
Towards Transformations from BPMN to
Heterogeneous Systems

Tobias Küster and Axel Heßler

10.10.2008 CC ACT Folie 2

BPMN is the new standard modelling notation for all
kinds of business processes, and many tools
provide a transformation to executable BPEL
code. But what about other languages?

We present a BPMN modelling and transformation
tool, which is generic enough to support not only
BPEL, but which can easily be extended with
export features targeting other languages, too.

10.10.2008 CC ACT Folie 3

Content

Introduction
The Visual Service Design Tool
The Transformation Framework
Transformation to BPEL
Conclusion

10.10.2008 CC ACT Folie 4

Content

Introduction
Motivation
The Problem
Our Approach

The Visual Service Design Tool
The Transformation Framework
Transformation to BPEL
Conclusion

10.10.2008 CC ACT Folie 5

Introduction

DAI-Labor, TU Berlin
Prof. Dr.-Ing. Sahin Albayrak
"Smart Services and Smart Systems"
AI, Agents, Networks, Services, Security, …

http://www.dai-labor.de

The SerCHo Project (Service Centric Home)
services for the home of tomorrow
service creation and deployment

http://www.sercho.de

10.10.2008 CC ACT Folie 6

Introduction: Motivation

The Business Process Modeling Notation...
is a standardised, intuitive process notation.
communicates processes between stakeholders,
domain experts, and developers.
unifies business process modelling.
provides a graphical notation for BPEL.

What about other executable languages?

10.10.2008 CC ACT Folie 7

Introduction: The Problem

Most BPMN editors are specialized on
creating executable BPEL code

e.g. Intalio BPMS, eClarus SOA Architect, …
This has some advantages:

editor support for e.g. BPEL expression syntax
code can easily be generated and deployed

But: Loss of language-independence
for a transformation to another language the
diagram has to be recreated in another editor

10.10.2008 CC ACT Folie 8

Introduction: Our Approach

Use sheer BPMN in metamodel and editor
Transformations can be 'plugged in'

additional export / import features
additional editing support for these languages

Make it easy to create new export features
third-parties can provide a transformation to
their execution language

10.10.2008 CC ACT Folie 9

Content

Introduction
The Visual Service Design Tool

Background
Basics
Features

The Transformation Framework
Transformation to BPEL
Conclusion

10.10.2008 CC ACT Folie 10

The Visual Service Design Tool: Background

Motivation: Having a tool to 'bridge the gap'
visual creation of distributed systems
transformation to Multiagents-Systems (MAS)

mapping to MAS still under development
export to BPEL as a by-product of this project

To be used in the SerCHo-Project at TU Berlin
goal: creating and combining ambient home services
integrating heterogeneous service technologies

First version implemented as a diploma thesis

10.10.2008 CC ACT Folie 11

The Visual Service Design Tool: Basics

Metamodel derived from specification
fairly Complex, but hidden from the user
extension for structures (Sequence, If-Else, ...)

used for structure recognition and transformation

Diagram editor created with Eclipse GMF
some customization /additions for improved
usability

special thanks to eclipse.modeling.gmf and the
team of the Eclipse STP BPMN editor!

10.10.2008 CC ACT Folie 12

The Visual Service Design Tool: Screenshot

10.10.2008 CC ACT Folie 13

The Visual Service Design Tool: Features

Being independent of BPEL has downsides, too
reduced editing support, e.g. no syntax validation

Has to be compensated with plugins, e.g.
Web Service View: import existing Web services
BPEL Expression Editor (planned): Enter and validate
an XPath expression

Export triggered via Eclipse Export Wizard

10.10.2008 CC ACT Folie 14

Content

Introduction
The Visual Service Design Tool
The Transformation Framework

Overview
Transformation Stages
Transformation Example

Transformation to BPEL
Conclusion

10.10.2008 CC ACT Folie 15

The Transformation Framework

Transf. from graph to code is a difficult task
concept. mismatch, different expressive power
capture global semantics of control flow
create readable code one can work with
unstructuredness results in added complexity

Topic of many research papers

Wouldn't it be a good thing
to make this part reusable?

10.10.2008 CC ACT Folie 16

The Transformation Framework: Overview

Primary goal: easy to extend and to reuse
Split up into several stages

Validation, Normalization, Structure Mapping,
Element Mapping, Clean Up
implementing special Interfaces
typically realized as a top-down pass or using
graph transformation rules (based on EMT)

Individual stages can be reused or
extended for use in other transformations

10.10.2008 CC ACT Folie 17

The Transformation Framework: Stage 1-2

Validation
check constraints, e.g. multiplicities
optional: check expression syntax

Normalization
put diagram into "normal form"
much fewer cases to consider later on

Example:

10.10.2008 CC ACT Folie 18

The Transformation Framework: Stage 2

Normalization Rules
insert a Gateway, if an Event or Activity has multiple
incoming or outgoing Sequence Flows
split a Gateway having both multiple incoming and
outgoing Sequence Flows in two
insert a no-op Task between two Gateways or an
Activity with Event Handlers and a Gateway
add a final Gateway, merging all branches
move a Gate's Assignments into a separate Task

10.10.2008 CC ACT Folie 19

The Transformation Framework: Stage 3

Structure Mapping
transformation from graph to block structure

following Structure Identification strategy
realized using a relatively small set of rules

can handle slightly unstructured workflows
uses extension of the metamodel to integrate
recognized structures directly into the model

Example:

