
Programming Languages
Nate Nystrom
University of Lugano

Amanj Sherwany
Ilya Yanok

usi-pl-staff@googlegroups.com
http://inf.usi.ch/nystrom/teaching/pl/sp13



Who are we?

2

Amanj Sherwany Ilya YanokNate Nystrom



About me
1991–1995 Purdue: BS Computer Science, Mathematics

1996–1998 Purdue: MS Computer Science

1998–1999 Hewlett-Packard: compiler engineer

1999–2006 Cornell: PhD Computer Science

2006–2009 IBM Research PL/SE group

2009–2010 Arlington, Texas: Assistant Professor

2011–present University of Lugano: Assistant Professor

3



My research

Using programming languages to solve systems problems:

Extensibility
• Polyglot, an extensible compiler framework

• http://www.cs.cornell.edu/Projects/polyglot

• A framework for Scala compiler plugins

Concurrency and distribution and fault tolerance
• X10, a concurrent OO language for HPC

• http://www.x10-lang.org

• Firepile, a Scala library for GPU programming

• Languages for reasoning about relaxed consistency
4

http://www.x10-lang.org
http://www.x10-lang.org


Book / scribing
Types and Programming Languages
By Benjamin C. Pierce

I will not follow the book very closely

Most lectures will not use slides

Each lecture, one of you will be a scribe and take notes for the class.
(This does not mean you shouldn’t take your own notes.)

We will post the scribe notes on the web page. You should edit your 
notes for clarity and accuracy. Send the staff your notes within a week 
of the lecture so we can post them.

5



Grading

Assignments 40%
Midterm exam 25%
Final exam 25%
Scribing and participation 10%

6



Assignments

Some writing.
Some math.
Some programming, but not too much

About one homework every 7-10 days

Plus occasionally some small exercises due before the next 
lecture, usually one or two short questions

7



Website

http://inf.usi.ch/faculty/nystrom/teaching/pl/sp13/

Everything will be posted there

8

http://www.inf.usi.ch/faculty/nystrom/teaching/pl/sp13/
http://www.inf.usi.ch/faculty/nystrom/teaching/pl/sp13/


Moodle

Exists.

9



How would you like us 
to communicate with 

you?



Community

Moodle forums are an abomination unto Nuggan.

Join the G+ community for this course.
• Discuss assignments, ask questions there.
• Announcements will go there and to the web page.

Questions for the staff: usi-pl-staff@googlegroups.com

11



What do you want to 
get out of this course?



What do I want you to 
get out of this course?



What do I want you to get out of this course?

• Become familiar with different programming paradigms 
• Understand principles behind programming languages
• Apply these principles to solve “real” problems

14



What do I want you to get out of this course?

• Become familiar with different programming paradigms 
• Understand principles behind programming languages
• Apply these principles to solve “real” problems

15



Language features

We’ll look at features common across multiple languages

Variables
Functions
Eager and lazy evaluation
Mutable state (assignment)
Exotic control-flow constructs: exceptions, continuations
Typing, subtyping, polymorphism
Objects

16



Different paradigms

We’ll look at several different programming languages 
and try to distill them to their essential features

We’ll also look at how those features interact
• e.g., parametric polymorphism + subtyping = WTF!?

But, we’ll program primarily in Haskell

17



Why Haskell?



Get out of your comfort zone

19



Learning zone

20



Panic zone

21



Why Haskell?

Haskell is a pure functional language
• No assignment, no loops
• You have to think differently about programs

Haskell is lazy
• Think about computation as function composition, not 

as a sequence of instructions

22



Haskell crash course

This Thursday

Bring your computers

23



What do I want you to get out of this course?

• Become familiar with different programming paradigms 
• Understand principles behind programming languages
• Apply these principles to solve “real” problems

24



PL principles

Focus is on semantics (what do programs mean?)

(Mostly) ignore syntax (what do programs look like?)

25



Dynamic semantics

How does a program behave?

How is a program evaluated?

We’ll experiment with different semantics by 
implementing interpreters

We’ll define behavior formally with operational 
semantics

Formal semantics lets you state precisely and prove 
properties of programs 

26



What does this expression do?

‘1’ + ‘2’

27



Static semantics

Restrictions on programs to provide (some) correctness 
guarantees
• e.g., if this program type checks, it won’t core dump

Focus on type systems

Some other formal methods (e.g., program verification) 
are covered in other classes

28



What do I want you to get out of this course?

• Become familiar with different programming paradigms 
• Understand principles behind programming languages
• Apply these principles to solve “real” problems

29



Languages are models of dynamic systems

A programming language provides abstractions and 
ways to compose these abstractions

The languages you are familiar with are models of 
computer systems

They provide abstractions for data and computation

30



31

abstractions compositions

Assembly languages addresses, registers, 
instructions, labels sequences of instructions

Procedural languages booleans, arithmetic, loops, 
arrays, procedures

sequences of statements, 
procedure calls

OO languages objects, methods, fields, 
classes

method invocation, 
inheritance

Functional languages first-class functions, 
algebraic data types

function application, type 
constructors



32

Languages are models of dynamic systems

But languages can model not just computer systems, but 
any dynamic system

General-purpose languages provide abstractions for 
modeling computation

Domain-specific languages provide abstractions for 
other domains



Domain-specific languages

33

abstractions compositions

SQL relations, tuples, queries joins, selection, projection

make files, build rules dependencies

lex characters, strings sequences, alternation (|), 
repetition (*)

yacc tokens, nonterminal 
symbols grammar rules

OpenFlow packets, network flows, 
channels

matching, actions (drop, 
forward, etc)

OpenSCAD shapes union, intersection, linear 
transformations



Domain-specific languages

34

When designing a system, can be useful to think of the system as a 
language

Implement the system as an interpreter for a domain-specific language

A DSL can either:
• be a language in its own right or 

• e.g., yacc
• be embedded in a general-purpose language as a library

• e.g., parser combinators

Same issues that arise with general-purpose languages arise with 
domain-specific languages
• name binding, control-flow, mutation, evaluation order, ...
• similar problems => similar solutions



Homework for Thursday

Do Assignment 0. It’s easy.
• https://docs.google.com/forms/d/1Mers7bsiRrG6_VF9YcYkIEM-AIiIjAtoz90cWHWSt40/viewform

Install ghc (the Glasgow Haskell Compiler)
• 7.4 or later
• http://haskell.org
• Mac users:

• brew install ghc haskell-platform
• port install ghc

35


