
Programming Languages
Lecture Notes

Nate Nystrom

7 March 2013

1 Operational semantics review

We can define the dynamic semantics of a language using a small-step operational semantics.

Consider a simple language with booleans and if. We can define the syntax of the language as terms t,
some of which are values v.

t ::= v | if t then t else t
v ::= true | false

Evaluation is defined using inference rules. We have two axioms for when the condition has already been
evaluated:

if true then t1 else t2 −→ t1 (E-TRUE)

if false then t1 else t2 −→ t2 (E-FALSE)

Then, we have an inference rule that describes the order of evaluation.

t0 −→ t′0
if t0 then t1 else t2 −→ if t′0 then t1 else t2

(E-IF)

We can read the judgment t −→ t′ as “t reduces to t′”. t (before the −→) is called a redex. These rules
are called reduction rules or evaluation rules. E-TRUE and E-FALSE are also called computation rules—they
describe actual computation; E-IF is called a congruence rule—these rules describe order of evaluation..

Evaluation strategy. To evaluate a term t, we find a rule whose redex matches t and apply the rule,
resulting in a new term t′. We instantiate the rule on t. If the rule has premises, those must also be
matched.

Note the rule must match the entire term, so we cannot, for instance, apply a rule to an arbitrary subterm
of an if. Thus

if true then (if false then false else false) else true

does not evaluate to

if true then false else true

The rules only let us evaluate the outer conditional first. The evaluation must step to

if false then false else false

first by E-TRUE, and then step to false by E-FALSE.

1

An evaluation step is justified by a derivation of the evaluation judgment using the inference rules. Let:

s = if true then false else false

t = if s then true else true

u = if false then true else true

Then, we have the derivation tree (or proof tree):

s −→ false
E-TRUE

t −→ u
E-IF

if t then false else false −→ if u then false else false
E-IF

2 Induction

Here’s a short review of proofs by induction. We’ll first consider induction on natural numbers. This is
probably what you’re used to from, say, a data structures class.

Theorem 1. For n ≥ 1,
1 · 2 + 2 · 3 + · · ·+ n(n+ 1) = n(n+ 1)(n+ 2)/3

Proof. Base case. We first consider the base case n = 1. Clearly,

1 · 2 = 1 · 2 · 3/3 = 1(1 + 1)(1 + 2)/3.

Induction case. Now, we have to show that if we assume the theorem is true for k, we can then show it
is true for k + 1. This assumption is called the induction hypothesis (IH).

In this proof, the IH is:
1 · 2 + 2 · 3 + · · ·+ k(k + 1) = k(k + 1)(k + 2)/3

We need to show:

1 · 2 + 2 · 3 + · · ·+ k(k + 1) + (k + 1)(k + 2) = (k + 1)(k + 2)(k + 3)/3

By the IH, we have:

1 · 2 + 2 · 3 + · · ·+ k(k + 1) + (k + 1)(k + 2) = k(k + 1)(k + 2)/3 + (k + 1)(k + 2)

And so:

k(k + 1)(k + 2)/3 + (k + 1)(k + 2) = (k + 1)(k + 2)k/3 + (k + 1)(k + 2)

= (k + 1)(k + 2) (k/3 + 1)

= (k + 1)(k + 2) (k/3 + 3/3)

= (k + 1)(k + 2) ((k + 3)/3)

= (k + 1)(k + 2)(k + 3)/3

And this is what we wanted to prove.

Sometimes the obvious induction hypothesis is too weak and we need a stronger hypothesis. For instance,
we might need to assume the property P we’d like to prove is true for all values ≤ k, not just for the
previous value k.

2

3 Structural induction

In general, you can apply the induction principle to anything where we have a partial order � where there
are base objects for which no other object is strictly ≺.

For proving things about programs, we often use structural induction. This is based on the idea that there
are simple terms (e.g., true, and false) and compound terms (e.g., if).

To prove a property about all possible terms, we prove it for the simple terms, and then assuming the
property holds for all subterms of a compound terms, we can prove it for the compound term, then the
property does indeed hold. Note that subterms of a term are “smaller” than the term itself, so we do have
an ordering.

Here’s an example:

Theorem 2. Given the grammar and reduction rules above, either t is a value, or there is an t′ such that
t −→ t′.

Proof. By structural induction on t.

• case t = true. t is a value. Trivial.

• case t = false. t is a value. Trivial.

• case t = if t0 then t1 else t2. Since t0 is a subterm of t, by the IH, t0 is either a value or there is a t′0
such that t0 −→ t′0.

– subcase t0 = true. Then E-TRUE applies and t′ = t1.

– subcase t0 = false. Then E-FALSE applies and t′ = t2.

– otherwise, by the IH, t0 −→ t′0, so we can derive t′ = if t′0 then t1 else t2 by E-IF.

4 IMP

So far, we haven’t talked about imperative languages, but we can of course model these too with opera-
tional semantics.