10.10.2008 CC ACT Folie 20

The Transformation Framework: Stage 3

Sequence Rule
pre: not more than one inc./outg.
Seq. Flow, no event handlers
put Flow Objects in Sequence
structure, reroute Seq. Flows

Block Rule
look up other branches going
from G1 to G2
put Flow Objects and conditions
in Block structure, reroute SF

Loop Rule
put Flow Objects and conditions
in Loop structure, reroute SF

10.10.2008 CC ACT Folie 21

The Transformation Framework: Stage 3

Event Handler Block Rule
wrap A into EH Block structure

Event Handler Comp Rule
if A in EH Block, wrap Event and AC
into EH Case structure, add to EH Block
detach Event from Activity

Event Handler Skip Rule
if A in EH Block, wrap Event and
AC into EH Case, add to EH Block
refer to AS as "element to skip"
detach Event, remove lower SFs

10.10.2008 CC ACT Folie 22

The Transformation Framework: Stage 4-5

Element Mapping
create the target model (e.g. a BPEL process) from
the normalized, structured process diagram
map each element, e.g. a Task, to its equivalent in the
target language

Clean-Up
improve readability of generated code, remove
redundant code
flatten nested sequences, resolve singleton
sequences, ...

10.10.2008 CC ACT Folie 23

The Transformation Framework: Example

Examples of transformable workflows

10.10.2008 CC ACT Folie 24

Intermezzo: Example, Step 1

Our starting workflow:

10.10.2008 CC ACT Folie 25

Intermezzo: Example, Step 2

First, insert a Gateway before the Task 'Receive' to simplify
the identification of the loop.

10.10.2008 CC ACT Folie 26

Intermezzo: Example, Step 3

Now, two 'Empty' Activities are inserted between the
consecutive Gateways.

10.10.2008 CC ACT Folie 27

Intermezzo: Example, Step 4

That was the Normalization. The Structure Mapping starts
with identifying three Sequences…

10.10.2008 CC ACT Folie 28

Intermezzo: Example, Step 5

Now that the Gateways are only one Flow Object apart, the
Loop is identified.

10.10.2008 CC ACT Folie 29

Intermezzo: Example, Step 6

Each Activity with an attached Intermediate Event is
recognized as an Event Handler Block.

10.10.2008 CC ACT Folie 30

Intermezzo: Example, Step 7

The Compensation Flow is detached from the Activity and
put into the Event Handler Block, together with a
reference to the Activity to skip.

10.10.2008 CC ACT Folie 31

Intermezzo: Example, Step 8

Two more Sequences are wrapped around the branches of
the large decision block…

10.10.2008 CC ACT Folie 32

Intermezzo: Example, Step 9

…and in the next step the block itself is identified.

10.10.2008 CC ACT Folie 33

Intermezzo: Example, Step 10

By identifying the outermost sequence the Structure
Mapping is finished.

10.10.2008 CC ACT Folie 34

Intermezzo: Example, Step 11

Finally, the 'Empty' Activities inserted earlier are removed.
The result is the input for the Element Mapping stage.

10.10.2008 CC ACT Folie 35

Content

Introduction
The Visual Service Design Tool
The Transformation Framework
Transformation to BPEL

Stages
Coverage
Tool Demonstration

Conclusion

10.10.2008 CC ACT Folie 36

Transformation to BPEL: Stages

Transformation Stages in the BPEL case

10.10.2008 CC ACT Folie 37

Transformation to BPEL: Coverage

Covers nearly the whole mapping
Event Handlers, Event-based XOR, OR, …
for some elements the mapping is not clear

Rule Event, MI Loop, Independent Subprocess, …
mapped as described in the specification, but will require
some manual rework

creates WSDL file holding desc. of orchestr. services
<binding> and <service> blocks have to be added manually

Variable name substitution:
Given Process p with Property x, Expression $x+1 is changed to
bpws:getVariableData('p_ProcessData','x')+1.

10.10.2008 CC ACT Folie 38

Transformation to BPEL

Tool Demonstration

10.10.2008 CC ACT Folie 39

Content

Introduction
The Visual Service Design Tool
The Transformation Framework
Transformation to BPEL
Conclusion

Conclusion
Future Work

10.10.2008 CC ACT Folie 40

Conclusion

Introducing the 'Visual Service Design Tool'…
pure BPMN editor, mappings and language-specific
editing support can be plugged in
advantage: One BPMN diagram can be exported to
arbitrary target languages

… and a versatile Transformation Framework
easy creation and integration of new transformations
reusable mapping of graph structure
can create readily executable BPEL code
more to come!

10.10.2008 CC ACT Folie 41

Conclusion: Future Work

Future Work
further improvement of structure mapping
better support for (complex) data types

widely disregarded in the BPMN specification
both in the editor and during the transformation

import from executable code to BPMN
still problems with back-transformation of event handlers

transformation to further languages
focus: Multiagent-Systems

Long-term goal: Transforming BPMN to
Heterogeneous Systems

10.10.2008 CC ACT Folie 42

Contact

Dipl.-Inform. Tobias Küster
Researcher
Competence Center
Agent Core Technologies

+49 (0) 30 / 314 – 74 033
+49 (0) 30 / 314 – 74 003

tobias.kuester@dai-labor.de

Dipl.-Inform Axel Heßler
Researcher
Competence Center
Agent Core Technologies

+49 (0) 30 / 314 – 74 028
+49 (0) 30 / 314 – 74 003
axel.hessler@dai-labor.de

