Programming Languages - Assignment 1 Haskell exercises

Due: Wednesday, 27 Feb 2013, 23:55

The following exercises are intended to give you some practice with the Haskell language and libraries. This assignment is graded out of 10 points.

1. [1 pt] Feedback. Complete the survey linked from the course web page after completing this assignment. Any non-empty answer will receive full credit.
2. [1 pt] Haskell basics: binding and scope

For each of the following uses of names, give the line where the name is bound. Explain your reasoning in 1-2 sentences.
(a) Consider the following Haskell code fragment.

```
tau = 6.28
circumference r =
    let
        tau = 6.283185
    in
        tau * r
area r = tau * r * r / 2
```

- At which line is the use of tau at line 7 bound?
- At which line is the use of tau at line 9 bound?
(b) Consider the following Haskell code fragment.

```
\(\mathrm{x}=3\)
foo \(\mathrm{x}=\) case x of
    0 -> 0
    x -> (let
            \(\mathrm{x}=\mathrm{y}+1\)
            in \(y\) ) * foo ( \(x-1\) ) where
                \(\mathrm{y}=\mathrm{x}+1\)
\(y=x+f o o x\)
```

At which lines are the following variable uses bound?

- the use of x at line 3
- the use of y at line 6
- the use of y at line 7
- the use of x at line 7
- the use of x at line 8
- the uses of x at line 10

3. [1 pt] Haskell basics: typing

Provide an example for the following:
(a) A three element tuple.
(b) A list of all integers between 1 and 10 (inclusive).
(c) A list of tuples, where each tuple has a string as its first element and a character as its second element.
(d) A function that takes two integers as parameters and returns a boolean.
(e) Unit.
(f) [[[Char]]].
4. [2 pts] Library functions These exercises are intended to give you practice writing Haskell functions. Do not implement them by simply calling library functions with the same behavior.
To make the exercise more painful instructive, do not use the boolean operators (including $==, /=$, not, \&\&, ||); instead, use only if-else expressions, pattern matching and boolean literals.
For questions 4-6, use the file hw1.hs as a template. This file is available on the course webpage. Please ensure that when you submit your version of hw1.hs, that the code runs with runhaskell.
(a) cube :: Int -> Int
cube x returns the cube of $\mathrm{x}, \mathrm{x}^{3}$. For example, cube $2=8$.
(b) absolute :: Int -> Int
absolute x returns the absolute value of $\mathrm{x},|\mathrm{x}|$. For example, absolute (-1) == 1 .
(c) xor :: Bool -> Bool -> Bool
xor x y returns the eXclusive OR of x and y . For example, xor True False == True.
5. [2 pts] Recursion

The following should be written as recursive functions.
(a) largest :: [Int] -> Int
largest xs returns the largest element of xs. For example, largest $[-1,-3,-2]==-1$. Assume that the input list xs is not empty.
(b) fib :: Int -> Int
fib n returns the nth Fibonacci number, F_{n}, with $F_{0}=F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$. Assume $\mathrm{n} \geq 0$.
(c) Now, write a new version of fib function, called fib', that returns the nth Fibonacci number, F_{n}, in $O(n)$ time. Hint: use a recursive helper function that returns the tuple $\left(F_{n}, F_{n-1}\right)$ for input n.
(d) This time write a version of the fib function called fib' ' that returns the nth Fibonacci number, F_{n}, in $O(\log n)$ time.
Hint 1: Let
$M^{n} M=\left(\begin{array}{cc}F_{n} & F_{n-1} \\ F_{n-1} & F_{n-2}\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}F_{n}+F_{n-1} & F_{n} \\ F_{n-1}+F_{n-2} & F_{n-1}\end{array}\right)=\left(\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right)=M^{n+1}$
You can represent a matrix as a 4-tuple.
Hint 2: If n is even, $M^{n}=\left(M^{n / 2}\right)^{2}$. If n is odd, $M^{n}=M M^{n-1}$.

6. [3 pts] Data structures

A binary search tree is a binary tree that satisfies an ordering invariant. If n is a node in the tree with data value x, left child l, and right child r, then all values in l must be $<x$ and all values in r must be $\geq x$.
We can represent a binary search tree with the following datatype:

```
data BST = Empty | Node BST Int BST
    deriving (Show, Eq)
```

A BST is either Empty or a Node with a value and two children. The "deriving (Show, Eq)" annotation defines show and (==) functions for the data type, allowing trees to be printed and compared.
Define the following four functions:
(a) bst0k :: BST -> Bool
bst0k t returns True iff t is a valid binary search tree. For example:
bstOk (Node (Node Empty 4 Empty) 3 (Node Empty 2 Empty)) == False
(b) bstInsert :: BST -> Int -> BST

The function bstInsert $t \mathrm{n}$ inserts integer n into tree t , returning a new tree. The function constructs and returns a new tree rather than destructively updating the input tree. Both the input tree and output tree should be valid binary search trees. For example:

```
bstInsert 1 Empty == Node Empty 1 Empty
```

(c) bstDeleteMin :: BST -> (BST, Int)
bstDeleteMin t deletes the minimum element of the tree, returning the new tree and the minimum element. Assume the input tree t is not Empty. Both the input tree and output tree should be valid binary search trees.
(d) bstDelete :: BST -> Int -> BST
bstDelete t n deletes the first node in the tree t whose value is n . If the n is not in the tree, the original tree should be returned. Both the input tree and output tree should be valid binary search trees. Hint: use bstDeleteMin as a subroutine.