Here is the grammar for a language called IMP. Note that the language is restricted syntactically to ensure
that variables contain only integers and that arithmetic and boolean expressions are distinct. This is to
avoid the need to handle corner cases like true+1.

s ::= pass | x := a | s1; s2 | if b then s1 else s2 | while b do s statements

a ::= x | n | a1 + a2 arithmetic expressions

b ::= true | false | a1 < a2 | b1 and b2 | not b boolean expressions

Here are the operational semantics. Statement evaluation is defined by judgments of the form σ, s −→
σ′, s′ (“s in store σ reduces to s′ in σ′”). Evaluation halts in the configuration σ, pass. A store σ is a
function from variables x to values n. σ[x 7→ n] is the store that maps x to n and y (6= x) to σ(y).

σ, pass; s −→ σ, s (S-SEQ)

σ, s1 −→ σ′, s′1
σ, s1; s2 −→ σ′, s′1; s2

(SC-SEQ)

σ, x := n −→ σ[x 7→ n], pass (S-ASN)

3

σ ` a −→ a′

σ, x := a −→ σ, x := a′
(SC-ASN)

σ, if true then s1 else s2 −→ σ, s1 (S-IFTRUE)

σ, if false then s1 else s2 −→ σ, s2 (S-IFFALSE)

σ ` b −→ b′

σ, if b then s1 else s2 −→ σ, if b′ then s1 else s2
(SC-IF)

σ, while b do s −→ σ, if b then (s; while b do s) else pass (S-WHILE)

Note that the rule for while is non-obvious. We copy the original while loop into the target statement.
This makes it possible to write infinite loops:

σ, while true do pass −→ σ, if true then (pass; while true do pass) else pass

−→ σ, pass; while true do pass

−→ σ, while true do pass

−→ . . .

Expression evaluation is defined by judgments of the form σ ` e −→ e′ (“e reduces to e′ with store
σ”). Note that we’re not stepping to a new store σ′ in these rules because expressions do not include
assignment. You can think of σ ` e −→ e′ as a rewrite rule for expressions e parameterized on a store σ.

To simplify the rules, we add the following syntax:

e ::= a | b expressions

v ::= n | true | false values

o ::= + | < | and binary operations

σ ` x −→ σ(x) (E-VAR)

σ ` n1 < n2 −→ true (where n1 < n2) (E-LT)

σ ` n1 < n2 −→ false (where n1 ≥ n2) (E-GE)

σ ` n1 + n2 −→ n (where n = n1 + n2) (E-ADD)

σ ` false and b −→ false (E-ANDFALSE)

σ ` true and b −→ b (E-ANDTRUE)

σ ` e1 −→ e′1
σ ` e1 o e2 −→ e′1 o e2

(EC-L)

σ ` e −→ e′

σ ` v o e −→ v o e′
(EC-R)

σ ` not true −→ false (E-NOTTRUE)

σ ` not false −→ true (E-NOTFALSE)

σ ` e −→ e′

σ ` not e −→ not e′
(EC-NOT)

4

Let’s do an example. Let σ be an initial store. Here are the derivations for each step of a computation.

σ, x := 1 −→ σ[x 7→ 1], pass
S-ASN

σ, x := 1; y := x+ 1 −→ σ[x 7→ 1], pass; y := x+ 1
SC-SEQ

σ[x 7→ 1], pass; y := x+ 1 −→ σ[x 7→ 1], y := x+ 1
S-SEQ

σ[x 7→ 1] ` x −→ 1
E-VAR

σ[x 7→ 1] ` x+ 1 −→ 1 + 1
EC-L

σ[x 7→ 1], y := x+ 1 −→ σ[x 7→ 1], y := 1 + 1
SC-ASN

σ[x 7→ 1] ` 1 + 1 −→ 2
E-OP

σ[x 7→ 1], y := 1 + 1 −→ σ[x 7→ 1], y := 2
SC-ASN

σ[x 7→ 1], y := 2 −→ σ[x 7→ 1, y 7→ 2], pass
S-ASN

5 Determinism

Now, let’s prove that IMP programs are determinsitic.

To do the proof, we need the following lemma, the proof of which is an exercise in HW 3.

Lemma 1. If σ ` e −→ e′ and σ ` e −→ e′′, then e′ = e′′.

The main theorem follows:

Theorem 3. If σ, s −→ σ, s′ and σ, s −→ σ, s′′, then s′ = s′′.

Proof. By structural induction on s.

• case s = pass. Vacuous (s′ and s′′ do not exist).

• case s = x := a.

There are two cases. If a is n, then s′ = pass = s′′ by S-ASN.

Otherwise, by the lemma σ ` a −→ a′ uniquely and we can derive s′ = x := a′ = s′′ uniquely by
SC-ASN.

• case s = s1; s2.

If s1 = pass, then s′ = s′′ = s2 by S-SEQ.

Otherwise, by the IH, If σ, s1 −→ σ′, s′1 uniquely. By SC-SEQ, we can derive a unique s′ = s′′ = s′1; s2.

• case s = if b then s1 else s2
There are three cases. If b is true or false, then by S-IFTRUE, we have s′ = s′′ = s1 or by S-IFFALSE,
we have s′ = s′′ = s2.

Otherwise, by the lemma b′ is unique. Therefore by SC-IF, s′ = s′′ = if b′ then s1 else s2.

• case s = while b do s1
Only one rule applies. Trivial.

5

	Operational semantics review
	Induction
	Structural induction
	IMP

