vq: received(q, Tp, estimateq, tsq) from q or D, # 0 |
msgs,[rp] < {(g, Tp, estimate,,tsy) | p received (g, rp, estimateq,ts,) from g}
if Vg, (q,p, estimateq, tsy) € msgs,[rp] and ts, = 0 then
tmp, < f(all estimates)
if tmp, #1 then
R-broadcast(OPT, p, rp, tmp,, decide)
return from procedure
t < largest ts, such that (g,7p, estimateq, tsy) € msgs,,[rp]
estimate, < select one estimateq such that (g, rp, estimateq,t) € msgs [rp)
send (p, rp, estimatep) to all
wait until [received (cp, 7p, estimate.,) from ¢, or ¢, € Dp) {Phase 3}
if [received (cp,7p, estimate.,) from ¢;] then
estimatep < estimatec,
tsp < Tp
send (p, rp, ack) to ¢p
else
send (p, rp, nack) to cp
if p = ¢, then {Phase 4}

wait until [for f“’zﬁ]processes q : received (g, rp,ack) or (q,rp,nack)]

if [for [("QLl)]processes q : received (q,7p, ack)] then
R-broadcast(CSV, p,rp, estimate,, decide)
return from procedure

wait until for { [

repeat {Decision Task}

when R-deliver(decision_type, q,rq, estimate,, decide)
if decision_type = OPT then
if OPTstate, = undecided and CSVstate, = undecided then
decide(decision_type, estimateq)
OPTstate, < decided
else
if CSVstate, = undecided then
decide(C SV, estimateq)
CSVstate, < decided
until decision = CSV

5.4 Latency Degree of the OPT-Consensus Algorithm

Proposition 1. If all processes optimistically decide, the latency of the
run of the OPT-Consensus algorithm is equal to 2. If the processes con-
servatively decide, the latency is greater than or equal to 4.

Proposition 2. The OPT-Consensus algorithm has latency degree equal
to 2.

6 The Optimistic Atomic Broadcast Algorithm

6.1 Additional Notation

Our OPT-ABcast algorithm handles sequences of messages, and not sets
of messages as in the Chandra-Toueg algorithm [4]. We define some ter-
minology that will be used in Section 6.2.

A sequence s of messages is denoted by s = <mgi,ms,...>. We define
the operators @ and & for concatenation and decomposition of sequences.
Let s; and s; be two sequences of messages: s; @ s; is the sequence of all
the messages of s; followed by the sequence of all the messages of s; that
are not in s;. s; © s; is the sequence of all the messages in s; that are
not in s;. The prefiz function applied to a set of sequences returns the
longest common sequence that is a prefix of all the sequences, or the
empty sequence denoted by e.

For example, if s; = <mi,mo,m3> and s; = <my, mo, my >, then
5 @ sj = < my,mg,m3,my >, 5 ©5; = < mz >, and the function
prefiz(s;, sj) = <mi, mo>.

6.2 The OPT-ABcast Algorithm

We give now the reduction of Atomic Broadcast to OPT-Consensus (see
Algorithm 2). The reduction has similarities with the reduction proposed
by Chandra and Toueg [4], however with some additional complexity to
cope with sequences of messages and optimistic and conservative deci-
sions. When process p; A-broadcasts some message m, then p; executes
R-broadcast(m). Process p; starts the OPT-Consensus algorithm with its
initial value s; equal to the sequence of messages that it has R-delivered
(but not yet A-delivered). An optimistic decision is a non-empty prefix
over all the sequences s; (1 < i < n) of messages proposed by all the
processes p;. The function f,,; that defines an optimistic decision is as
follows:

G sy = L Predistss) i prefia(si,. . sn) # €
opt\Sly - - -5 on L otherwise

A conservative decision is a sequence s; of messages proposed by some pro-
cess p;. Multiple OPT-Consensus executions are disambiguated by pro-
cesses by tagging all the messages pertaining to the k-th OPT-Consensus
execution with the counter k.

All tasks in Algorithm 2 execute concurrently. The algorithm works
as follows for any process p.

1. When p wants to A-broadcast a message m, p executes R-broadcast(m)
(Task 1). Message m is R-delivered by Task 2 and included in the se-
quence R_delivered,.

2. If the sequence R_delivered, © A_delivered, is not empty, p executes
propose(ky, seq, fopt) in Task 3 with seq = R_delivered,©A_delivered,.
Before proceeding to the next OPT-Consensus k, + 1, p waits until
a decision (optimistic and/or conservative) for OPT-Consensus k, is
known.

3. Task 4 waits for decide. However a process does not know whether
there will be one or two decisions for any given execution of the OPT-
Consensus algorithm. Therefore if a process executes an optimistic
decide it also has to expect a conservative one. However, conservative
decisions are not mandatory, that is, a process never knows until when
it has to wait for a second decision.

This is handled by Task 4 as follows. Whenever p decides optimisti-
cally for OPT-Consensus number k,, the variable pre’ugsv is set to
kp. Task 4 then waits either a decz’de(prevgsv, —,—) (conservative
decision of the previous OPT-Consensus k, — 1) or a decide(ky, —, —)
(optimistic or conservative decision of the current OPT-Consensus
kp). Causal order delivery of messages of type Mco (see Section 3.1
and 5.2) ensures that a conservative decision of OPT-Consensus kp—1,
if any, occurs before any decision of OPT-Consensus k.

Once a sequence of messages msgS qu is decided, process p A-delivers

sequentially the messages in msgSqu that it has not A-delivered yet.

6.3 Proof of Correctness

Lemma 3. For all | > k, causal order delivery of the messages of type
Meco ensures that no process evecutes decide(l,—,—) before ezecuting

decide(k,—,—).

For the following Lemmata we define A_delifueTed’; as the sequence
of messages A-delivered by process p and decided in OPT-Consensus k.

A_delz"uered']f may contain messages included in optimistic and/or conser-
vative decisions. The sequence A_deliveredzl, b...0 A_delz"uered’; contains

all the messages delivered by process p until, and including, the messages
decided in OPT-Consensus k.

Algorithm 2 OPT-ABcast algorithm

Initialisation:
R_delivered, + €
A _delivered, < €
kp <0

prevfsv +—0

To execute A-broadcast(m): {Task 1}
R-broadcast(m)

A-deliver(—) occurs as follows:

when R-deliver(m) {Task 2}
R _delivered, + R_delivered, & {m}

when R_delivered, © A_delivered, # € {Task 3}
kp < kp+1

A_undelivered, < R_delivered, & A_delivered,

g
decision,” < unknown
propose(kp, A_undeliveredy, fopt)
wait until decision,” # unknown

when decide(kp,decz’sion_type,msgSeq’;”) or {Task 4}
cSsv
decide(prevS sV, decision_type, msgSeqﬁrev”)
let #c be equal to k, or prevf SV according to the decide executed above

A_delivery © msgSeqﬁ’&C © A_delivered,

atomically deliver messages in A_deliver] following the order in A_deliver]®
A_delivered, < A_delivered, & A_deliver}®

if decision_type = OPT then prevfsv «+ Ftc {prepare a possible csv decision}

decision?® < known

Lemma 4. For any two processes p and q, and all k > 1, if

(a) p and q decide only optimistically for OPT-Consensus k, or
(b) p and q decide only conservatively for OPT-Consensus k, or

(c) p decides optimistically and conservatively, and q decides only conser-
vatively for OPT-Consensus k, or

(d) p and q decide optimistically and conservatively for OPT-Consensus
k

then A_delivered’; = A_delivered’p“.

Lemma 5. For any two correct processes p and q, and all kK > 1, if
p A-delivers the sequence of messages A_delivered’;, then q eventually
A-delivers the sequence of messages A_delivered’,;, and A_delivered’; =
A_delz'vered’;.

Theorem 2. Algorithm 2 reduces Atomic Broadcast to OPT-Consensus.

6.4 Latency Degree of the OPT-ABcast Algorithm

Proposition 3. Let Lrp be the latency degree of Reliable Broadcast. If
every process decides only optimistically, the run of the OPT-ABcast algo-
rithm based on our OPT-Consensus algorithm has latency equal to Lrp+
2. If the decision is conservative the latency of the run of the OPT-ABcast
algorithm s greater than or equal to Lrp + 4.

Proposition 4. The OPT-ABcast algorithm based on OPT-Consensus
has latency degree equal to Lrp + 2.

It remains to discuss under what conditions the latency degree of
Lrp + 2 is obtained. Proposition 5 states that, if every message is R-
delivered in the same order at every process, then every execution of
the OPT-Consensus algorithm has only an optimistic decision (i.e., the
latency degree is Lgp + 2). This holds even if processes do not start each
OPT-Consensus with the same sequence of messages as initial value (e.g.,
p starts OPT-Consensus k with the sequence <my,mo, m3> and ¢ starts
OPT-Consensus k with the <mq,mq>).

Proposition 5. Consider a failure free and suspicion free run, and as-
sume that all the processes R-deliver the messages that are A-Broadcast
in the same order. Then for each execution of the OPT-Consensus algo-
rithm, every process decides only optimistically.

Proposition 6 states that temporary violation of the spontaneous total
ordered R-delivery of messages does not prevent future optimistic deci-
sions: after the messages are again spontaneously R-delivered in total
order, the decisions are again optimistic.

Proposition 6. Consider a failure free and suspicion free run, and as-
sume that after R-delivering the k-th message, all processes R-deliver
all messages in total order. Then, after all the first k messages are A-
delivered, for each execution of the OPT-Consensus every process decides
only optimistically.

7 Conclusion

This work originated from the pragmatic observation that messages broad-
cast in a local area network are, with high probability, spontaneously
totally ordered. Exploiting this observation to develop a fast Atomic
Broadcast algorithm turned out to be technically more difficult then we
initially expected. The difficulty has been overcome by the introduction
of the OPT-Consensus problem, with two (possibly different) decisions:
an optimistic decision and a conservative decision. The OPT-Consensus
problem abstracts the property exploited by our OPT-ABcast algorithm.

The efficiency of the OPT-ABcast algorithm has been quantified using
the notion of latency degree, introduced in [13]. The latency degree of the
OPT-ABcast algorithm has been shown to be Lrp + 2, where Lgp is the
latency degree of Reliable Broadcast. This result has to be compared with
the latency of the Chandra-Toueg Atomic Broadcast algorithm, which is
equal to Lgp + 3.

Finally, to the best of our knowledge, the OPT-ABcast algorithm is
the first agreement algorithm to exploit an optimistic condition: if the
conditions are met the efficiency of the algorithm is improved, if the con-
ditions are not met the efficiency of the algorithm deteriorates. We believe
that this opens interesting perspectives for revisiting or improving other
agreement algorithms.

References

1. Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciarfella. Fast Message
Ordering and Membership Using a Logical Token-Passing Ring. In Proceedings
of the 13th International Conference on Distributed Computing Systems, pages
551-560, May 1993.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

3. K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group
Multicast. ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, March 1996.

5. J. M. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM Transac-
tions on Computer Systems, 2(3):251-273, August 1984.

10.

11.

12.

13.

14.

H. Garcia-Molina and A. Spauster. Ordered and Reliable Multicast Communica-
tion. ACM Transactions on Computer Systems, 9(3):242-271, August 1991.

R. Guerraoui, M. Larrea, and A. Schiper. Reducing the cost for non-blocking
in atomic commitment. In Proceedings of the 16th International Conference on
Distributed Computing Systems, pages 692—-697, May 1996.

P. Jalote. Efficient ordered broadcasting in reliable csma/cd networks. In Pro-
ceedings of the 18th International Conference on Distributed Computing Systems,
pages 112-119, May 1998.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213-226, June 1981.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

S. W. Luan and V. D. Gligor. A Fault-Tolerant Protocol for Atomic Broadcast.
IEEFE Trans. Parallel & Distributed Syst., 1(3):271-285, July 90.

F. Pedone and A. Schiper. Optimistic atomic broadcast. Technical Report TR-
98/280, EPFL, Computer Science Department, 1998.

A. Schiper. Early consensus in an asynchronous system with a weak failure detec-
tor. Distributed Computing, 10(3):149-157, 1997.

U. Wilhelm and A. Schiper. A Hierarchy of Totally Ordered Multicasts. In Pro-
ceedings of the 14th IEEE Symp. on Reliable Distributed Systems, pages 106-115,
September 1995.

